MINI-REVIEW

Liposome mediated drug delivery for leukocyte adhesion deficieny I (LAD I): Targeting the mutated gene ITGB2 and expression of CD18 protein

  • C. Subathra DEVI ,
  • Kritika KEDARINATH ,
  • Payal CHOUDHARY ,
  • Vishakha TYAGI ,
  • Mohanasrinivasan. V
Expand
  • School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India

Received date: 03 Sep 2013

Accepted date: 04 Dec 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Leukocyte adhesion deficiency (LAD) I is a disorder caused due to mutations in a gene (ITGB2) located on chromosome 21 and encodes the β2 subunit of the leukocyte integrin molecules. This leads to defects in the adhesion of leukocytes on endothelial cells which further leads to recurrent microbial infections due to a decrease in the immune response. Base Excision Repair Mechanism (BER) is instrumental in repairing damaged DNA by removing mutated/damaged bases. We have proposed a hypothesis for the treatment of LAD I by making use of the proteins/enzyme complexes responsible for base excision repair mechanism be introduced into the leukocytes via liposomes. This will target the mutated gene in the leukocytes (mostly neutrophils) and DNA repair will occur. The liposomes can be introduced into the patients via intravenous methods.

Key words: CD18; β-integrin; LAD I; liposome; BER; ITGB2

Cite this article

C. Subathra DEVI , Kritika KEDARINATH , Payal CHOUDHARY , Vishakha TYAGI , Mohanasrinivasan. V . Liposome mediated drug delivery for leukocyte adhesion deficieny I (LAD I): Targeting the mutated gene ITGB2 and expression of CD18 protein[J]. Frontiers in Biology, 2014 , 9(1) : 1 -4 . DOI: 10.1007/s11515-013-1287-6

Acknowledgements

The authors thank the management of the VIT University for providing the facilities to carry out this study.
Conflict of interest
Subathra, Kritika, Payal, Tyagi and Mohanasrinivasan declare that they have no conflict of interest.
1
Akbari M, Otterlei M, Peña-Diaz J, Aas P A, Kavli B, Liabakk N B, Hagen L, Imai K, Durandy A, Slupphaug G, Krokan H E (2004). Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res, 32(18): 5486−5498

DOI PMID

2
Allen T M, Hansen C B, Guo L S (1993). Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta, 1150(1): 9−16

DOI PMID

3
Amin A M, Dana N, Gupta S K, Tenen D G, Fathallah D M (1990). Point Mutations Impairing Cell Surface Expression of the Common β Subunit (CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency. American Soc Clin Invest. Inc., 85: 977−981

4
Anderson D C, Springer T A (1987). Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med, 38(1): 175−194

DOI PMID

5
Chaudhuri J, Alt F W (2004). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol, 4(7): 541−552

DOI PMID

6
Finkelstein M, Weissmann G (1978). The introduction of enzymes into cells by means of liposomes. J Lipid Res, 19(3): 289−303

PMID

7
Fortini P, Dogliotti E (2007). Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst), 6(4): 398−409

DOI PMID

8
Fromme J C, Banerjee A, Verdine G L (2004). DNA glycosylase recognition and catalysis. Curr Opin Struct Biol, 14(1): 43−49

DOI PMID

9
Kishimoto T K, O’Conner K, Springer T A (1989). Leukocyte adhesion deficiency. Aberrant splicing of a conserved integrin sequence causes a moderate deficiency phenotype. J Biol Chem, 264(6): 3588−3595

PMID

10
Kuhn S H, Gemperli B, Shephard E G, Joubert J R, Weidemann P A, Weissmann G, Finkelstein M C (1983). Interaction of liposomes with human leukocytes in whole blood. Biochim Biophys Acta, 762(1): 119−127

DOI PMID

11
Lehman I R (1974). DNA ligase: structure, mechanism, and function. Science, 186(4166): 790−797

DOI PMID

12
Liu Y, Prasad R, Beard W A, Kedar P S, Hou E W, Shock D D, Wilson S H (2007). Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase β. J Biol Chem, 282(18): 13532−13541

DOI PMID

13
Marenstein D R, Wilson D M 3rd, Teebor G W (2004). Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA. DNA Repair (Amst), 3(5): 527−533

DOI PMID

14
Mayer L D, Tai L C, Ko D S, Masin D, Ginsberg R S, Cullis P R, Bally M B (1989). Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res, 49(21): 5922−5930

PMID

15
Ristori S, Oberdisse J, Grillo I, Donati A, Spalla O (2005). Structural characterization of cationic liposomes loaded with sugar-based carboranes. Biophys J, 88(1): 535−547

DOI PMID

16
Schreiber V, Amé J C, Dollé P, Schultz I, Rinaldi B, Fraulob V, Ménissier-de Murcia J, de Murcia G (2002). Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem, 277(25): 23028−23036

DOI PMID

17
Sidorenko V S, Zharkov D O (2008). Role of base excision repair DNA glycosylases in hereditary and infectious human diseases. Молекул биол, 42(5): 891−903

PMID

18
Steitz T A (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem, 274(25): 17395−17398

DOI PMID

19
Stephen J N, Robert A S, Monika I S (2012).

20
Szebeni J (1998). The Interaction of Liposomes with the Complement. Crit Rev Ther Drug, 15(1): 32

DOI

21
Wagner A,Vorauer-Uhl K (2011). Liposome technology for industrial purposes. J Drug Delivery, Article ID 591325

22
Working P K, Newman M S, Huang S K, Mayhew E, Vaage J, Lasic D D (1994). Pharmacokinetics, biodistribution, and therapeutic efficacy of doxorubicin encapsulated in Stealth® liposomes (Doxil®). J Liposome Res, 4(1): 667−687

DOI

23
Zhang X W, Schramm R, Liu Q, Ekberg H, Jeppsson B, Thorlacius H (2000). Important role of CD18 in TNF-alpha-induced leukocyte adhesion in muscle and skin venules in vivo. Inflamm Res, 49(10): 529−534

DOI PMID

24
Zharkov D O (2007). Structure and conformational dynamics of base excision repair DNA glycosylases. Mol Biol, 41(5): 702−716

DOI

Outlines

/