REVIEW

TPP1 as a versatile player at the ends of chromosomes

  • Sijie ZHANG 1,2 ,
  • Zhenhua LUO 1,2 ,
  • Guang SHI 1,2 ,
  • Dan LIU 3,4 ,
  • Zhou SONGYANG , 1,2,4 ,
  • Junjiu HUANG , 1,2
Expand
  • 1. Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
  • 2. SYSU-BCM Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
  • 3. Cell-Based Assay Screening Core, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
  • 4. Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

Received date: 31 Mar 2014

Accepted date: 15 Apr 2014

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Telomeres, the ends of linear eukaryotic chromosomes, are tandem DNA repeats and capped by various telomeric proteins. These nucleoprotein complexes protect telomeres from DNA damage response (DDR), recombination, and end-to-end fusions, ensuring genome stability. The human telosome/shelterin complex is one of the best-studied telomere-associated protein complexes, made up of six core telomeric proteins TRF1, TRF2, TIN2, RAP1, POT1, and TPP1. TPP1, also known as adrenocortical dysplasia protein homolog (ACD), is a putative mammalian homolog of TEBP-β and belongs to the oligonucleotide binding (OB)-fold-containing protein family. Three functional domains have been identified within TPP1, the N-terminal OB fold, the POT1 binding recruitment domain (RD), and the carboxyl-terminal TIN2-interacting domain (TID). TPP1 can interact with both POT1 and TIN2 to maintain telomere structure, and mediate telomerase recruitment for telomere elongation. These features have indicated TPP1 play an essential role in telomere maintenance. Here, we will review important findings that highlight the functional significance of TPP1, with a focus on its interaction with other telosome components and the telomerase. We will also discuss potential implications in disease therapies.

Cite this article

Sijie ZHANG , Zhenhua LUO , Guang SHI , Dan LIU , Zhou SONGYANG , Junjiu HUANG . TPP1 as a versatile player at the ends of chromosomes[J]. Frontiers in Biology, 2014 , 9(3) : 225 -233 . DOI: 10.1007/s11515-014-1307-1

Acknowledgements

This study was supported by the National Basic Research Program (973 Program) (Nos. 2012CB911201 and 2010CB945401), the National Natural Science Foundation (Grant Nos. 31371508, 91019020 and 81330055), the Introduced Innovative R and D Team of Guangdong Province (No. 201001Y0104687244), Zhujiang Program of Science and Technology Nova in Guangzhou (No. 2011J2200082).
Compliance with ethics guidelines
Sijie ZHANG, Zhenhua LUO, Guang SHI, Dan LIU, Zhou SONGYANG and Junjiu HUANG declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
AbreuE, AritonovskaE, ReichenbachP, CristofariG, CulpB, TernsR M, LingnerJ, TernsM P (2010). TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol, 30(12): 2971–2982

DOI PMID

2
ArmaniosM, BlackburnE H (2012). The telomere syndromes. Nat Rev Genet, 13(10): 693–704

DOI PMID

3
ArnerićM, LingnerJ (2007). Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep, 8(11): 1080–1085

DOI PMID

4
AzzalinC M, ReichenbachP, KhoriauliL, GiulottoE, LingnerJ (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 318(5851): 798–801

DOI PMID

5
BaumannP, CechT R (2001). Pot1, the putative telomere end-binding protein in fission yeast and humans. Science, 292(5519): 1171–1175

DOI PMID

6
BilaudT, BrunC, AncelinK, KoeringC E, LarocheT, GilsonE (1997). Telomeric localization of TRF2, a novel human telobox protein. Nat Genet, 17(2): 236–239

DOI PMID

7
BlackburnE H (2001). Switching and signaling at the telomere. Cell, 106(6): 661–673

DOI PMID

8
BlascoM A (2005). Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet, 6(8): 611–622

DOI PMID

9
BlascoM A (2007). Telomere length, stem cells and aging. Nat Chem Biol, 3(10): 640–649

DOI PMID

10
BryanT M, EnglezouA, GuptaJ, BacchettiS, ReddelR R (1995). Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J, 14(17): 4240–4248

PMID

11
CarneroA (2010). The PKB/AKT pathway in cancer. Curr Pharm Des, 16(1): 34–44

DOI PMID

12
CelliG B, de LangeT (2005). DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol, 7(7): 712–718

DOI PMID

13
CesareA J, ReddelR R (2010). Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet, 11(5): 319–330

DOI PMID

14
ChawlaR, RedonS, RaftopoulouC, WischnewskiH, GagosS, AzzalinC M (2011). Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication. EMBO J, 30(19): 4047–4058

DOI PMID

15
ChenL Y, LiuD, SongyangZ (2007). Telomere maintenance through spatial control of telomeric proteins. Mol Cell Biol, 27(16): 5898–5909

DOI PMID

16
ChenL Y, RedonS, LingnerJ (2012a). The human CST complex is a terminator of telomerase activity. Nature, 488(7412): 540–544

DOI PMID

17
ChenL Y, ZhangY, ZhangQ, LiH, LuoZ, FangH, KimS H, QinL, YotndaP, XuJ, TuB P, BaiY, SongyangZ (2012b). Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol Cell, 47(6): 839–850

DOI PMID

18
ChenY C, TengS C, WuK J (2009). Phosphorylation of telomeric repeat binding factor 1 (TRF1) by Akt causes telomere shortening. Cancer Invest, 27(1): 24–28

DOI PMID

19
ChowT T, ZhaoY, MakS S, ShayJ W, WrightW E (2012). Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev, 26(11): 1167–1178

DOI PMID

20
ChungJ, KhadkaP, ChungI K (2012). Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation. J Cell Sci, 125(Pt 11): 2684–2697

DOI PMID

21
ColginL M, ReddelR R (1999). Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev, 9(1): 97–103

DOI PMID

22
CollinsK (2008). Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev, 129(1–2): 91–98

DOI PMID

23
CollinsK, MitchellJ R (2002). Telomerase in the human organism. Oncogene, 21(4): 564–579

DOI PMID

24
de LangeT (2002). Protection of mammalian telomeres. Oncogene, 21(4): 532–540

DOI PMID

25
de LangeT (2004). T-loops and the origin of telomeres. Nat Rev Mol Cell Biol, 5(4): 323–329

DOI PMID

26
de LangeT (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 19(18): 2100–2110

DOI PMID

27
DokalI (2011). Dyskeratosis congenita. Hematology (Am Soc Hematol Educ Program), 2011(1): 480–486

DOI PMID

28
FloresI, CayuelaM L, BlascoM A (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 309(5738): 1253–1256

DOI PMID

29
FlynnR L, CentoreR C, O’SullivanR J, RaiR, TseA, SongyangZ, ChangS, KarlsederJ, ZouL (2011). TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature, 471(7339): 532–536

DOI PMID

30
GrangerM P, WrightW E, ShayJ W (2002). Telomerase in cancer and aging. Crit Rev Oncol Hematol, 41(1): 29–40

DOI PMID

31
GrayJ T, CelanderD W, PriceC M, CechT R (1991). Cloning and expression of genes for the Oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell, 67(4): 807–814

DOI PMID

32
GreiderC W, BlackburnE H (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43(2 Pt 1): 405–413

DOI PMID

33
GreiderC W, BlackburnE H (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature, 337(6205): 331–337

DOI PMID

34
GuoX, DengY, LinY, Cosme-BlancoW, ChanS, HeH, YuanG, BrownE J, ChangS (2007). Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J, 26(22): 4709–4719

DOI PMID

35
HaendelerJ, HoffmannJ, RahmanS, ZeiherA M, DimmelerS (2003). Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett, 536(1–3): 180–186

DOI PMID

36
HahnW C, WeinbergR A (2002). Modelling the molecular circuitry of cancer. Nat Rev Cancer, 2(5): 331–341

DOI PMID

37
HanX, LiuD, ZhangY, LiY, LuW, ChenJ, SongyangZ (2013). Akt regulates TPP1 homodimerization and telomere protection. Aging Cell, 12(6): 1091–1099

38
HarleyC B, FutcherA B, GreiderC W (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274): 458–460

DOI PMID

39
HerbigU, JoblingW A, ChenB P, ChenD J, SedivyJ M (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14(4): 501–513

DOI PMID

40
HockemeyerD, DanielsJ P, TakaiH, de LangeT (2006). Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell, 126(1): 63–77

DOI PMID

41
HockemeyerD, PalmW, ElseT, DanielsJ P, TakaiK K, YeJ Z, KeeganC E, de LangeT, HammerG D (2007). Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol, 14(8): 754–761

DOI PMID

42
HoltS E, ShayJ W, WrightW E (1996). Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol, 14(7): 836–839

DOI PMID

43
HoughtalingB, CuttonaroL, ChangW, SmithS (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol, CB14:1621–1631

44
HughesT R, EvansS K, WeilbaecherR G, LundbladV (2000). The Est3 protein is a subunit of yeast telomerase. Curr Biol, 10(13): 809–812

DOI PMID

45
HwangH, BuncherN, OpreskoP, MyongS (2012). POT1–TPP1 regulates telomeric overhang structural dynamics. Structure (London, England: 1993), 20: 1872–1880

46
KangS S, KwonT, KwonD Y, DoS I (1999). Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem, 274(19): 13085–13090

DOI PMID

47
KarlsederJ, BroccoliD, DaiY, HardyS, de LangeT (1999). p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science, 283(5406): 1321–1325

DOI PMID

48
KibeT, OsawaG A, KeeganC E, de LangeT (2010). Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol Cell Biol, 30(4): 1059–1066

DOI PMID

49
KimN W, PiatyszekM A, ProwseK R, HarleyC B, WestM D, HoP L, CovielloG M, WrightW E, WeinrichS L, ShayJ W (1994). Specific association of human telomerase activity with immortal cells and cancer. Science, 266(5193): 2011–2015

DOI PMID

50
KimS H, KaminkerP, CampisiJ (1999). TIN2, a new regulator of telomere length in human cells. Nat Genet, 23(4): 405–412

DOI PMID

51
KloetD E, BurgeringB M (2011). The PKB/FOXO switch in aging and cancer. Biochim Biophys Acta, 1813(11): 1926–1937

DOI PMID

52
LatrickC M, CechT R (2010). POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J, 29(5): 924–933

DOI PMID

53
LeS, MooreJ K, HaberJ E, GreiderC W (1999). RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics, 152(1): 143–152

PMID

54
LeeJ, MandellE K, TuceyT M, MorrisD K, LundbladV (2008). The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat Struct Mol Biol, 15(9): 990–997

DOI PMID

55
LeeO H, KimH, HeQ, BaekH J, YangD, ChenL Y, LiangJ, ChaeH K, SafariA, LiuD, SongyangZ (2011), Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics, 10: M110 001628

56
LeiM, PodellE R, CechT R (2004). Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol, 11(12): 1223–1229

DOI PMID

57
LevyM Z, AllsoppR C, FutcherA B, GreiderC W, HarleyC B (1992). Telomere end-replication problem and cell aging. J Mol Biol, 225(4): 951–960

DOI PMID

58
LiB, OestreichS, de LangeT (2000). Identification of human Rap1: implications for telomere evolution. Cell, 101(5): 471–483

DOI PMID

59
LingnerJ, HughesT R, ShevchenkoA, MannM, LundbladV, CechT R (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 276(5312): 561–567

DOI PMID

60
LiuD, O’ConnorM S, QinJ, SongyangZ (2004a). Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem, 279(49): 51338–51342

DOI PMID

61
LiuD, SafariA, O’ConnorM S, ChanD W, LaegelerA, QinJ, SongyangZ (2004b). PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol, 6(7): 673–680

DOI PMID

62
LoayzaD, De LangeT (2003). POT1 as a terminal transducer of TRF1 telomere length control. Nature, 423(6943): 1013–1018

DOI PMID

63
LundbladV, BlackburnE H (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell, 73(2): 347–360

DOI PMID

64
ManningB D, CantleyL C (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7): 1261–1274

DOI PMID

65
MarionR M, StratiK, LiH, TejeraA, SchoeftnerS, OrtegaS, SerranoM, BlascoM A (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4(2): 141–154

DOI PMID

66
MaserR S, DePinhoR A (2002). Connecting chromosomes, crisis, and cancer. Science, 297(5581): 565–569

DOI PMID

67
MoyzisR K, BuckinghamJ M, CramL S, DaniM, DeavenL L, JonesM D, MeyneJ, RatliffR L, WuJ R (1988). A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA, 85(18): 6622–6626

DOI PMID

68
NandakumarJ, BellC F, WeidenfeldI, ZaugA J, LeinwandL A, CechT R (2012). The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature, 492(7428): 285–289

DOI PMID

69
NandakumarJ, CechT R (2013). Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol, 14(2): 69–82

DOI PMID

70
NandakumarJ, PodellE R, CechT R (2010). How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proc Natl Acad Sci USA, 107(2): 651–656

DOI PMID

71
O’ConnorM S, SafariA, LiuD, QinJ, SongyangZ (2004). The human Rap1 protein complex and modulation of telomere length. J Biol Chem, 279(27): 28585–28591

DOI PMID

72
O’ConnorM S, SafariA, XinH, LiuD, SongyangZ (2006). A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci USA, 103(32): 11874–11879

DOI PMID

73
PaeschkeK, JuranekS, SimonssonT, HempelA, RhodesD, LippsH J (2008). Telomerase recruitment by the telomere end binding protein-beta facilitates G-quadruplex DNA unfolding in ciliates. Nat Struct Mol Biol, 15(6): 598–604

DOI PMID

74
PalmW, de LangeT (2008). How shelterin protects mammalian telomeres. Annu Rev Genet, 42(1): 301–334

DOI PMID

75
PanierS, DurocherD (2009). Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst), 8(4): 436–443

DOI PMID

77
QingY F, ZhouJ G, ZhaoM C, XieW G, YangQ B, XingY, ZengS P, JiangH (2012). Altered expression of TPP1 in fibroblast-like synovial cells might be involved in the pathogenesis of rheumatoid arthritis. Rheumatol Int, 32(8): 2503–2510

DOI PMID

78
RaiR, LiJ M, ZhengH, LokG T, DengY, HuenM S, ChenJ, JinJ, ChangS (2011). The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol, 18(12): 1400–1407

DOI PMID

79
RedonS, ReichenbachP, LingnerJ (2007). Protein RNA and protein protein interactions mediate association of human EST1A/SMG6 with telomerase. Nucleic Acids Res, 35(20): 7011–7022

DOI PMID

80
SaccoA, MourkiotiF, TranR, ChoiJ, LlewellynM, KraftP, ShkreliM, DelpS, PomerantzJ H, ArtandiS E, BlauH M (2010). Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell, 143(7): 1059–1071

DOI PMID

81
SarperN, ZenginE, KılıçS C (2010). A child with severe form of dyskeratosis congenita and TINF2 mutation of shelterin complex. Pediatr Blood Cancer, 55(6): 1185–1186

DOI PMID

82
SasaG S, Ribes-ZamoraA, NelsonN D, BertuchA A (2012). Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin Genet, 81(5): 470–478

DOI PMID

83
SextonA N, YoumansD T, CollinsK (2012). Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J Biol Chem, 287(41): 34455–34464

DOI PMID

84
ShilohY (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer, 3(3): 155–168

DOI PMID

85
SongyangZ, LiuD (2006). Inside the mammalian telomere interactome: regulation and regulatory activities of telomeres. Crit Rev Eukaryot Gene Expr, 16(2): 103–118

DOI PMID

86
TalleyJ M, DeZwaanD C, ManessL D, FreemanB C, FriedmanK L (2011). Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J Biol Chem, 286(30): 26431–26439

DOI PMID

87
TaylorD J, PodellE R, TaatjesD J, CechT R (2011). Multiple POT1-TPP1 proteins coat and compact long telomeric single-stranded DNA. J Mol Biol, 410(1): 10–17

DOI PMID

88
TejeraA M, Stagno d’AlcontresM, ThanasoulaM, MarionR M, MartinezP, LiaoC, FloresJ M, TarsounasM, BlascoM A (2010). TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev Cell, 18(5): 775–789

DOI PMID

89
VerdunR E, KarlsederJ (2006). The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell, 127(4): 709–720

DOI PMID

90
WalneA J, VulliamyT, BeswickR, KirwanM, DokalI (2008). TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood, 112(9): 3594–3600

DOI PMID

91
WanM, QinJ, SongyangZ, LiuD (2009). OB fold-containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. J Biol Chem, 284(39): 26725–26731

DOI PMID

92
WangF, PodellE R, ZaugA J, YangY, BaciuP, CechT R, LeiM (2007). The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature, 445(7127): 506–510

DOI PMID

93
WrightW E, TesmerV M, LiaoM L, ShayJ W (1999). Normal human telomeres are not late replicating. Exp Cell Res, 251(2): 492–499

DOI PMID

94
WuL, MultaniA S, HeH, Cosme-BlancoW, DengY, DengJ M, BachiloO, PathakS, TaharaH, BaileyS M, DengY, BehringerR R, ChangS (2006). Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell, 126(1): 49–62

DOI PMID

95
XinH, LiuD, WanM, SafariA, KimH, SunW, O’ConnorM S, SongyangZ (2007). TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature, 445(7127): 559–562

DOI PMID

96
YangD, HeQ, KimH, MaW, SongyangZ (2011). TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J Biol Chem, 286(26): 23022–23030

DOI PMID

97
YeJ Z, de LangeT (2004). TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet, 36(6): 618–623

DOI PMID

98
YeJ Z, HockemeyerD, KrutchinskyA N, LoayzaD, HooperS M, ChaitB T, de LangeT (2004). POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev, 18(14): 1649–1654

DOI PMID

99
YenW F, ChicoL, LeiM, LueN F (2011). Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proc Natl Acad Sci USA, 108(51): 20370–20375

DOI PMID

100
YuE Y, WangF, LeiM, LueN F (2008). A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nat Struct Mol Biol, 15(9): 985–989

DOI PMID

101
ZaugA J, CraryS M, Jesse FioravantiM, CampbellK, CechT R (2013). Many disease-associated variants of hTERT retain high telomerase enzymatic activity. Nucleic Acids Res, 41(19): 8969–8978

DOI PMID

102
ZhangY, ChenL Y, HanX, XieW, KimH, YangD, LiuD, SongyangZ (2013). Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci USA, 110(14): 5457–5462

DOI PMID

103
ZhaoY, SfeirA J, ZouY, BusemanC M, ChowT T, ShayJ W, WrightW E (2009). Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell, 138(3): 463–475

DOI PMID

104
ZhongF, SavageS A, ShkreliM, GiriN, JessopL, MyersT, ChenR, AlterB P, ArtandiS E (2011). Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev, 25(1): 11–16

DOI PMID

105
ZhongF L, BatistaL F, FreundA, PechM F, VenteicherA S, ArtandiS E (2012). TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell, 150(3): 481–494

DOI PMID

106
ZhongZ, ShiueL, KaplanS, de LangeT (1992). A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol, 12(11): 4834–4843

PMID

Outlines

/