REVIEW

Regulation and function of stimulus-induced phosphorylation of MeCP2

  • Hongda LI 1,2 ,
  • Qiang CHANG , 1,2,3
Expand
  • 1. Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
  • 2. Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705,USA
  • 3. Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA

Received date: 05 Jun 2014

Accepted date: 30 Jul 2014

Published date: 11 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.

Cite this article

Hongda LI , Qiang CHANG . Regulation and function of stimulus-induced phosphorylation of MeCP2[J]. Frontiers in Biology, 2014 , 9(5) : 367 -375 . DOI: 10.1007/s11515-014-1330-2

Acknowledgements

H.L. was supported by a pre-doctoral fellowship from the Stem Cell and Regenerative Medicine Center at the University of Wisconsin-Madison and a graduate student fellowship from the Friends of the Waisman Center. Q.C. was supported by a Young Investigator Award from NARSAD. This work was partially supported by grants from NICHD (R01 HD064743 and R21 HD066560 to Q.C. and P30 HD03352 to the Waisman Center).
1
Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188

DOI PMID

2
Asaka Y, Jugloff D G, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227

DOI PMID

3
Ballas N, Lioy D T, Grunseich C, Mandel G (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci, 12(3): 311–317

DOI PMID

4
Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg M E, Landsberger N, Soddu S, Kilstrup-Nielsen C (2009). Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep, 10(12): 1327–1333

DOI PMID

5
Buchthal B, Lau D, Weiss U, Weislogel J M, Bading H (2012). Nuclear calcium signaling controls methyl-CpG-binding protein 2 (MeCP2) phosphorylation on serine 421 following synaptic activity. J Biol Chem, 287(37): 30967–30974

DOI PMID

6
Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229

DOI PMID

7
Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437

DOI PMID

8
Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65

DOI PMID

9
Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889

DOI PMID

10
Cheng T L, Wang Z, Liao Q, Zhu Y, Zhou W H, Xu W, Qiu Z (2014). MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell, 28(5): 547–560

DOI PMID

11
Cohen S, Gabel H W, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85

DOI PMID

12
Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689

DOI PMID

13
Deng J V, Rodriguiz R M, Hutchinson A N, Kim I H, Wetsel W C, West A E (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci, 13(9): 1128–1136

DOI PMID

14
Deng J V, Wan Y, Wang X, Cohen S, Wetsel W.C, Greenberg M E, Kenny P J, Calakos N, West A E (2014). MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J Neurosci, 34: 4519–4527

15
Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109

DOI PMID

16
Ebert D H, Gabel H W, Robinson N D, Kastan N R, Hu L S, Cohen S, Navarro A J, Lyst M J, Ekiert R, Bird A P, Greenberg M E (2013). Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature, 499(7458): 341–345

PMID

17
Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958

DOI PMID

18
Géranton S M, Fratto V, Tochiki K K, Hunt S P (2008). Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Mol Pain, 4(1): 35

DOI PMID

19
Géranton S M, Morenilla-Palao C, Hunt S P (2007). A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J Neurosci, 27: 6163–6173

20
Gonzales M L, Adams S, Dunaway K W, LaSalle J M (2012). Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol Cell Biol, 32(14): 2894–2903

DOI PMID

21
Hagberg B (1985). Rett’s syndrome: prevalence and impact on progressive severe mental retardation in girls. Acta Paediatr Scand, 74(3): 405–408

DOI PMID

22
Hutchinson A N, Deng J V, Aryal D K, Wetsel W C, West A E (2012a). Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin. Neuropsychopharmacology, 37: 321–337

23
Hutchinson A N, Deng, J V, Cohen S, West A E (2012b). Phosphorylation of MeCP2 at Ser421 contributes to chronic antidepressant action. J Neurosci, 32: 14355–14363

24
Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191

DOI PMID

25
Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914

DOI PMID

26
Li H, Zhong X, Chau K F, Williams E C, Chang Q (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci, 14(8): 1001–1008

DOI PMID

27
Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500

DOI PMID

28
Lyst M J, Ekiert R, Ebert D H, Merusi C, Nowak J, Selfridge J, Guy J, Kastan N R, Robinson N D, de Lima Alves F, Rappsilber J, Greenberg M E, Bird A (2013). Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci, 16(7): 898–902

DOI PMID

29
Mao L M, Horton E, Guo M L, Xue B, Jin D Z, Fibuch E E, Wang J Q (2011). Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: a differential role of NMDA receptors. Neurochem Int, 59(5): 610–617

DOI PMID

30
Miyake K, Nagai K (2007). Phosphorylation of methyl-CpG binding protein 2 (MeCP2) regulates the intracellular localization during neuronal cell differentiation. Neurochem Int, 50(1): 264–270

DOI PMID

31
Moretti P, Levenson J.M, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y(2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26: 319–327

32
Murgatroyd C, Patchev A V, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak C T, Almeida O F, Spengler D (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci, 12(12): 1559–1566

DOI PMID

33
Nagarajan R P, Hogart A R, Gwye Y, Martin M R, LaSalle J M (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics: official journal of the DNA Methylation Society, 1: e1–11

34
Nagarajan R P, Patzel K A, Martin M, Yasui D H, Swanberg S E, Hertz-Picciotto I, Hansen R L, Van de Water J, Pessah I N, Jiang R, Robinson W P, LaSalle J M (2008). MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res, 1: 169–178

35
Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481

DOI PMID

36
Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389

DOI PMID

37
Nguyen M V, Felice C A, Du F, Covey M V, Robinson J K, Mandel G, Ballas N (2013). Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci, 33: 18764–18774

38
Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32: 989–994

39
Ramocki M B, Peters S U, Tavyev Y J, Zhang F, Carvalho C M, Schaaf C P, Richman R, Fang P, Glaze D G, Lupski J R, Zoghbi H Y (2009). Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol, 66(6): 771–782

DOI PMID

40
Rexach J E, Rogers C J, Yu S H, Tao J, Sun Y E, Hsieh-Wilson L C (2010). Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol, 6(9): 645–651

DOI PMID

41
Skene P J, Illingworth R S, Webb S, Kerr A R, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468

DOI PMID

42
Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616

DOI PMID

43
Tao J, Hu K, Chang Q, Wu H, Sherman N E, Martinowich K, Klose R J, Schanen C, Jaenisch R, Wang W, Sun Y E (2009). Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci USA, 106(12): 4882–4887

DOI PMID

44
Xi C Y, Ma H W, Lu Y, Zhao Y J, Hua T Y, Zhao Y, Ji Y H (2007). MeCP2 gene mutation analysis in autistic boys with developmental regression. Psychiatr Genet, 17(2): 113–116

DOI PMID

45
Zhong X, Li H, Chang Q (2012). MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5. J Neurosci, 32: 12841–12847

46
Zhou Z, Hong E J, Cohen S, Zhao W N, Ho H Y, Schmidt L, Chen W G, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269

DOI PMID

Outlines

/