REVIEW

Neural regulation of CNS angiogenesis during development

  • Shang MA , 1,2 ,
  • Zhen HUANG , 1
Expand
  • 1. Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53706, USA
  • 2. Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA

Received date: 06 Jun 2014

Accepted date: 31 Jul 2014

Published date: 14 Feb 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Vertebrates have evolved a powerful vascular system that involves close interactions between blood vessels and target tissues. Vascular biology had been mostly focused on the study of blood vessels for decades, which has generated large bodies of knowledge on vascular cell development, function and pathology. We argue that the prime time has arrived for vascular research on vessel-tissue interactions, especially target tissue regulation of vessel development. The central nervous system (CNS) requires a highly efficient vascular system for oxygen and nutrient transport as well as waste disposal. Therefore, neurovascular interaction is an excellent entry point to understanding target tissue regulation of blood vessel development. In this review, we summarize signaling pathways that transmit information from neural cells to blood vessels during development and the mechanisms by which they regulate each step of CNS angiogenesis. We also review important mechanisms of neural regulation of blood-brain barrier establishment and maturation, highlighting different functions of neural progenitor cells and pericytes. Finally, we evaluate potential contribution of malfunctioning neurovascular signaling to the development of brain vascular diseases and discuss how neurovascular interactions could be involved in brain tumor angiogenesis.

Cite this article

Shang MA , Zhen HUANG . Neural regulation of CNS angiogenesis during development[J]. Frontiers in Biology, 2015 , 10(1) : 61 -73 . DOI: 10.1007/s11515-014-1331-y

Acknowledgements

This work was supported by an NIH grant NS076729 to Z. H and an AHA pre-doctoral fellowship award 14PRE19080006 to S.M.
1
Abbott N J, Rönnbäck L, Hansson E (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 7(1): 41-53

DOI PMID

2
Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995). Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med, 1(10): 1024-1028

DOI PMID

3
Alvarez J I, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre P J, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries H E, Charron F, Prat A (2011). The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 334(6063): 1727-1731

DOI PMID

4
Anderson K D, Pan L, Yang X M, Hughes V C, Walls J R, Dominguez M G, Simmons M V, Burfeind P, Xue Y, Wei Y, Macdonald L E, Thurston G, Daly C, Lin H C, Economides A N, Valenzuela D M, Murphy A J, Yancopoulos G D, Gale N W (2011). Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci USA, 108(7): 2807-2812

DOI PMID

5
Armulik A, Abramsson A, Betsholtz C (2005). Endothelial/pericyte interactions. Circ Res, 97(6): 512-523

DOI PMID

6
Arnold T D, Ferrero G M, Qiu H, Phan I T, Akhurst R J, Huang E J, Reichardt L F (2012). Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β. J Neurosci, 32(4): 1197-1206

DOI PMID

7
Ballabh P (2010). Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res, 67(1): 1-8

DOI PMID

8
Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, Lou N, Ungvari Z, Goldman S A, Csiszar A, Nedergaard M (2007). Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med, 13(4): 477-485

DOI PMID

9
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland A B, Shi Q, McLendon R E, Bigner D D, Rich J N (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 66(16): 7843-7848

DOI PMID

10
Bell R D, Winkler E A, Sagare A P, Singh I, LaRue B, Deane R, Zlokovic B V (2010). Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 68(3): 409-427

DOI PMID

11
Ben-Zvi A, Lacoste B, Kur E, Andreone B J, Mayshar Y, Yan H, Gu C (2014). Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature, 509(7501): 507-511

DOI PMID

12
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams R H (2009). The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137(6): 1124-1135

DOI PMID

13
Berg J N, Gallione C J, Stenzel T T, Johnson D W, Allen W P, Schwartz C E, Jackson C E, Porteous M E, Marchuk D A (1997). The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am J Hum Genet, 61(1): 60-67

DOI PMID

14
Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau J J, Neau J P, Parker F, Tremoulet M, Tournier-Lasserve E, the Société Française de Neurochirurgie (2005). Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet, 76(1): 42-51

DOI PMID

15
Boulday G, Rudini N, Maddaluno L, Blécon A, Arnould M, Gaudric A, Chapon F, Adams R H, Dejana E, Tournier-Lasserve E (2011). Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med, 208(9): 1835-1847

DOI PMID

16
Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, Ungvari Z, Csiszar A, Nedergaard M, Ballabh P (2007). Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci, 27(44): 12012-12024

DOI PMID

17
Breier G, Albrecht U, Sterrer S, Risau W (1992). Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development, 114(2): 521-532

PMID

18
Breier G, Clauss M, Risau W (1995). Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn, 204(3): 228-239

DOI PMID

19
Calabrese C, Poppleton H, Kocak M, Hogg T L, Fuller C, Hamner B, Oh E Y, Gaber M W, Finklestein D, Allen M, Frank A, Bayazitov I T, Zakharenko S S, Gajjar A, Davidoff A, Gilbertson R J (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1): 69-82

DOI PMID

20
Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, Einheber S, Boudreau N, Nishimura S L (2005). Integrin α(v8-mediated activation of transforming growth factor-β by perivascular astrocytes: an angiogenic control switch. Am J Pathol, 166(6): 1883-1894

DOI PMID

21
Clarke M F, Fuller M (2006). Stem cells and cancer: two faces of eve. Cell, 124(6): 1111-1115

DOI PMID

22
Cullen M, Elzarrad M K, Seaman S, Zudaire E, Stevens J, Yang M Y, Li X, Chaudhary A, Xu L, Hilton M B, Logsdon D, Hsiao E, Stein E V, Cuttitta F, Haines D C, Nagashima K, Tessarollo L, St Croix B (2011). GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci USA, 108(14): 5759-5764

DOI PMID

23
Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo C J, Barres B A (2009). Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA, 106(2): 641-646

DOI PMID

24
Daneman R, Zhou L, Kebede A A, Barres B A (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 468(7323): 562-566

DOI PMID

25
Doherty P, Williams G, Williams E J (2000). CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci, 16(4): 283-295

DOI PMID

26
Dorrell M I, Aguilar E, Friedlander M (2002). Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci, 43(11): 3500-3510

PMID

27
Gallione C J, Repetto G M, Legius E, Rustgi A K, Schelley S L, Tejpar S, Mitchell G, Drouin E, Westermann C J, Marchuk D A (2004). A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet, 363(9412): 852-859

DOI PMID

28
Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 161(6): 1163-1177

DOI PMID

29
Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004). Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn, 231(3): 503-509

DOI PMID

30
Gu C, Yoshida Y, Livet J, Reimert D V, Mann F, Merte J, Henderson C E, Jessell T M, Kolodkin A L, Ginty D D (2005). Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science, 307(5707): 265-268

DOI PMID

31
Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H (1997). Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 19(1): 13-26

DOI PMID

32
Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999). Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126(14): 3047-3055

PMID

33
Hellström M, Phng L K, Hofmann J J, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe M L, Kalén M, Gerhardt H, Betsholtz C (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445(7129): 776-780

DOI PMID

34
Heuchan A M, Evans N, Henderson Smart D J, Simpson J M (2002). Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995-97. Arch Dis Child Fetal Neonatal Ed, 86(2): F86-F90

DOI PMID

35
Hirota S, Liu Q, Lee H S, Hossain M G, Lacy-Hulbert A, McCarty J H (2011). The astrocyte-expressed integrin αvβ8 governs blood vessel sprouting in the developing retina. Development, 138(23): 5157-5166

DOI PMID

36
Johnson D W, Berg J N, Baldwin M A, Gallione C J, Marondel I, Yoon S J, Stenzel T T, Speer M, Pericak-Vance M A, Diamond A, Guttmacher A E, Jackson C E, Attisano L, Kucherlapati R, Porteous M E M, Marchuk D A (1996). Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet, 13(2): 189-195

DOI PMID

37
Kuhnert F, Mancuso M R, Shamloo A, Wang H T, Choksi V, Florek M, Su H, Fruttiger M, Young W L, Heilshorn S C, Kuo C J (2010). Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science, 330(6006): 985-989

DOI PMID

38
Lang R A, Bishop J M (1993). Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell, 74(3): 453-462

DOI PMID

39
Lee S W, Kim W J, Choi Y K, Song H S, Son M J, Gelman I H, Kim Y J, Kim K W (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med, 9(7): 900-906

DOI PMID

40
Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A, Wang Y, Yang X (2011). Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell, 20(3): 291-302

DOI PMID

41
Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla C J, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo M M, von Melchner H, Plate K H, Gerhardt H, Dejana E (2008). Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol, 183(3): 409-417

DOI PMID

42
Lindahl P, Johansson B R, Levéen P, Betsholtz C (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277(5323): 242-245

DOI PMID

43
Lobov I B, Brooks P C, Lang R A (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA, 99(17): 11205-11210

DOI PMID

44
Lobov I B, Rao S, Carroll T J, Vallance J E, Ito M, Ondr J K, Kurup S, Glass D A, Patel M S, Shu W, Morrisey E E, McMahon A P, Karsenty G, Lang R A (2005). WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature, 437(7057): 417-421

DOI PMID

45
Lobov I B, Renard R A, Papadopoulos N, Gale N W, Thurston G, Yancopoulos G D, Wiegand S J (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA, 104(9): 3219-3224

DOI PMID

46
Louvi A, Chen L, Two A M, Zhang H, Min W, Günel M (2011). Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci USA, 108(9): 3737-3742

DOI PMID

47
Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Bréant C, Claes F, De Smet F, Thomas J L, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004). The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 432(7014): 179-186

DOI PMID

48
Ma S, Kwon H J, Johng H, Zang K, Huang Z (2013). Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol, 11(1): e1001469

DOI PMID

49
Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta S F, Lampugnani M G, Dejana E (2013). EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature, 498(7455): 492-496

DOI PMID

50
McAllister K A, Grogg K M, Johnson D W, Gallione C J, Baldwin M A, Jackson C E, Helmbold E A, Markel D S, McKinnon W C, Murrell J, McCormick M K, Pericak-Vance M A, Heutink P, Oostra B A, Haitjema T, Westerman C J J, Porteous M E, Guttmacher A E, Letarte M, Marchuk D A (1994). Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet, 8(4): 345-351

DOI PMID

51
McCarty J H, Monahan-Earley R A, Brown L F, Keller M, Gerhardt H, Rubin K, Shani M, Dvorak H F, Wolburg H, Bader B L, Dvorak A M, Hynes R O (2002). Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol, 22(21): 7667-7677

DOI PMID

52
Moya I M, Umans L, Maas E, Pereira P N, Beets K, Francis A, Sents W, Robertson E J, Mummery C L, Huylebroeck D, Zwijsen A (2012). Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev Cell, 22(3): 501-514

DOI PMID

53
Mu D, Cambier S, Fjellbirkeland L, Baron J L, Munger J S, Kawakatsu H, Sheppard D, Broaddus V C, Nishimura S L (2002). The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol, 157(3): 493-507

DOI PMID

54
Mu D, Jiang X, Sheldon R A, Fox C K, Hamrick S E, Vexler Z S, Ferriero D M (2003). Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis, 14(3): 524-534

DOI PMID

55
Ng Y S, Rohan R, Sunday M E, Demello D E, D’Amore P A (2001). Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn, 220(2): 112-121

DOI PMID

56
Palmer T D, Willhoite A R, Gage F H (2000). Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 425(4): 479-494

DOI PMID

57
Pen A, Moreno M J, Durocher Y, Deb-Rinker P, Stanimirovic D B (2008). Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-beta signaling. Oncogene, 27(54): 6834-6844

DOI PMID

58
Phng L K, Potente M, Leslie J D, Babbage J, Nyqvist D, Lobov I, Ondr J K, Rao S, Lang R A, Thurston G, Gerhardt H (2009). Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell, 16(1): 70-82

DOI PMID

59
Proctor J M, Zang K, Wang D, Wang R, Reichardt L F (2005). Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci, 25(43): 9940-9948

DOI PMID

60
Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y, Xu K, Wang Y, Wu A (2011). IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep, 38(5): 3585-3591

DOI PMID

61
Raab S, Beck H, Gaumann A, Yüce A, Gerber H P, Plate K, Hammes H P, Ferrara N, Breier G (2004). Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost, 91(3): 595-605

PMID

62
Risau W (1993). Development of the vascular system of organs and tissues. In: Schaper W, Schaper J, ed. Collateral Circulation. Kluwer Academic Publishers, 17-28

63
Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima D T (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev, 16(20): 2684-2698

DOI PMID

64
Sato T N, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 376(6535): 70-74

DOI PMID

65
Saunders W B, Bohnsack B L, Faske J B, Anthis N J, Bayless K J, Hirschi K K, Davis G E (2006). Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol, 175(1): 179-191

DOI PMID

66
Scott A, Powner M B, Gandhi P, Clarkin C, Gutmann D H, Johnson R S, Ferrara N, Fruttiger M (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS ONE, 5(7): e11863

DOI PMID

67
Shen Q, Goderie S K, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304(5675): 1338-1340

DOI PMID

68
Stenman J M, Rajagopal J, Carroll T J, Ishibashi M, McMahon J, McMahon A P (2008). Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science, 322(5905): 1247-1250

DOI PMID

69
Stewart P A, Wiley M J (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol, 84(1): 183-192

DOI PMID

70
Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995). Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci, 15(7 Pt 1): 4738-4747

PMID

71
Stubbs D, DeProto J, Nie K, Englund C, Mahmud I, Hevner R, Molnár Z (2009). Neurovascular congruence during cerebral cortical development. Cereb Cortex, 19(Suppl 1): i32-i41

DOI PMID

72
Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007). The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA, 104(9): 3225-3230

DOI PMID

73
Suri C, McClain J, Thurston G, McDonald D M, Zhou H, Oldmixon E H, Sato T N, Yancopoulos G D (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science, 282(5388): 468-471

DOI PMID

74
Tam S J, Watts R J (2010). Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci, 33(1): 379-408

DOI PMID

75
Tchaicha J H, Reyes S B, Shin J, Hossain M G, Lang F F, McCarty J H (2011). Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res, 71(20): 6371-6381

DOI PMID

76
Thurston G, Suri C, Smith K, McClain J, Sato T N, Yancopoulos G D, McDonald D M (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science, 286(5449): 2511-2514

DOI PMID

77
Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, Sakamoto H, Gassmann M, Kageyama R, Ueda N, Gonzalez F J, Takahama Y (2003). Defective brain development in mice lacking the Hif-1alpha gene in neural cells. Mol Cell Biol, 23(19): 6739-6749

DOI PMID

78
Vasudevan A, Long J E, Crandall J E, Rubenstein J L, Bhide P G (2008). Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci, 11(4): 429-439

DOI PMID

79
Volpe J J (2005). Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics, 116(1): 221-225

DOI PMID

80
Weidenfeller C, Svendsen C N, Shusta E V (2007). Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem, 101(2): 555-565

DOI PMID

81
Wu B, Crampton S P, Hughes C C (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity, 26(2): 227-239

DOI PMID

82
Yang S X, Chen J H, Jiang X F, Wang Q L, Chen Z Q, Zhao W, Feng Y H, Xin R, Shi J Q, Bian X W (2005). Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun, 335(2): 523-528

DOI PMID

83
Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, Sung J, Xiong X, Munger J S (2007). Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol, 176(6): 787-793

DOI PMID

84
Yao Y, Chen Z L, Norris E H, Strickland S (2014). Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun, 5: 3413

DOI PMID

85
Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt L F (2002). β8 integrins are required for vascular morphogenesis in mouse embryos. Development, 129(12): 2891-2903

PMID

86
Zlokovic B V (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57(2): 178-201

DOI PMID

Outlines

/