REVIEW

Gene positioning and genome function

  • Nidhi VISHNOI ,
  • Jie YAO
Expand
  • Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA

Received date: 10 Mar 2014

Accepted date: 28 Apr 2014

Published date: 11 Aug 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The eukaryotic genome is packaged as chromatin within the three-dimensional nuclear space. Decades of cytological studies have revealed that chromosomes and genes are non-randomly localized within the nucleus and such organizations have important roles on genome function. However, several fundamental questions remain to be resolved. For example, what is required for the preferential localization of a gene to a nuclear landmark? What is the mechanism underlying gene repositioning in the nucleus? How does subnuclear gene positioning regulate gene transcription? Recent studies have revealed that several factors such as DNA sequence composition, specific regulatory sequences, epigenetic modifications, chromatin remodelers, post-transcriptional regulators and nuclear architectural proteins can influence chromatin dynamics and gene positioning in a gene-specific manner among organisms from yeast to human. In this review, we discuss some recent findings as well as experimental tools to investigate subnuclear gene positioning and to explore its implications in genome functions.

Cite this article

Nidhi VISHNOI , Jie YAO . Gene positioning and genome function[J]. Frontiers in Biology, 2014 , 9(4) : 255 -268 . DOI: 10.1007/s11515-014-1313-3

Acknowledgements

We thank Brennan Olson and Duc Nguyen (Yale University School of Medicine) for critical reading and editing of the manuscript. This work was supported by the startup funding from Yale School of Medicine, a Scientist development grant from American Heart Association (12SDG11630031), and a seed grant from State of Connecticut Stem Cell Research Program (13-SCA-Yale-15).
1
Abruzzi K C, Belostotsky D A, Chekanova J A, Dower K, Rosbash M (2006). 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J, 25(18): 4253–4262

DOI PMID

2
Ahmed S, Brickner D G, Light W H, Cajigas I, McDonough M, Froyshteter A B, Volpe T, Brickner J H (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol, 12(2): 111–118

DOI PMID

3
Andrulis E D, Neiman A M, Zappulla D C, Sternglanz R (1998). Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 394(6693): 592–595

DOI PMID

4
Ballester M, Kress C, Hue-Beauvais C, Kiêu K, Lehmann G, Adenot P, Devinoy E (2008). The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem, 105(1): 262–270

DOI PMID

5
Belmont A S, Li G, Sudlow G, Robinett C (1999). Visualization of large-scale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Methods Cell Biol, 58: 203–222

DOI PMID

6
Berezney R, Dubey D D, Huberman J A (2000). Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma, 108(8): 471–484

DOI PMID

7
Bian Q, Khanna N, Alvikas J, Belmont A S (2013). β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J Cell Biol, 203(5): 767–783

DOI PMID

8
Blobel G (1985). Gene gating: a hypothesis. Proc Natl Acad Sci USA, 82(24): 8527–8529

DOI PMID

9
Boyle S, Gilchrist S, Bridger J M, Mahy N L, Ellis J A, Bickmore W A (2001). The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet, 10(3): 211–219

DOI PMID

10
Branco M R, Pombo A (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol, 4(5): e138

DOI PMID

11
Brickner D G, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee P C, Widom J, Brickner J H (2007). H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol, 5(4): e81

DOI PMID

12
Brickner J H, Walter P (2004). Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol, 2(11): e342

DOI PMID

13
Brown C R, Kennedy C J, Delmar V A, Forbes D J, Silver P A (2008a). Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev, 22(5): 627–639

DOI PMID

14
Brown J M, Green J, das Neves R P, Wallace H A, Smith A J, Hughes J, Gray N, Taylor S, Wood W G, Higgs D R, Iborra F J, Buckle V J (2008b). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol, 182(6): 1083–1097

DOI PMID

15
Brown J M, Leach J, Reittie J E, Atzberger A, Lee-Prudhoe J, Wood W G, Higgs D R, Iborra F J, Buckle V J (2006). Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol, 172(2): 177–187

DOI PMID

16
Brown K E, Baxter J, Graf D, Merkenschlager M, Fisher A G (1999). Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell, 3(2): 207–217

DOI PMID

17
Brown K E, Guest S S, Smale S T, Hahm K, Merkenschlager M, Fisher A G (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell, 91(6): 845–854

DOI PMID

18
Cabal G G, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin J C, Hurt E C, Nehrbass U (2006). SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 441(7094): 770–773

DOI PMID

19
Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer M W (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell, 140(3): 372–383

DOI PMID

20
Casolari J M, Brown C R, Drubin D A, Rando O J, Silver P A (2005). Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev, 19(10): 1188–1198

DOI PMID

21
Casolari J M, Brown C R, Komili S, West J, Hieronymus H, Silver P A (2004). Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell, 117(4): 427–439

DOI PMID

22
Chan E A, Teng G, Corbett E, Choudhury K R, Bassing C H, Schatz D G, Krangel M S (2013). Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci USA, 110(48): E4628–E4637

DOI PMID

23
Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491

DOI PMID

24
Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831

DOI PMID

25
Croft J A, Bridger J M, Boyle S, Perry P, Teague P, Bickmore W A (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol, 145(6): 1119–1131

DOI PMID

26
Csink A K, Henikoff S (1996). Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381(6582): 529–531

DOI PMID

27
de Wit E, de Laat W (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26(1): 11–24

DOI PMID

28
Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311

DOI PMID

29
Deng W, Blobel G A (2013). Manipulating nuclear architecture. Curr Opin Genet Dev, 25C: 1–7

PMID

30
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244

DOI PMID

31
Dernburg A F, Broman K W, Fung J C, Marshall W F, Philips J, Agard D A, Sedat J W (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell, 85(5): 745–759

DOI PMID

32
Dieppois G, Iglesias N, Stutz F (2006). Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol, 26(21): 7858–7870

DOI PMID

33
Dimitrova D S, Gilbert D M (1999). The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell, 4(6): 983–993

DOI PMID

34
Dirks R W, de Pauw E S, Raap A K (1997). Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci, 110(Pt 4): 515–522

PMID

35
Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309

DOI PMID

36
Drubin D A, Garakani A M, Silver P A (2006). Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics. BMC Cell Biol, 7(1): 19

DOI PMID

37
Dundr M, Ospina J K, Sung M H, John S, Upender M, Ried T, Hager G L, Matera A G (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol, 179(6): 1095–1103

DOI PMID

38
Ferrai C, de Castro I J, Lavitas L, Chotalia M, Pombo A (2010). Gene positioning. Cold Spring Harb Perspect Biol, 2(6): a000588

DOI PMID

39
Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039

DOI PMID

40
Fraser P, Bickmore W (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447(7143): 413–417

DOI PMID

41
Gaj T, Gersbach C A, Barbas C F 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7): 397–405

DOI PMID

42
Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006). DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J, 48(1): 153–163

DOI PMID

43
Geyer P K, Vitalini M W, Wallrath L L (2011). Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol, 23(3): 354–359

DOI PMID

44
Gilbert D M (2001). Nuclear position leaves its mark on replication timing. J Cell Biol, 152(2): F11–F15

DOI PMID

45
Green E M, Jiang Y, Joyner R, Weis K (2012). A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell, 23(7): 1367–1375

DOI PMID

46
Guelen L, Pagie L, Brasset E, Meuleman W, Faza M B, Talhout W, Eussen B H, de Klein A, Wessels L, de Laat W, van Steensel B (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453(7197): 948–951

DOI PMID

47
Haaf T, Schmid M (1991). Chromosome topology in mammalian interphase nuclei. Exp Cell Res, 192(2): 325–332

DOI PMID

48
Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008). Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma, 117(6): 535–551

DOI PMID

49
Hewitt S L, High F A, Reiner S L, Fisher A G, Merkenschlager M (2004). Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol, 34(12): 3604–3613

DOI PMID

50
Hofmann W A, Johnson T, Klapczynski M, Fan J L, de Lanerolle P (2006). From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol, 84(4): 418–426

DOI PMID

51
Horike S, Cai S, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40

PMID

52
Ishii K, Arib G, Lin C, Van Houwe G, Laemmli U K (2002). Chromatin boundaries in budding yeast: the nuclear pore connection. Cell, 109(5): 551–562

DOI PMID

53
Isogai Y, Tjian R (2003). Targeting genes and transcription factors to segregated nuclear compartments. Curr Opin Cell Biol, 15(3): 296–303

DOI PMID

54
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

DOI PMID

55
Jost K L, Haase S, Smeets D, Schrode N, Schmiedel J M, Bertulat B, Herzel H, Cremer M, Cardoso M C (2011). 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res, 39(17): e113

DOI PMID

56
Kalverda B, Fornerod M (2010). Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle, 9(24): 4812–4817

DOI PMID

57
Kalverda B, Pickersgill H, Shloma V V, Fornerod M (2010). Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell, 140(3): 360–371

DOI PMID

58
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192

DOI PMID

59
Kind J, van Steensel B (2010). Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol, 22(3): 320–325

DOI PMID

60
Kohwi M, Lupton J R, Lai S L, Miller M R, Doe C Q (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell, 152(1-2): 97–108

DOI PMID

61
Kosak S T, Skok J A, Medina K L, Riblet R, Le Beau M M, Fisher A G, Singh H (2002). Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science, 296(5565): 158–162

DOI PMID

62
Kouzine F, Liu J, Sanford S, Chung H J, Levens D (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol, 11(11): 1092–1100

DOI PMID

63
Kress C, Kiêu K, Droineau S, Galio L, Devinoy E (2011). Specific positioning of the casein gene cluster in active nuclear domains in luminal mammary epithelial cells. Chromosome Res, 19(8): 979–997

DOI PMID

64
Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65

DOI PMID

65
Kundu S, Horn P J, Peterson C L (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev, 21(8): 997–1004

DOI PMID

66
Lamond A I, Sleeman J E (2003). Nuclear substructure and dynamics. Curr Biol, 13(21): R825–R828

DOI PMID

67
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115

DOI PMID

68
Lawrence J B, Clemson C M (2008). Gene associations: true romance or chance meeting in a nuclear neighborhood? J Cell Biol, 182(6): 1035–1038

DOI PMID

69
Lee H, Quinn J C, Prasanth K V, Swiss V A, Economides K D, Camacho M M, Spector D L, Abate-Shen C (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev, 20(7): 784–794

DOI PMID

70
Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838

DOI PMID

71
Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293

DOI PMID

72
Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells A L, Chao J A, Park H Y, de Turris V, Lopez-Jones M, Singer R H (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods, 8(2): 165–170

DOI PMID

73
Luperchio T R, Wong X, Reddy K L (2014). Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev, 25C: 50–61

DOI PMID

74
Luthra R, Kerr S C, Harreman M T, Apponi L H, Fasken M B, Ramineni S, Chaurasia S, Valentini S R, Corbett A H (2007). Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem, 282(5): 3042–3049

DOI PMID

75
Marko J F, Poirier M G (2003). Micromechanics of chromatin and chromosomes. Biochem Cell Biol, 81(3): 209–220

DOI PMID

76
Mattout A, Meshorer E (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol, 22(3): 334–341

DOI PMID

77
Matzke A J, Huettel B, van der Winden J, Matzke M (2005). Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol, 139(4): 1586–1596

DOI PMID

78
Meaburn K J, Gudla P R, Khan S, Lockett S J, Misteli T (2009). Disease-specific gene repositioning in breast cancer. J Cell Biol, 187(6): 801–812

DOI PMID

79
Meaburn K J, Misteli T (2008). Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol, 180(1): 39–50

DOI PMID

80
Meister P, Towbin B D, Pike B L, Ponti A, Gasser S M (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev, 24(8): 766–782

DOI PMID

81
Meuleman W, Peric-Hupkes D, Kind J, Beaudry J B, Pagie L, Kellis M, Reinders M, Wessels L, van Steensel B (2013). Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res, 23(2): 270–280

DOI PMID

82
Mewborn S K, Puckelwartz M J, Abuisneineh F, Fahrenbach J P, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno C M, Reddy K, Singh H, McNally E (2010). Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE, 5(12): e14342

DOI PMID

83
Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800

DOI PMID

84
Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324

DOI PMID

85
Moen P T Jr, Johnson C V, Byron M, Shopland L S, de la Serna I L, Imbalzano A N, Lawrence J B (2004). Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell, 15(1): 197–206

DOI PMID

86
Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502(7469): 59–64

DOI PMID

87
Naumova N, Smith E M, Zhan Y, Dekker J (2012). Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods, 58(3): 192–203

DOI PMID

88
Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, Längst G (2010). Initial genomics of the human nucleolus. PLoS Genet, 6(3): e1000889

DOI PMID

89
Neumann F R, Dion V, Gehlen L R, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser S M (2012). Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev, 26(4): 369–383

DOI PMID

90
O’Gorman S, Fox D T, Wahl G M (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251(4999): 1351–1355

DOI PMID

91
Osborne C S, Chakalova L, Brown K E, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J A, Lopes S, Reik W, Fraser P (2004). Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 36(10): 1065–1071

DOI PMID

92
Osborne C S, Chakalova L, Mitchell J A, Horton A, Wood A L, Bolland D J, Corcoran A E, Fraser P (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol, 5(8): e192

DOI PMID

93
Parada L, Misteli T (2002). Chromosome positioning in the interphase nucleus. Trends Cell Biol, 12(9): 425–432

DOI PMID

94
Patel N S, Rhinn M, Semprich C I, Halley P A, Dollé P, Bickmore W A, Storey K G (2013). FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet, 9(7): e1003614

DOI PMID

95
Pederson T (2002). Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol, 4(12): E287–E291

DOI PMID

96
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman S W, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven R M, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell, 38(4): 603–613

DOI PMID

97
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet, 38(9): 1005–1014

DOI PMID

98
Ragoczy T, Bender M A, Telling A, Byron R, Groudine M (2006). The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev, 20(11): 1447–1457

DOI PMID

99
Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247

DOI PMID

100
Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700

DOI PMID

101
Rohner S, Kalck V, Wang X, Ikegami K, Lieb J D, Gasser S M, Meister P (2013). Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J Cell Biol, 200(5): 589–604

DOI PMID

102
Sarma N J, Haley T M, Barbara K E, Buford T D, Willis K A, Santangelo G M (2007). Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics, 175(3): 1127–1135

DOI PMID

103
Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336

DOI PMID

104
Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli U K (2006). Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell, 21(3): 379–391

DOI PMID

105
Schoenfelder S, Sexton T, Chakalova L, Cope N F, Horton A, Andrews S, Kurukuti S, Mitchell J A, Umlauf D, Dimitrova D S, Eskiw C H, Luo Y, Wei C L, Ruan Y, Bieker J J, Fraser P (2010). Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 42(1): 53–61

DOI PMID

106
Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith M A, Ning Y, Ledbetter D H, Bar-Am I, Soenksen D, Garini Y, Ried T (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274): 494–497

DOI PMID

107
Sexton T, Schober H, Fraser P, Gasser S M (2007). Gene regulation through nuclear organization. Nat Struct Mol Biol, 14(11): 1049–1055

DOI PMID

108
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354

DOI PMID

109
Simonis M, Kooren J, de Laat W (2007). An evaluation of 3C-based methods to capture DNA interactions. Nat Methods, 4(11): 895–901

DOI PMID

110
Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002). Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res, 276(1): 10–23

DOI PMID

111
Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137(2): 356–368

DOI PMID

112
Spector D L (2001). Nuclear domains. J Cell Sci, 114(Pt 16): 2891–2893

PMID

113
Splinter E, de Wit E, Nora E P, Klous P, van de Werken H J, Zhu Y, Kaaij L J, van Ijcken W, Gribnau J, Heard E, de Laat W (2011). The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev, 25(13): 1371–1383

DOI PMID

114
Steglich B, Filion G J, van Steensel B, Ekwall K (2012). The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus, 3(1): 77–87

DOI PMID

115
Sun H B, Shen J, Yokota H (2000). Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J, 79(1): 184–190

DOI PMID

116
Szczerbal I, Foster H A, Bridger J M (2009). The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma, 118(5): 647–663

DOI PMID

117
Taddei A (2007). Active genes at the nuclear pore complex. Curr Opin Cell Biol, 19(3): 305–310

DOI PMID

118
Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser S M (2006). Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature, 441(7094): 774–778

DOI PMID

119
Takizawa T, Gudla P R, Guo L, Lockett S, Misteli T (2008a). Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev, 22(4): 489–498

DOI PMID

120
Takizawa T, Meaburn K J, Misteli T (2008b). The meaning of gene positioning. Cell, 135(1): 9–13

DOI PMID

121
Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002). Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA, 99(7): 4424–4429

DOI PMID

122
Tolhuis B, Blom M, Kerkhoven R M, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011). Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet, 7(3): e1001343

DOI PMID

123
Towbin B D, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser S M (2012). Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell, 150(5): 934–947

DOI PMID

124
Towbin B D, Meister P, Pike B L, Gasser S M (2010). Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb Symp Quant Biol, 75(0): 555–565

DOI PMID

125
Tumbar T, Belmont A S (2001). Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol, 3(2): 134–139

DOI PMID

126
van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton G J, Ariyurek Y, den Dunnen J T, Lamond A I (2010). High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell, 21(21): 3735–3748

DOI PMID

127
van Steensel B, Dekker J (2010). Genomics tools for unraveling chromosome architecture. Nat Biotechnol, 28(10): 1089–1095

DOI PMID

128
van Steensel B, Henikoff S (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4): 424–428

DOI PMID

129
Vaquerizas J M, Suyama R, Kind J, Miura K, Luscombe N M, Akhtar A (2010). Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet, 6(2): e1000846

DOI PMID

130
Vermeulen M, Mulder K W, Denissov S, Pijnappel W W, van Schaik F M, Varier R A, Baltissen M P, Stunnenberg H G, Mann M, Timmers H T (2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell, 131(1): 58–69

DOI PMID

131
Vodala S, Abruzzi K C, Rosbash M (2008). The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery. Mol Cell, 31(1): 104–113

DOI PMID

132
Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using<?Pub Caret?> DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478

DOI PMID

133
Williams R R, Azuara V, Perry P, Sauer S, Dvorkina M, Jørgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher A G (2006). Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci, 119(Pt 1): 132–140

DOI PMID

134
Wu F, Yao J (2013). Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics, 14(1): 591

DOI PMID

135
Xing Y, Johnson C V, Moen P T Jr, McNeil J A, Lawrence J (1995). Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol, 131(6 Pt 2): 1635–1647

DOI PMID

136
Yao J, Fetter R D, Hu P, Betzig E, Tjian R (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev, 25(6): 569–580

DOI PMID

137
Zink D, Amaral M D, Englmann A, Lang S, Clarke L A, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004). Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol, 166(6): 815–825

DOI PMID

138
Zullo J M, Demarco I A, Piqué-Regi R, Gaffney D J, Epstein C B, Spooner C J, Luperchio T R, Bernstein B E, Pritchard J K, Reddy K L, Singh H (2012). DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell, 149(7): 1474–1487

DOI PMID

Outlines

/