Received date: 10 Mar 2014
Accepted date: 28 Apr 2014
Published date: 11 Aug 2014
Copyright
The eukaryotic genome is packaged as chromatin within the three-dimensional nuclear space. Decades of cytological studies have revealed that chromosomes and genes are non-randomly localized within the nucleus and such organizations have important roles on genome function. However, several fundamental questions remain to be resolved. For example, what is required for the preferential localization of a gene to a nuclear landmark? What is the mechanism underlying gene repositioning in the nucleus? How does subnuclear gene positioning regulate gene transcription? Recent studies have revealed that several factors such as DNA sequence composition, specific regulatory sequences, epigenetic modifications, chromatin remodelers, post-transcriptional regulators and nuclear architectural proteins can influence chromatin dynamics and gene positioning in a gene-specific manner among organisms from yeast to human. In this review, we discuss some recent findings as well as experimental tools to investigate subnuclear gene positioning and to explore its implications in genome functions.
Key words: nucleus; transcription; gene positioning; epigenetics; nuclear lamina; chromatin
Nidhi VISHNOI , Jie YAO . Gene positioning and genome function[J]. Frontiers in Biology, 2014 , 9(4) : 255 -268 . DOI: 10.1007/s11515-014-1313-3
1 |
Abruzzi K C, Belostotsky D A, Chekanova J A, Dower K, Rosbash M (2006). 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J, 25(18): 4253–4262
|
2 |
Ahmed S, Brickner D G, Light W H, Cajigas I, McDonough M, Froyshteter A B, Volpe T, Brickner J H (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol, 12(2): 111–118
|
3 |
Andrulis E D, Neiman A M, Zappulla D C, Sternglanz R (1998). Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 394(6693): 592–595
|
4 |
Ballester M, Kress C, Hue-Beauvais C, Kiêu K, Lehmann G, Adenot P, Devinoy E (2008). The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem, 105(1): 262–270
|
5 |
Belmont A S, Li G, Sudlow G, Robinett C (1999). Visualization of large-scale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Methods Cell Biol, 58: 203–222
|
6 |
Berezney R, Dubey D D, Huberman J A (2000). Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma, 108(8): 471–484
|
7 |
Bian Q, Khanna N, Alvikas J, Belmont A S (2013). β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J Cell Biol, 203(5): 767–783
|
8 |
Blobel G (1985). Gene gating: a hypothesis. Proc Natl Acad Sci USA, 82(24): 8527–8529
|
9 |
Boyle S, Gilchrist S, Bridger J M, Mahy N L, Ellis J A, Bickmore W A (2001). The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet, 10(3): 211–219
|
10 |
Branco M R, Pombo A (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol, 4(5): e138
|
11 |
Brickner D G, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee P C, Widom J, Brickner J H (2007). H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol, 5(4): e81
|
12 |
Brickner J H, Walter P (2004). Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol, 2(11): e342
|
13 |
Brown C R, Kennedy C J, Delmar V A, Forbes D J, Silver P A (2008a). Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev, 22(5): 627–639
|
14 |
Brown J M, Green J, das Neves R P, Wallace H A, Smith A J, Hughes J, Gray N, Taylor S, Wood W G, Higgs D R, Iborra F J, Buckle V J (2008b). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol, 182(6): 1083–1097
|
15 |
Brown J M, Leach J, Reittie J E, Atzberger A, Lee-Prudhoe J, Wood W G, Higgs D R, Iborra F J, Buckle V J (2006). Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol, 172(2): 177–187
|
16 |
Brown K E, Baxter J, Graf D, Merkenschlager M, Fisher A G (1999). Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell, 3(2): 207–217
|
17 |
Brown K E, Guest S S, Smale S T, Hahm K, Merkenschlager M, Fisher A G (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell, 91(6): 845–854
|
18 |
Cabal G G, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin J C, Hurt E C, Nehrbass U (2006). SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 441(7094): 770–773
|
19 |
Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer M W (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell, 140(3): 372–383
|
20 |
Casolari J M, Brown C R, Drubin D A, Rando O J, Silver P A (2005). Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev, 19(10): 1188–1198
|
21 |
Casolari J M, Brown C R, Komili S, West J, Hieronymus H, Silver P A (2004). Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell, 117(4): 427–439
|
22 |
Chan E A, Teng G, Corbett E, Choudhury K R, Bassing C H, Schatz D G, Krangel M S (2013). Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci USA, 110(48): E4628–E4637
|
23 |
Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491
|
24 |
Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831
|
25 |
Croft J A, Bridger J M, Boyle S, Perry P, Teague P, Bickmore W A (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol, 145(6): 1119–1131
|
26 |
Csink A K, Henikoff S (1996). Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381(6582): 529–531
|
27 |
de Wit E, de Laat W (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26(1): 11–24
|
28 |
Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311
|
29 |
Deng W, Blobel G A (2013). Manipulating nuclear architecture. Curr Opin Genet Dev, 25C: 1–7
|
30 |
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244
|
31 |
Dernburg A F, Broman K W, Fung J C, Marshall W F, Philips J, Agard D A, Sedat J W (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell, 85(5): 745–759
|
32 |
Dieppois G, Iglesias N, Stutz F (2006). Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol, 26(21): 7858–7870
|
33 |
Dimitrova D S, Gilbert D M (1999). The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell, 4(6): 983–993
|
34 |
Dirks R W, de Pauw E S, Raap A K (1997). Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci, 110(Pt 4): 515–522
|
35 |
Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309
|
36 |
Drubin D A, Garakani A M, Silver P A (2006). Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics. BMC Cell Biol, 7(1): 19
|
37 |
Dundr M, Ospina J K, Sung M H, John S, Upender M, Ried T, Hager G L, Matera A G (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol, 179(6): 1095–1103
|
38 |
Ferrai C, de Castro I J, Lavitas L, Chotalia M, Pombo A (2010). Gene positioning. Cold Spring Harb Perspect Biol, 2(6): a000588
|
39 |
Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039
|
40 |
Fraser P, Bickmore W (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447(7143): 413–417
|
41 |
Gaj T, Gersbach C A, Barbas C F 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7): 397–405
|
42 |
Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006). DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J, 48(1): 153–163
|
43 |
Geyer P K, Vitalini M W, Wallrath L L (2011). Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol, 23(3): 354–359
|
44 |
Gilbert D M (2001). Nuclear position leaves its mark on replication timing. J Cell Biol, 152(2): F11–F15
|
45 |
Green E M, Jiang Y, Joyner R, Weis K (2012). A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell, 23(7): 1367–1375
|
46 |
Guelen L, Pagie L, Brasset E, Meuleman W, Faza M B, Talhout W, Eussen B H, de Klein A, Wessels L, de Laat W, van Steensel B (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453(7197): 948–951
|
47 |
Haaf T, Schmid M (1991). Chromosome topology in mammalian interphase nuclei. Exp Cell Res, 192(2): 325–332
|
48 |
Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008). Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma, 117(6): 535–551
|
49 |
Hewitt S L, High F A, Reiner S L, Fisher A G, Merkenschlager M (2004). Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol, 34(12): 3604–3613
|
50 |
Hofmann W A, Johnson T, Klapczynski M, Fan J L, de Lanerolle P (2006). From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol, 84(4): 418–426
|
51 |
Horike S, Cai S, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40
|
52 |
Ishii K, Arib G, Lin C, Van Houwe G, Laemmli U K (2002). Chromatin boundaries in budding yeast: the nuclear pore connection. Cell, 109(5): 551–562
|
53 |
Isogai Y, Tjian R (2003). Targeting genes and transcription factors to segregated nuclear compartments. Curr Opin Cell Biol, 15(3): 296–303
|
54 |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
|
55 |
Jost K L, Haase S, Smeets D, Schrode N, Schmiedel J M, Bertulat B, Herzel H, Cremer M, Cardoso M C (2011). 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res, 39(17): e113
|
56 |
Kalverda B, Fornerod M (2010). Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle, 9(24): 4812–4817
|
57 |
Kalverda B, Pickersgill H, Shloma V V, Fornerod M (2010). Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell, 140(3): 360–371
|
58 |
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192
|
59 |
Kind J, van Steensel B (2010). Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol, 22(3): 320–325
|
60 |
Kohwi M, Lupton J R, Lai S L, Miller M R, Doe C Q (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell, 152(1-2): 97–108
|
61 |
Kosak S T, Skok J A, Medina K L, Riblet R, Le Beau M M, Fisher A G, Singh H (2002). Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science, 296(5565): 158–162
|
62 |
Kouzine F, Liu J, Sanford S, Chung H J, Levens D (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol, 11(11): 1092–1100
|
63 |
Kress C, Kiêu K, Droineau S, Galio L, Devinoy E (2011). Specific positioning of the casein gene cluster in active nuclear domains in luminal mammary epithelial cells. Chromosome Res, 19(8): 979–997
|
64 |
Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65
|
65 |
Kundu S, Horn P J, Peterson C L (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev, 21(8): 997–1004
|
66 |
Lamond A I, Sleeman J E (2003). Nuclear substructure and dynamics. Curr Biol, 13(21): R825–R828
|
67 |
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115
|
68 |
Lawrence J B, Clemson C M (2008). Gene associations: true romance or chance meeting in a nuclear neighborhood? J Cell Biol, 182(6): 1035–1038
|
69 |
Lee H, Quinn J C, Prasanth K V, Swiss V A, Economides K D, Camacho M M, Spector D L, Abate-Shen C (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev, 20(7): 784–794
|
70 |
Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838
|
71 |
Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293
|
72 |
Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells A L, Chao J A, Park H Y, de Turris V, Lopez-Jones M, Singer R H (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods, 8(2): 165–170
|
73 |
Luperchio T R, Wong X, Reddy K L (2014). Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev, 25C: 50–61
|
74 |
Luthra R, Kerr S C, Harreman M T, Apponi L H, Fasken M B, Ramineni S, Chaurasia S, Valentini S R, Corbett A H (2007). Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem, 282(5): 3042–3049
|
75 |
Marko J F, Poirier M G (2003). Micromechanics of chromatin and chromosomes. Biochem Cell Biol, 81(3): 209–220
|
76 |
Mattout A, Meshorer E (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol, 22(3): 334–341
|
77 |
Matzke A J, Huettel B, van der Winden J, Matzke M (2005). Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol, 139(4): 1586–1596
|
78 |
Meaburn K J, Gudla P R, Khan S, Lockett S J, Misteli T (2009). Disease-specific gene repositioning in breast cancer. J Cell Biol, 187(6): 801–812
|
79 |
Meaburn K J, Misteli T (2008). Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol, 180(1): 39–50
|
80 |
Meister P, Towbin B D, Pike B L, Ponti A, Gasser S M (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev, 24(8): 766–782
|
81 |
Meuleman W, Peric-Hupkes D, Kind J, Beaudry J B, Pagie L, Kellis M, Reinders M, Wessels L, van Steensel B (2013). Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res, 23(2): 270–280
|
82 |
Mewborn S K, Puckelwartz M J, Abuisneineh F, Fahrenbach J P, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno C M, Reddy K, Singh H, McNally E (2010). Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE, 5(12): e14342
|
83 |
Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800
|
84 |
Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324
|
85 |
Moen P T Jr, Johnson C V, Byron M, Shopland L S, de la Serna I L, Imbalzano A N, Lawrence J B (2004). Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell, 15(1): 197–206
|
86 |
Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502(7469): 59–64
|
87 |
Naumova N, Smith E M, Zhan Y, Dekker J (2012). Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods, 58(3): 192–203
|
88 |
Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, Längst G (2010). Initial genomics of the human nucleolus. PLoS Genet, 6(3): e1000889
|
89 |
Neumann F R, Dion V, Gehlen L R, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser S M (2012). Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev, 26(4): 369–383
|
90 |
O’Gorman S, Fox D T, Wahl G M (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251(4999): 1351–1355
|
91 |
Osborne C S, Chakalova L, Brown K E, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J A, Lopes S, Reik W, Fraser P (2004). Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 36(10): 1065–1071
|
92 |
Osborne C S, Chakalova L, Mitchell J A, Horton A, Wood A L, Bolland D J, Corcoran A E, Fraser P (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol, 5(8): e192
|
93 |
Parada L, Misteli T (2002). Chromosome positioning in the interphase nucleus. Trends Cell Biol, 12(9): 425–432
|
94 |
Patel N S, Rhinn M, Semprich C I, Halley P A, Dollé P, Bickmore W A, Storey K G (2013). FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet, 9(7): e1003614
|
95 |
Pederson T (2002). Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol, 4(12): E287–E291
|
96 |
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman S W, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven R M, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell, 38(4): 603–613
|
97 |
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet, 38(9): 1005–1014
|
98 |
Ragoczy T, Bender M A, Telling A, Byron R, Groudine M (2006). The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev, 20(11): 1447–1457
|
99 |
Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247
|
100 |
Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700
|
101 |
Rohner S, Kalck V, Wang X, Ikegami K, Lieb J D, Gasser S M, Meister P (2013). Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J Cell Biol, 200(5): 589–604
|
102 |
Sarma N J, Haley T M, Barbara K E, Buford T D, Willis K A, Santangelo G M (2007). Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics, 175(3): 1127–1135
|
103 |
Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336
|
104 |
Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli U K (2006). Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell, 21(3): 379–391
|
105 |
Schoenfelder S, Sexton T, Chakalova L, Cope N F, Horton A, Andrews S, Kurukuti S, Mitchell J A, Umlauf D, Dimitrova D S, Eskiw C H, Luo Y, Wei C L, Ruan Y, Bieker J J, Fraser P (2010). Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 42(1): 53–61
|
106 |
Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith M A, Ning Y, Ledbetter D H, Bar-Am I, Soenksen D, Garini Y, Ried T (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274): 494–497
|
107 |
Sexton T, Schober H, Fraser P, Gasser S M (2007). Gene regulation through nuclear organization. Nat Struct Mol Biol, 14(11): 1049–1055
|
108 |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354
|
109 |
Simonis M, Kooren J, de Laat W (2007). An evaluation of 3C-based methods to capture DNA interactions. Nat Methods, 4(11): 895–901
|
110 |
Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002). Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res, 276(1): 10–23
|
111 |
Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137(2): 356–368
|
112 |
Spector D L (2001). Nuclear domains. J Cell Sci, 114(Pt 16): 2891–2893
|
113 |
Splinter E, de Wit E, Nora E P, Klous P, van de Werken H J, Zhu Y, Kaaij L J, van Ijcken W, Gribnau J, Heard E, de Laat W (2011). The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev, 25(13): 1371–1383
|
114 |
Steglich B, Filion G J, van Steensel B, Ekwall K (2012). The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus, 3(1): 77–87
|
115 |
Sun H B, Shen J, Yokota H (2000). Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J, 79(1): 184–190
|
116 |
Szczerbal I, Foster H A, Bridger J M (2009). The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma, 118(5): 647–663
|
117 |
Taddei A (2007). Active genes at the nuclear pore complex. Curr Opin Cell Biol, 19(3): 305–310
|
118 |
Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser S M (2006). Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature, 441(7094): 774–778
|
119 |
Takizawa T, Gudla P R, Guo L, Lockett S, Misteli T (2008a). Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev, 22(4): 489–498
|
120 |
Takizawa T, Meaburn K J, Misteli T (2008b). The meaning of gene positioning. Cell, 135(1): 9–13
|
121 |
Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002). Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA, 99(7): 4424–4429
|
122 |
Tolhuis B, Blom M, Kerkhoven R M, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011). Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet, 7(3): e1001343
|
123 |
Towbin B D, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser S M (2012). Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell, 150(5): 934–947
|
124 |
Towbin B D, Meister P, Pike B L, Gasser S M (2010). Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb Symp Quant Biol, 75(0): 555–565
|
125 |
Tumbar T, Belmont A S (2001). Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol, 3(2): 134–139
|
126 |
van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton G J, Ariyurek Y, den Dunnen J T, Lamond A I (2010). High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell, 21(21): 3735–3748
|
127 |
van Steensel B, Dekker J (2010). Genomics tools for unraveling chromosome architecture. Nat Biotechnol, 28(10): 1089–1095
|
128 |
van Steensel B, Henikoff S (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4): 424–428
|
129 |
Vaquerizas J M, Suyama R, Kind J, Miura K, Luscombe N M, Akhtar A (2010). Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet, 6(2): e1000846
|
130 |
Vermeulen M, Mulder K W, Denissov S, Pijnappel W W, van Schaik F M, Varier R A, Baltissen M P, Stunnenberg H G, Mann M, Timmers H T (2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell, 131(1): 58–69
|
131 |
Vodala S, Abruzzi K C, Rosbash M (2008). The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery. Mol Cell, 31(1): 104–113
|
132 |
Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using<?Pub Caret?> DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478
|
133 |
Williams R R, Azuara V, Perry P, Sauer S, Dvorkina M, Jørgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher A G (2006). Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci, 119(Pt 1): 132–140
|
134 |
Wu F, Yao J (2013). Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics, 14(1): 591
|
135 |
Xing Y, Johnson C V, Moen P T Jr, McNeil J A, Lawrence J (1995). Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol, 131(6 Pt 2): 1635–1647
|
136 |
Yao J, Fetter R D, Hu P, Betzig E, Tjian R (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev, 25(6): 569–580
|
137 |
Zink D, Amaral M D, Englmann A, Lang S, Clarke L A, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004). Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol, 166(6): 815–825
|
138 |
Zullo J M, Demarco I A, Piqué-Regi R, Gaffney D J, Epstein C B, Spooner C J, Luperchio T R, Bernstein B E, Pritchard J K, Reddy K L, Singh H (2012). DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell, 149(7): 1474–1487
|
/
〈 | 〉 |