RESEARCH ARTICLE

Isolation and partial purification of fungal ligninolytic enzymes from the forest soil fungi isolated from Bhadra Wildlife Sanctuary

  • SHIVAKUMAR P. BANAKAR , 1 ,
  • B. THIPPESWAMY 2
Expand
  • 1. Department of Biosciences, Shri J.J.T. University, Vidyanagari, Chudela-333 001 Jhunjhunu (Dist.), Rajasthan, India
  • 2. Department of Studies in Microbiology, Bioscience Complex, Kuvempu University, Jnanasahyadri, Shankaraghatta-577 451, Shivamogga (Dist.), Karnataka, India

Received date: 13 Mar 2014

Accepted date: 04 Jun 2014

Published date: 11 Aug 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Screening was done for the isolation of effective lignin degraders from the forest soil samples, by providing lignin as a carbon source through the enrichment method, which leads to the isolation of 8 effective fungal isolates among 14 isolates. Submerged fermentation was done for the production of ligninolytic enzymes with the effective microorganisms by providing Guiaicol as a carbon source. The assay of laccase, lignin peroxidise activity and specific activity was done after the incubation intervals of 2, 4, 6, 7, 8, 10 and 12 days at 27±2°C under shake culture condition. Partially purified protein content was estimated by using Lowry’s method. Pleurotus sp. and Phanerochaetae chrysosporium are more effective at the 2nd and 7th days of incubation for the production of laccase and lignin peroxidases among the effective isolates.

Cite this article

SHIVAKUMAR P. BANAKAR , B. THIPPESWAMY . Isolation and partial purification of fungal ligninolytic enzymes from the forest soil fungi isolated from Bhadra Wildlife Sanctuary[J]. Frontiers in Biology, 2014 , 9(4) : 291 -299 . DOI: 10.1007/s11515-014-1319-x

Acknowledgements

Authors are grateful to the Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India, for providing necessary facilities and support for the completion of this work. They are indebted to their family and friends for their good wishes for the success of this work.
Compliance with ethics guidelines
Shivakuamar P. BANAKAR and B. THIPPESWAMY declare that they have no conflict of interest in the publication. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
Abdel-Raheem A M, Ali E H (2004). Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia, 157(3): 277-286

DOI PMID

2
Akin D E, Rigsby L L, Sethuraman A, Morrison W H 3rd, Gamble G R, Eriksson K E L (1995). Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl Environ Microbiol, 61(4): 1591-1598

PMID

3
Arora D S, Chander M, Gill P K (2002). Involvement of lignin peroxidase, manganese peroxidase and laccase in the degradation and selective ligninolysis of wheat straw. Int Bioterior Biodegrad, 50: 115-120

4
Bajpai P (2004). Biological bleaching of chemical pulps. Crit Rev Biotechnol, 24(1): 1-58

DOI PMID

5
Baldrian P, Gabriel J (2003). Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett, 220(2): 235-240

DOI PMID

6
Bergmeyer H U (1974). Methods of Enzymatic Analysis 1, 2nd Ed, New York: Academic Press, 1-495

7
Bosco F, Ruggeri B, Sassi G (1999). Performances of a trickle bed reactor (TBR) for exoenzyme production by Phanerochaete chrysosporium: influence of a superficial liquid velocity. Chem Eng Sci, 54(15-16): 3163-3169

DOI

8
Carlsen M, Nielsen J (2001). Influence of carbon source on α-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol, 57(3): 346-349

DOI PMID

9
Champion H G, Seth S K (1968). A Revised Survey of the forest types of India. New Delhi: Govt. of India Press, 1-404

10
Coll P M, Fernández-Abalos J M, Villanueva J R, Santamaría R, Pérez P (1993). Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl Environ Microbiol, 59(8): 2607-2613

PMID

11
Das N, Sengupta S, Mukherjee M (1997). Importance of laccase in vegetative growth of pleurotus Florida. Appl Environ Microbiol, 63(10): 4120-4122

PMID

12
Dhakar K, Pandey A (2013). Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397). Enzyme Res, 2013: 869062Available at:

DOI PMID

13
Domsch K H, Gams W (1972). Fungi in Agricultural Soils. London: Longmans Green, 1-290

14
Dritsa V, Rigas F, Natsis K, Marchant R (2007). Characterization of a fungal strain isolated from a polyphenol polluted site. Bioresour Technol, 98(9): 1741-1747

DOI PMID

15
Eggert C, Temp U, Dean J F, Eriksson K E (1996a). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett, 391(1-2): 144-148

DOI PMID

16
Eggert C, Temp U, Eriksson K E L (1996b). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol, 62(4): 1151-1158

PMID

17
Eisenlord S D, Freedman Z, Zak D R, Xue K, He Z, Zhou J (2013). Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Appl Environ Microbiol, 79(4): 1191-1199

DOI PMID

18
Ellis M B (1971). Dematiaceous Hyphomycetes, Kew: Commonwealth Mycological Institute. England, 1-608

19
Ellis M B (1976). More Dematiaceous Hyphomycetes, Kew: Commonwealth Mycological Institute. England, 1-507

20
Ellis M B, Ellis J P (1997). Microfungi on Land Plants: An Identification Handbook. London: Croom Helm, Richmond Publishers, 1-868

21
Falcon M A, Rodriguez A, Carnicero A, Regalado V, Perestelo F, Milstein O, Fuente G L (1995). Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol Biochem, 27(2): 121-126

DOI

22
Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P, Sannia G (1996). The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem, 235(3): 508-515

DOI PMID

23
Gilman J C (2001). A Manual of Soil Fungi, 2nd ed., <PublisherLocation><?Pub Caret?>New Delhi</PublisherLocation>: Biotech Books, 1-392

24
Gochev V K, Krastanov A I (2007). Fungal Laccases. Bulg J Agric Sci, 13: 75-83

25
Gold M H, Alic M (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev, 57(3): 605-622

PMID

26
Hara T, Lim J Y, Fujio Y, Ueda S (1984). Purification and some properties of exopolygalacturonase from Aspergillus niger cultured in the medium containing Satsuna mandarin peel. 4th Conference on Recent Technologies in Agriculture, 31: 581-586

27
Howard R L, Abotsi E, Rensburg E L J V, Howard S (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol, 2: 602-619

28
Kerem Z, Friesem D, Hadar Y (1992). Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol, 58(4): 1121-1127

PMID

29
Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the folin phenol regent. J Gen Microbiol, 131: 3017-3027

30
Lundell T, Hatakka A (1994). Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phelbia radiata. FEBS Lett, 348(3): 291-296

DOI PMID

31
Metuku R P, Burra S, Nidadavolu, Bindu S V S S S L H, Pabba S, Singaracharya M A (2011). Selection of highest lignolytic white rot fungus and its molecular identification. J Cell Tissue Research, 11: 2557-2562

32
Moilanen A M, Lundell T, Vares T, Hatakka A (1996). A. Hatakka, Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiate. Appl Microbiol Biotechnol, 45(6): 792-799

DOI

33
Muñoz C, Guillén F, Martínez A T, Martínez M J (1997). Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol, 63(6): 2166-2174

PMID

34
Nagamani A, Kunwar I K, Manoharachary C (2006). Handbook of Soil Fungi. New Delhi: I. K. International Pvt. Ltd, 1-477

35
Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004). Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem, 36(10): 1545-1551

DOI

36
Patil N P, Chaudhari B L (2010). Production and purification of pectinase by soil isolate Penicillium sp. and search for better Agro-residue for its SSF. Rec Res Sci Technol, 2: 36-42

37
Périé F H, Reddy G V, Blackburn N J, Gold M H (1998). Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch Biochem Biophys, 353(2): 349-355

DOI PMID

38
Piontek K, Smith A T, Blodig W (2001). Lignin peroxidase structure and function. Biochem Soc Trans, 29(Pt 2): 111-116

DOI PMID

39
Pitt J I (1979). The Genus Penicillium and its telomorphic states Eupenicillium and Talaromyces.London: Academic Press Inc Ltd, 1-634

40
Pointing S B, Jones E B G, Vrijmoed L L P (2000). Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia, 92(1): 139-144

DOI

41
Pozdnyakova N N (2012). Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int, 2012: 243217

DOI PMID

42
Ruggeri B, Sassi G (2003). Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by Phanerochaetae chrysosporium. Process Biochem, 38(12): 1-8

DOI

43
Sarkanen S, Razal R A, Piccariello T, Yamamoto E, Lewis N G (1991). Lignin peroxidase: toward a clarification of its role in vivo. J Biol Chem, 266(6): 3636-3643

PMID

44
Tanaka H, Itakura S, Enoki A (1999). Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol, 75(1): 57-70

DOI PMID

45
Thurston C F (1994). The structure and function of fungal laccases. Microbiology, 140(1): 19-26

DOI

46
Tien M, Kirk T K (1988). Lignin peroxidase of Phanerochate chrysosporium. Methods Enzymol, 161: 238-249

DOI

47
Vicuna R (1988). Bacterial degradation of lignin. Enzyme Microb Technol, 10(11): 646-655

DOI

48
Wu J, Xiao Y Z, Yu H Q (2005). Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol, 96(12): 1357-1363

DOI PMID

49
Xavier A M R B, Tavares A P M, Ferreira R, Amado F (2007). Trametes versicolor growth and laccase induction with by-products of pulp and paper industry. Electron J Biotechnol, 10(3): 444-451

DOI

50
Yu Z, Zeng G M, Chen Y N, Zhang J C, Yu Y, Li H, Liu Z F, Tang L (2011). Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochem, 46(6): 1285-1291

DOI

51
Zadrazil F, Gonser A, Lang E (1999). Influence of incubation temperature on the secretion of extracellulare lignolytic enzymes of Pleurotus and Dichomitus squalus into soil. Granada, Spain: Proceedings of the Conference on Enzymes in the environment

52
Zimmermann W (1990). Degradation of lignin by bacteria. J Biotechnol, 13(2-3): 119-130

DOI

Outlines

/