Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease
Received date: 18 Feb 2014
Accepted date: 20 Apr 2014
Published date: 24 Jun 2014
Copyright
The type X collagen gene, COL10A1, is specifically expressed by hypertrophic chondrocytes during endochondral ossification. Endochondral ossification is a well-coordinated process that involves a cartilage intermediate and leads to formation of most of the skeleton in vertebrates during skeletogenesis. Chondrocyte hypertrophy is a critical stage of endochondral ossification linking both bone and cartilage development. Given its specific association with chondrocyte hypertrophy, type X collagen plays essential roles in endochondral ossification. It was previously shown that transgenic mice with mutant type X collagen develop variable skeleton-hematopoietic abnormalities indicating defective endochondral ossification, while mutations and abnormal expression of human COL10A1 cause abnormal chondrocyte hypertrophy that has been seen in many skeletal disorders, including skeletal chondrodysplasia and osteoarthritis. In this review, we summarized the skeletal chondrodysplasia with COL10A1 gene mutation that shows growth plate defect. We also reviewed recent studies that correlate the type X collagen gene expression and chondrocyte hypertrophy with osteoarthritis. Due to its significant clinical relevance, the type X collagen gene regulation has been extensively studied over the past two decades. Here, we focus on recent progress characterizing the cis-enhancer elements and their binding factors that together confer hypertrophic chondrocyte-specific murine type X collagen gene (Col10a1) expression. Based on literature review and our own studies, we surmise that there are multiple factors that contribute to hypertrophic chondrocyte-specific Col10a1 expression. These factors include both transactivators (such as Runx2, MEF2C etc.) and repressors (such as AP1, NFATc1, Sox9 etc.), while other co-factors or epigenetic control of Col10a1 expression may not be excluded.
Yaojuan LU , Longwei QIAO , Guanghua LEI , Ranim R. MIRA , Junxia GU , Qiping ZHENG . Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Frontiers in Biology, 2014 , 9(3) : 195 -204 . DOI: 10.1007/s11515-014-1310-6
1 |
AdamsS L, PallanteK M, NiuZ, CohenA J, LuJ, LeBoyP S (2003). Stimulation of type-X collagen gene transcription by retinoids occurs in part through the BMP signaling pathway. J Bone Joint Surg Am, 85-A(Suppl 3): 29–33
|
2 |
ArnoldM A, KimY, CzubrytM P, PhanD, McAnallyJ, QiX, SheltonJ M, RichardsonJ A, Bassel-DubyR, OlsonE N (2007). MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell, 12(3): 377–389
|
3 |
BatemanJ F, FreddiS, McNeilR, ThompsonE, HermannsP, SavarirayanR, LamandéS R (2004). Identification of four novel COL10A1 missense mutations in schmid metaphyseal chondrodysplasia: further evidence that collagen X NC1 mutations impair trimer assembly. Hum Mutat, 23(4): 396
|
4 |
BatemanJ F, FreddiS, NattrassG, SavarirayanR (2003). Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum Mol Genet, 12(3): 217–225
|
5 |
BatemanJ F, WilsonR, FreddiS, LamandéS R, SavarirayanR (2005). Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum Mutat, 25(6): 525–534
|
6 |
BeierF, VornehmS, PöschlE, von der MarkK, LammiM J (1997). Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem, 66(2): 210–218
|
7 |
ChambersD, YoungD A, HowardC, ThomasJ T, BoamD S, GrantM E, WallisG A, Boot-HandfordR P (2002). An enhancer complex confers both high-level and cell-specific expression of the human type X collagen gene. FEBS Lett, 531(3): 505–508
|
8 |
ChanD, ColeW G, RogersJ G, BatemanJ F (1995). Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val mutation in the alpha 1(X) NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J Biol Chem, 270(9): 4558–4562
|
9 |
ChangH J, YangM J, YangY H, HouM F, HsuehE J, LinS R (2009). MMP13 is potentially a new tumor marker for breast cancer diagnosis. Oncol Rep, 22(5): 1119–1127
|
10 |
ChapmanK B, PrendesM J, SternbergH, KiddJ L, FunkW D, WagnerJ, WestM D (2012). COL10A1 expression is elevated in diverse solid tumor types and is associated with tumor vasculature. Future Oncol, 8(8): 1031–1040
|
11 |
D’AlonzoR C, SelvamuruganN, KarsentyG, PartridgeN C (2002). Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 277(1): 816–822
|
12 |
DesmedtC, MajjajS, KheddoumiN, SinghalS K, Haibe-KainsB, El OuriaghliF, ChaboteauxC, MichielsS, LallemandF, JourneF, DuvillierH, LoiS, QuackenbushJ, DekoninckS, BlanpainC, LagneauxL, HouhouN, DelorenziM, LarsimontD, PiccartM, SotiriouC (2012). Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res, 18(4): 1004–1014
|
13 |
DongY, DrissiH, ChenM, ChenD, ZuscikM J, SchwarzE M, O’KeefeR J (2005). Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem, 95(5): 1057–1068
|
14 |
DongY F, SoungY, SchwarzE M, O’KeefeR J, DrissiH (2006). Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol, 208(1): 77–86
|
15 |
DouradoG, LuValleP (1998). Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J Cell Biochem, 70(4): 507–516
|
15 |
DrissiM H, LiX, SheuT J, ZuscikM J, SchwarzE M, PuzasJ E, RosierR N, O’KeefeR J (2003). Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem, 90(6): 1287–1298
|
104 |
DrissiH, ZuscikM, RosierR, O’KeefeR (2005). Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med, 26(3): 169–179
|
17 |
DyP, WangW, BhattaramP, WangQ, WangL, BallockR T, LefebvreV (2012). Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell, 22(3): 597–609
|
18 |
EerolaI, SalminenH, LammiP, LammiM, von der MarkK, VuorioE, SäämänenA M (1998). Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum, 41(7): 1287–1295
|
19 |
EferlR, HoebertzA, SchillingA F, RathM, KarrethF, KennerL, AmlingM, WagnerE F (2004). The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J, 23(14): 2789–2799
|
20 |
EferlR, WagnerE F (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer, 3(11): 859–868
|
21 |
FangJ, HallB K (1997). Chondrogenic cell differentiation from membrane bone periostea. Anat Embryol (Berl), 196(5): 349–362 (Review)
|
22 |
GebhardS, PöschlE, RiemerS, BauerE, HattoriT, EberspaecherH, ZhangZ, LefebvreV, de CrombruggheB, von der MarkK (2004). A highly conserved enhancer in mammalian type X collagen genes drives high levels of tissue-specific expression in hypertrophic cartilage in vitro and in vivo. Matrix Biol, 23(5): 309–322
|
23 |
GoldringM B, TsuchimochiK, IjiriK (2006). The control of chondrogenesis. J Cell Biochem, 97(1): 33–44
|
24 |
GomezS, Lopez-CeperoJ M, SilvestriniG, BonucciE (1996). Matrix vesicles and focal proteoglycan aggregates are the nucleation sites revealed by the lanthanum incubation method: a correlated study on the hypertrophic zone of the rat epiphyseal cartilage. Calcif Tissue Int, 58(4): 273–282
|
25 |
GregoryC A, ZabelB, GrantM E, Boot-HandfordR P, WallisG A (2000). Equal expression of typ X collagen mRNA fom mutant and wild type COL10A1 alleles in growth plate cartilage from a patient with metaphyseal chondrodysplasia type Schmid. J Med Genet, 37(8): 627–629
|
26 |
GrskovicI, KutschA, FrieC, GromaG, StermannJ, Schlötzer-SchrehardtU, NiehoffA, MossS E, RosenbaumS, PöschlE, ChmielewskiM, RapplG, AbkenH, BatemanJ F, CheahK S, PaulssonM, BrachvogelB (2012). Depletion of annexin A5, annexin A6, and collagen X causes no gross changes in matrix vesicle-mediated mineralization, but lack of collagen X affects hematopoiesis and the Th1/Th2 response. J Bone Miner Res, 27(11): 2399–2412
|
27 |
HattoriT, MüllerC, GebhardS, BauerE, PauschF, SchlundB, BöslM R, HessA, Surmann-SchmittC, von der MarkH, de CrombruggheB, von der MarkK (2010). SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development, 137(6): 901–911
|
28 |
HessJ, AngelP, Schorpp-KistnerM (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci, 117(Pt 25): 5965–5973
|
29 |
HessJ, HartensteinB, TeurichS, SchmidtD, Schorpp-KistnerM, AngelP (2003). Defective endochondral ossification in mice with strongly compromised expression of JunB. J Cell Sci, 116(Pt 22): 4587–4596
|
30 |
HessJ, PorteD, MunzC, AngelP (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem, 276(23): 20029–20038
|
31 |
HigashikawaA, SaitoT, IkedaT, KamekuraS, KawamuraN, KanA, OshimaY, OhbaS, OgataN, TakeshitaK, NakamuraK, ChungU I, KawaguchiH (2009). Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis Rheum, 60(1): 166–178
|
32 |
HinoiE, BialekP, ChenY T, RachedM T, GronerY, BehringerR R, OrnitzD M, KarsentyG (2006). Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev, 20(21): 2937–2942
|
33 |
HoM S, TsangK Y, LoR L, SusicM, MäkitieO, ChanT W, NgV C, SillenceD O, Boot-HandfordR P, GibsonG, CheungK M, ColeW G, CheahK S, ChanD (2007). COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum Mol Genet, 16(10): 1201–1215
|
34 |
HovhannisyanH, ZhangY, HassanM Q, WuH, GlackinC, LianJ B, SteinJ L, MontecinoM, SteinG S, van WijnenA J (2013). Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. J Cell Physiol, 228(2): 313–321
|
35 |
IjiriK, ZerbiniL F, PengH, CorreaR G, LuB, WalshN, ZhaoY, TaniguchiN, HuangX L, OtuH, WangH, WangJ F, KomiyaS, DucyP, RahmanM U, FlavellR A, GravalleseE M, OettgenP, LibermannT A, GoldringM B (2005). A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem, 280(46): 38544–38555
|
36 |
IkegawaS, NakamuraK, NaganoA, HagaN, NakamuraY (1997). Mutations in the N-terminal globular domain of the type X collagen gene (COL10A1) in patients with Schmid metaphyseal chondrodysplasia. Hum Mutat, 9(2): 131–135
|
37 |
IkegawaS, NishimuraG, NagaiT, HasegawaT, OhashiH, NakamuraY (1998). Mutation of the type X collagen gene (COL10A1) causes spondylometaphyseal dysplasia. Am J Hum Genet, 63(6): 1659–1662
|
38 |
ImabuchiR, OhmiyaY, KwonH J, OnoderaS, KitamuraN, KurokawaT, GongJ P, YasudaK (2011). Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord, 12(1): 213
|
39 |
InadaM, YasuiT, NomuraS, MiyakeS, DeguchiK, HimenoM, SatoM, YamagiwaH, KimuraT, YasuiN, OchiT, EndoN, KitamuraY, KishimotoT, KomoriT (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn, 214(4): 279–290
|
40 |
JacenkoO, LuValleP A, OlsenB R (1993). Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature, 365(6441): 56–61
|
41 |
JochumW, DavidJ P, ElliottC, WutzA, PlenkH Jr, MatsuoK, WagnerE F (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med, 6(9): 980–984
|
42 |
JochumW, PasseguéE, WagnerE F (2001). AP-1 in mouse development and tumorigenesis. Oncogene, 20(19): 2401–2412
|
43 |
KamekuraS, KawasakiY, HoshiK, ShimoakaT, ChikudaH, MaruyamaZ, KomoriT, SatoS, TakedaS, KarsentyG, NakamuraK, ChungU I, KawaguchiH (2006). Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum, 54(8): 2462–2470
|
44 |
KarrethF, HoebertzA, ScheuchH, EferlR, WagnerE F (2004). The AP1 transcription factor Fra2 is required for efficient cartilage development. Development, 131(22): 5717–5725
|
45 |
KawaguchiH (2008). Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells, 25(1): 1–6
|
46 |
KennerL, HoebertzA, BeilF T, KeonN, KarrethF, EferlR, ScheuchH, SzremskaA, AmlingM, Schorpp-KistnerM, AngelP, WagnerE F (2004). Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 164(4): 613–623
|
47 |
KimI S, OttoF, ZabelB, MundlosS (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech Dev, 80(2): 159–170
|
48 |
KomoriT, YagiH, NomuraS, YamaguchiA, SasakiK, DeguchiK, ShimizuY, BronsonR T, GaoY H, InadaM, SatoM, OkamotoR, KitamuraY, YoshikiS, KishimotoT (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5): 755–764
|
49 |
KronenbergH M (2003). Developmental regulation of the growth plate. Nature, 423(6937): 332–336
|
50 |
KungL H, RajparM H, BriggsM D, Boot-HandfordR P (2012). Hypertrophic chondrocytes have a limited capacity to cope with increases in endoplasmic reticulum stresswithout triggering the unfolded protein response. J Histochem Cytochem, 60(10): 734–48
|
51 |
KwanK M, PangM K, ZhouS, CowanS K, KongR Y, PfordteT, OlsenB R, SillenceD O, TamP P, CheahK S (1997). Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol, 136(2): 459–471
|
52 |
LeeB, ThirunavukkarasuK, ZhouL, PastoreL, BaldiniA, HechtJ, GeoffroyV, DucyP, KarsentyG (1997). Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet, 16(3): 307–310
|
53 |
LeungV Y, GaoB, LeungK K, MelhadoI G, WynnS L, AuT Y, DungN W, LauJ Y, MakA C, ChanD, CheahK S (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet, 7(11): e1002356
|
54 |
LiF, LuY, DingM, NapieralaD, AbbassiS, ChenY, DuanX, WangS, LeeB, ZhengQ (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J Bone Miner Res, 26(12): 2899–2910
|
55 |
LinsenmayerT F, ChenQ A, GibneyE, GordonM K, MarchantJ K, MayneR, SchmidT M (1991). Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development, 111(1): 191–196
|
56 |
LinsenmayerT F, FitchJ M, GrossJ, MayneR (1985). Are collagen fibrils in the developing avian cornea composed of two different collagen types? Evidence from monoclonal antibody studies. Ann N Y Acad Sci, 460(1 Biology, Chem): 232–245
|
57 |
LongF, LinsenmayerT F (1995). Tissue-specific regulation of the type X collagen gene. Analyses by in vivo footprinting and transfection with a proximal promoter region. J Biol Chem, 270(52): 31310–31314
|
58 |
MackieE J, AhmedY A, TatarczuchL, ChenK S, MiramsM (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40(1): 46–62
|
59 |
MacLeanH E, KimJ I, GlimcherM J, WangJ, KronenbergH M, GlimcherL H (2003). Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol, 262(1): 51–63
|
60 |
MageeC, NurminskayaM, FavermanL, GaleraP, LinsenmayerT F (2005). SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem, 280(27): 25331–25338
|
61 |
MäkitieO, SusicM, ColeW G (2010). Early-onset metaphyseal chondrodysplasia type Schmid associated with a COL10A1 frame-shift mutation and impaired trimerization of wild-type α1(X) protein chains. J Orthop Res, 28(11): 1497–1501
|
62 |
MäkitieO, SusicM, WardL, BarclayC, GlorieuxF H, ColeW G (2005). Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations—findings in 10 patients. Am J Med Genet A, 137A(3): 241–248
|
63 |
MarksD S, GregoryC A, WallisG A, BrassA, KadlerK E, Boot-HandfordR P (1999). Metaphyseal chondrodysplasia type Schmid mutations are predicted to occur in two distinct three-dimensional clusters within type X collagen NC1 domains that retain the ability to trimerize. J Biol Chem, 274(6): 3632–3641
|
64 |
MaruyamaT, MiyamotoY, YamamotoG, YamadaA, YoshimuraK, SuzawaT, TakamiM, AkiyamaT, HoshinoM, IwasaF, IkumiN, TachikawaT, MishimaK, BabaK, KamijoR (2013). Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS ONE, 8(2): e56984
|
65 |
MatsuiY, YasuiN, KawabataH, OzonoK, NakataK, MizushimaT, TsumakiN, KataokaE, FujitaY, OchiT (2000). A novel type X collagen gene mutation (G595R) associated with Schmid-type metaphyseal chondrodysplasia. J Hum Genet, 45(2): 105–108
|
66 |
McIntoshI, AbbottM H, FrancomanoC A (1995). Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the C-terminal noncollagenous domain of type X collagen. Hum Mutat, 5(2): 121–125
|
67 |
MyšičkováA, VingronM (2012). Detection of interacting transcription factors in human tissues using predicted DNA binding affinity. BMC Genomics, 13(13 Suppl 1): S2
|
68 |
NaefF, HuelskenJ (2005). Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucleic Acids Res, 33(13): e111
|
69 |
OttoF, ThornellA P, CromptonT, DenzelA, GilmourK C, RosewellI R, StampG W, BeddingtonR S, MundlosS, OlsenB R, SelbyP B, OwenM J (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5): 765–771
|
70 |
PapachristouD, PirttiniemiP, KantomaaT, AgnantisN, BasdraE K (2006). Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod, 28(1): 20–26
|
71 |
PenolazziL, LisignoliG, LambertiniE, TorreggianiE, ManferdiniC, LolliA, VecchiatiniR, CiardoF, GabusiE, FacchiniA, GambariR, PivaR (2011). Transcription factor decoy against NFATc1 in human primary osteoblasts. Int J Mol Med, 28(2): 199–206
|
72 |
PulligO, WeselohG, RonnebergerD, KäkönenS, SwobodaB (2000). Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int, 67(3): 230–240
|
73 |
RajparM H, McDermottB, KungL, EardleyR, KnowlesL, HeeranM, ThorntonD J, WilsonR, BatemanJ F, PoulsomR, ArvanP, KadlerK E, BriggsM D, Boot-HandfordR P (2009). Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet, 5(10): e1000691
|
74 |
RiemerS, GebhardS, BeierF, PöschlE, von der MarkK (2002). Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: Localization of a PTH/PTHrPresponsive region in the human COL10A1 enhancer. J Cell Biochem, 86: 688–699
|
75 |
SaharD E, LongakerM T, QuartoN (2005). Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev Biol, 280(2): 344–361
|
76 |
SaitoT, FukaiA, MabuchiA, IkedaT, YanoF, OhbaS, NishidaN, AkuneT, YoshimuraN, NakagawaT, NakamuraK, TokunagaK, ChungU I, KawaguchiH (2010). Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med, 16(6): 678–686
|
77 |
SakimuraR, TanakaK, YamamotoS, MatsunobuT, LiX, HanadaM, OkadaT, NakamuraT, LiY, IwamotoY (2007). The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res, 13(1): 275–282
|
78 |
SawaiH, IdaA, NakataY, KoyamaK (1998). Novel missense mutation resulting in the substitution of tyrosine by cysteine at codon 597 of the type X collagen gene associated with Schmid metaphyseal chondrodysplasia. J Hum Genet, 43(4): 259–261
|
79 |
SchipaniE, ProvotS (2003). PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today, 69(4): 352–362
|
80 |
ShenG (2005). The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res, 8(1): 11–17
|
81 |
SimõesB, ConceiçãoN, ViegasC S, PintoJ P, GavaiaP J, HurstL D, KelshR N, CancelaM L (2006). Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2alphaA2. Calcif Tissue Int, 79(4): 230–244
|
82 |
StratakisC A, OrbanZ, BurnsA L, VotteroA, MitsiadesC S, MarxS J, AbbassiV, ChrousosG P (1996). Dideoxyfingerprinting (ddF) analysis of the type X collagen gene (COL10A1) and identification of a novel mutation (S671P) in a kindred with Schmid metaphyseal chondrodysplasia. Biochem Mol Med, 59(2): 112–117
|
83 |
TakedaS, BonnamyJ P, OwenM J, DucyP, KarsentyG (2001). Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev, 15(4): 467–481
|
84 |
TanJ T, KremerF, FreddiS, BellK M, BakerN L, LamandéS R, BatemanJ F (2008). Competency for nonsense-mediated reduction in collagen X mRNA is specified by the 3′ UTR and corresponds to the position of mutations in Schmid metaphyseal chondrodysplasia. Am J Hum Genet, 82(3): 786–793
|
85 |
ThomasD P, SuntersA, GentryA, GrigoriadisA E (2000). Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos proto-oncogene. J Cell Sci, 113(Pt 3): 439–450
|
86 |
Thomas-ChollierM, HuftonA, HeinigM, O’KeeffeS, MasriN E, RoiderH G, MankeT, VingronM (2011). Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc, 6(12): 1860–1869
|
87 |
TsuchimochiK, OteroM, DragomirC L, PlumbD A, ZerbiniL F, LibermannT A, MarcuK B, KomiyaS, IjiriK, GoldringM B (2010). GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes. J Biol Chem, 285(11): 8395–8407
|
88 |
van der KraanP M, van den BergW B (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage, 20(3): 223–232
|
89 |
von der MarkK, FrischholzS, AignerT, BeierF, BelkeJ, ErdmannS, BurkhardtH (1995). Upregulation of type X collagen expression in osteoarthritic cartilage. Acta Orthop Scand Suppl, 266: 125–129
|
90 |
von der MarkK, KirschT, NerlichA, KussA, WeselohG, GlückertK, StössH (1992). Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum, 35(7): 806–811
|
91 |
VonkL A, KragtenA H, DhertW J, SarisD B, CreemersL B (2014). Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage, 22(1): 145–153
|
92 |
WagnerE F (2002). Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis, 61(61 Suppl 2): ii40–ii42
|
93 |
WallisG A, RashB, SykesB, BonaventureJ, MaroteauxP, ZabelB, Wynne-DaviesR, GrantM E, Boot-HandfordR P (1996). Mutations within the gene encoding the alpha 1 (X) chain of type X collagen (COL10A1) cause metaphyseal chondrodysplasia type Schmid but not several other forms of metaphyseal chondrodysplasia. J Med Genet, 33(6): 450–457
|
94 |
WarmanM L, AbbottM, ApteS S, HefferonT, McIntoshI, CohnD H, HechtJ T, OlsenB R, FrancomanoC A (1993). A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet, 5(1): 79–82
|
95 |
WilsonR, FreddiS, ChanD, CheahK S, BatemanJ F (2005). Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem, 280(16): 15544–15552
|
96 |
WoelfleJ V, BrennerR E, ZabelB, ReichelH, NelitzM (2011). Schmid-type metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci, 16(2): 245–249
|
97 |
ZanottiS, CanalisE (2013). Notch suppresses nuclear factor of activated T cells (NFAT) transactivation and Nfatc1 expression in chondrocytes. Endocrinology, 154(2): 762–772
|
98 |
ZhengQ, KellerB, ZhouG, NapieralaD, ChenY, ZabelB, ParkerA E, LeeB (2009). Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J Bone Miner Res, 24(6): 1022–1032
|
99 |
ZhengQ, SebaldE, ZhouG, ChenY, WilcoxW, LeeB, KrakowD (2005). Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet, 77(2): 305–312
|
100 |
ZhengQ, ZhouG, MorelloR, ChenY, Garcia-RojasX, LeeB (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol, 162(5): 833–842
|
101 |
ZhouG, ZhengQ, EnginF, MunivezE, ChenY, SebaldE, KrakowD, LeeB (2006). Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA, 103(50): 19004–19009
|
102 |
ZhuY, LiL, ZhouL, MeiH, JinK, LiuK, XuW, TangJ, YangY, ZhaoR, HeX (2011). A novel mutation leading to elongation of the deduced α1(X) chain results in Metaphyseal Chondrodysplasia type Schmid. Clin Chim Acta, 412(13–14): 1266–1269
|
103 |
ZimmermannP, BoeufS, DickhutA, BoehmerS, OlekS, RichterW (2008). Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum, 58(9): 2743–2753
|
/
〈 | 〉 |