Regulation and function of stimulus-induced phosphorylation of MeCP2
Received date: 05 Jun 2014
Accepted date: 30 Jul 2014
Published date: 11 Oct 2014
Copyright
DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.
Key words: MeCP2; phosphorylation; Rett syndrome
Hongda LI , Qiang CHANG . Regulation and function of stimulus-induced phosphorylation of MeCP2[J]. Frontiers in Biology, 2014 , 9(5) : 367 -375 . DOI: 10.1007/s11515-014-1330-2
1 |
Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188
|
2 |
Asaka Y, Jugloff D G, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227
|
3 |
Ballas N, Lioy D T, Grunseich C, Mandel G (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci, 12(3): 311–317
|
4 |
Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg M E, Landsberger N, Soddu S, Kilstrup-Nielsen C (2009). Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep, 10(12): 1327–1333
|
5 |
Buchthal B, Lau D, Weiss U, Weislogel J M, Bading H (2012). Nuclear calcium signaling controls methyl-CpG-binding protein 2 (MeCP2) phosphorylation on serine 421 following synaptic activity. J Biol Chem, 287(37): 30967–30974
|
6 |
Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229
|
7 |
Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437
|
8 |
Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65
|
9 |
Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889
|
10 |
Cheng T L, Wang Z, Liao Q, Zhu Y, Zhou W H, Xu W, Qiu Z (2014). MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell, 28(5): 547–560
|
11 |
Cohen S, Gabel H W, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85
|
12 |
Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689
|
13 |
Deng J V, Rodriguiz R M, Hutchinson A N, Kim I H, Wetsel W C, West A E (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci, 13(9): 1128–1136
|
14 |
Deng J V, Wan Y, Wang X, Cohen S, Wetsel W.C, Greenberg M E, Kenny P J, Calakos N, West A E (2014). MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J Neurosci, 34: 4519–4527
|
15 |
Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109
|
16 |
Ebert D H, Gabel H W, Robinson N D, Kastan N R, Hu L S, Cohen S, Navarro A J, Lyst M J, Ekiert R, Bird A P, Greenberg M E (2013). Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature, 499(7458): 341–345
|
17 |
Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958
|
18 |
Géranton S M, Fratto V, Tochiki K K, Hunt S P (2008). Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Mol Pain, 4(1): 35
|
19 |
Géranton S M, Morenilla-Palao C, Hunt S P (2007). A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J Neurosci, 27: 6163–6173
|
20 |
Gonzales M L, Adams S, Dunaway K W, LaSalle J M (2012). Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol Cell Biol, 32(14): 2894–2903
|
21 |
Hagberg B (1985). Rett’s syndrome: prevalence and impact on progressive severe mental retardation in girls. Acta Paediatr Scand, 74(3): 405–408
|
22 |
Hutchinson A N, Deng J V, Aryal D K, Wetsel W C, West A E (2012a). Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin. Neuropsychopharmacology, 37: 321–337
|
23 |
Hutchinson A N, Deng, J V, Cohen S, West A E (2012b). Phosphorylation of MeCP2 at Ser421 contributes to chronic antidepressant action. J Neurosci, 32: 14355–14363
|
24 |
Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191
|
25 |
Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914
|
26 |
Li H, Zhong X, Chau K F, Williams E C, Chang Q (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci, 14(8): 1001–1008
|
27 |
Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500
|
28 |
Lyst M J, Ekiert R, Ebert D H, Merusi C, Nowak J, Selfridge J, Guy J, Kastan N R, Robinson N D, de Lima Alves F, Rappsilber J, Greenberg M E, Bird A (2013). Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci, 16(7): 898–902
|
29 |
Mao L M, Horton E, Guo M L, Xue B, Jin D Z, Fibuch E E, Wang J Q (2011). Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: a differential role of NMDA receptors. Neurochem Int, 59(5): 610–617
|
30 |
Miyake K, Nagai K (2007). Phosphorylation of methyl-CpG binding protein 2 (MeCP2) regulates the intracellular localization during neuronal cell differentiation. Neurochem Int, 50(1): 264–270
|
31 |
Moretti P, Levenson J.M, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y(2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26: 319–327
|
32 |
Murgatroyd C, Patchev A V, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak C T, Almeida O F, Spengler D (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci, 12(12): 1559–1566
|
33 |
Nagarajan R P, Hogart A R, Gwye Y, Martin M R, LaSalle J M (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics: official journal of the DNA Methylation Society, 1: e1–11
|
34 |
Nagarajan R P, Patzel K A, Martin M, Yasui D H, Swanberg S E, Hertz-Picciotto I, Hansen R L, Van de Water J, Pessah I N, Jiang R, Robinson W P, LaSalle J M (2008). MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res, 1: 169–178
|
35 |
Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481
|
36 |
Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389
|
37 |
Nguyen M V, Felice C A, Du F, Covey M V, Robinson J K, Mandel G, Ballas N (2013). Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci, 33: 18764–18774
|
38 |
Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32: 989–994
|
39 |
Ramocki M B, Peters S U, Tavyev Y J, Zhang F, Carvalho C M, Schaaf C P, Richman R, Fang P, Glaze D G, Lupski J R, Zoghbi H Y (2009). Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol, 66(6): 771–782
|
40 |
Rexach J E, Rogers C J, Yu S H, Tao J, Sun Y E, Hsieh-Wilson L C (2010). Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol, 6(9): 645–651
|
41 |
Skene P J, Illingworth R S, Webb S, Kerr A R, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468
|
42 |
Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616
|
43 |
Tao J, Hu K, Chang Q, Wu H, Sherman N E, Martinowich K, Klose R J, Schanen C, Jaenisch R, Wang W, Sun Y E (2009). Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci USA, 106(12): 4882–4887
|
44 |
Xi C Y, Ma H W, Lu Y, Zhao Y J, Hua T Y, Zhao Y, Ji Y H (2007). MeCP2 gene mutation analysis in autistic boys with developmental regression. Psychiatr Genet, 17(2): 113–116
|
45 |
Zhong X, Li H, Chang Q (2012). MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5. J Neurosci, 32: 12841–12847
|
46 |
Zhou Z, Hong E J, Cohen S, Zhao W N, Ho H Y, Schmidt L, Chen W G, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269
|
/
〈 | 〉 |