REVIEW

Appetite control: why we fail to stop eating even when we are full?

  • Kristen DAVIS ,
  • Young-Jai YOU
Expand
  • Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA

Received date: 20 Mar 2014

Accepted date: 11 Apr 2014

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We often eat more than our body needs. We live in an environment where high calorie food is abundant and physical activities are limited. Living in this environment, maintaining healthy bodyweight becomes challenging and obesity becomes a social burden. Why do we continue to eat even after the metabolic needs are satisfied? Feeding is an ancient behavior essential to survive. Thus the mechanisms to regulate appetite, energy expenditure, and energy storage are well conserved throughout animals. Based on this conservation, we study why we fail to control appetite using a simple genetic model system C. elegans. We have discovered certain genetic components that when misregulated have animals eat more and store more fat. In this review we discuss how these genes work in the appetite control circuit to ultimately understand overall appetite control behavior. We will also briefly discuss how social influence affects feeding regardless of the metabolic status of an animal.

Cite this article

Kristen DAVIS , Young-Jai YOU . Appetite control: why we fail to stop eating even when we are full?[J]. Frontiers in Biology, 2014 , 9(3) : 169 -174 . DOI: 10.1007/s11515-014-1309-z

Acknowledgements

This work is supported by Virginia Commonwealth University.
Compliance with ethics guidelines
Kristen Davis and Young-Jai You declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
AlkemaM J, Hunter-EnsorM, RingstadN, HorvitzH R (2005). Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron, 46(2): 247-260

DOI PMID

2
ArshadN, VisweswariahS S (2012). The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett, 586(18): 2835-2840

DOI PMID

3
AshrafiK, ChangF Y, WattsJ L, FraserA G, KamathR S, AhringerJ, RuvkunG (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421(6920): 268-272

DOI PMID

4
AyalaJ E, BracyD P, JulienB M, RottmanJ N, FuegerP T, WassermanD H (2007). Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes, 56(4): 1025-1033

DOI PMID

5
BerthoudH R (2007). Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol Behav, 91(5): 486-498

DOI PMID

6
BishopN A, GuarenteL (2007). Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature, 447(7144): 545-549

DOI PMID

7
BoothD A (1989). Mood- and nutrient-conditioned appetites. Cultural and physiological bases for eating disorders. Ann N Y Acad Sci, 575(1 The Psychobio): 122-135, discussion 157-162

DOI PMID

8
CrockerA, ShahidullahM, LevitanI B, SehgalA (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron, 65(5): 670-681

DOI PMID

9
de BonoM, BargmannC I (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94(5): 679-689

DOI PMID

10
de BonoM, TobinD M, DavisM W, AveryL, BargmannC I (2002). Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature, 419(6910): 899-903

DOI PMID

11
de CastroJ M, de CastroE S (1989). Spontaneous meal patterns of humans: influence of the presence of other people. Am J Clin Nutr, 50(2): 237-247

PMID

12
FarooqiI S, YeoG S, KeoghJ M, AminianS, JebbS A, ButlerG, CheethamT, O’RahillyS (2000). Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest, 106(2): 271-279

DOI PMID

13
FehmH L, KernW, PetersA (2006). The selfish brain: competition for energy resources. Prog Brain Res, 153: 129-140

DOI PMID

14
FélixM A, BraendleC (2010). The natural history of Caenorhabditis elegans. Curr Biol, 20(22): R965-R969

DOI PMID

15
FengX H, DerynckR (2005). Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol, 21(1): 659-693

DOI PMID

16
FrancisS H, BuschJ L, CorbinJ D, SibleyD (2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev, 62(3): 525-563

DOI PMID

17
FujiwaraM, SenguptaP, McIntireS L (2002). Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron, 36(6): 1091-1102

DOI PMID

18
GallagherT, BjornessT, GreeneR, YouY J, AveryL (2013a). The geometry of locomotive behavioral states in C. elegans. PLoS ONE, 8(3): e59865

DOI PMID

19
GallagherT, KimJ, OldenbroekM, KerrR, YouY J (2013b). ASI regulates satiety quiescence in C. elegans. J Neurosci, 33(23): 9716-9724

DOI PMID

20
GongR, DingC, HuJ, LuY, LiuF, MannE, XuF, CohenM B, LuoM (2011). Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science, 333(6049): 1642-1646

DOI PMID

21
GreerE R, PérezC L, Van GilstM R, LeeB H, AshrafiK (2008). Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab, 8(2): 118-131

DOI PMID

22
HanM, SternbergP W (1990). let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell, 63(5): 921-931

DOI PMID

23
HengartnerM O, EllisR E, HorvitzH R (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature, 356(6369): 494-499

DOI PMID

24
HermanC P, RothD A, PolivyJ (2003). Effects of the presence of others on food intake: a normative interpretation. Psychol Bull, 129(6): 873-886

DOI PMID

25
HetheringtonM M, AndersonA S, NortonG N, NewsonL (2006). Situational effects on meal intake: A comparison of eating alone and eating with others. Physiol Behav, 88(4-5): 498-505

DOI PMID

26
JanuszewiczA (1995). The natriuretic peptides in hypertension. Curr Opin Cardiol, 10(5): 495-500

DOI PMID

27
JohnenH, LinS, KuffnerT, BrownD A, TsaiV W, BauskinA R, WuL, PankhurstG, JiangL, JunankarS, HunterM, FairlieW D, LeeN J, EnriquezR F, BaldockP A, CoreyE, AppleF S, MurakamiM M, LinE J, WangC, DuringM J, SainsburyA, HerzogH, BreitS N (2007). Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med, 13(11): 1333-1340

DOI PMID

28
KimG W, LinJ E, WaldmanS A (2013). GUCY2C: at the intersection of obesity and cancer. Trends Endocrinol Metab, 24(4): 165-173

DOI PMID

29
KomatsuH, MoriI, RheeJ S, AkaikeN, OhshimaY (1996). Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron, 17(4): 707-718

DOI PMID

30
MitschkeM M, HoffmannL S, GnadT, ScholzD, KruithoffK, MayerP, HaasB, SassmannA, PfeiferA, KilicA (2013). Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J, 27(4): 1621-1630

DOI PMID

31
MontagueC T, FarooqiI S, WhiteheadJ P, SoosM A, RauH, WarehamN J, SewterC P, DigbyJ E, MohammedS N, HurstJ A, CheethamC H, EarleyA R, BarnettA H, PrinsJ B, O’RahillyS (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387(6636): 903-908

DOI PMID

32
MutchD M, ClémentK (2006). Unraveling the genetics of human obesity. PLoS Genet, 2(12): e188

DOI PMID

33
OsterH, WernerC, MagnoneM C, MayserH, FeilR, SeeligerM W, HofmannF, AlbrechtU (2003). cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol, 13(9): 725-733

DOI PMID

34
PetrovichG D, GallagherM (2007). Control of food consumption by learned cues: a forebrain-hypothalamic network. Physiol Behav, 91(4): 397-403

DOI PMID

35
PlinerP, BellR, HirschE S, KinchlaM (2006). Meal duration mediates the effect of “social facilitation” on eating in humans. Appetite, 46(2): 189-198

DOI PMID

36
PopkinB M, DuffeyK, Gordon-LarsenP (2005). Environmental influences on food choice, physical activity and energy balance. Physiol Behav, 86(5): 603-613

DOI PMID

37
RaizenD M, ZimmermanJ E, MaycockM H, TaU D, YouY J, SundaramM V, PackA I (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451(7178): 569-572

DOI PMID

38
SarzaniR, StrazzulloP, SalviF, IaconeR, PietrucciF, SianiA, BarbaG, GerardiM C, Dessì-FulgheriP, RappelliA (2004). Natriuretic peptide clearance receptor alleles and susceptibility to abdominal adiposity. Obes Res, 12(2): 351-356

DOI PMID

39
SengenésC, BerlanM, De GlisezinskiI, LafontanM, GalitzkyJ (2000). Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J, 14(10): 1345-1351

DOI PMID

40
ShibakusaT, IwakiY, MizunoyaW, MatsumuraS, NishizawaY, InoueK, FushikiT (2006). The physiological and behavioral effects of subchronic intracisternal administration of TGF-β in rats: comparison with the effects of CRF. Biomed Res, 27(6): 297-305

DOI PMID

41
SikderD, KodadekT (2007). The neurohormone orexin stimulates hypoxia-inducible factor-1 activity. Genes Dev, 21(22): 2995-3005

DOI PMID

42
StroebeleN, De CastroJ M (2004). Effect of ambience on food intake and food choice. Nutrition, 20(9): 821-838

DOI PMID

43
SuoS, KimuraY, Van TolH H (2006). Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci, 26(40): 10082-10090

DOI PMID

44
TakeiY (2001). Does the natriuretic peptide system exist throughout the animal and plant kingdom? Comp Biochem Physiol B Biochem Mol Biol, 129(2-3): 559-573

DOI PMID

45
TsaiV W, MaciaL, JohnenH, KuffnerT, ManadharR, JørgensenS B, Lee-NgK K, ZhangH P, WuL, MarquisC P, JiangL, HusainiY, LinS, HerzogH, BrownD A, SainsburyA, BreitS N (2013). TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS ONE, 8(2): e55174

DOI PMID

46
ValentinoM A, LinJ E, SnookA E, LiP, KimG W, MarszalowiczG, MageeM S, HyslopT, SchulzS, WaldmanS A (2011). A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest, 121(9): 3578-3588

DOI PMID

47
WardA, LiuJ, FengZ, XuX Z (2008). Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci, 11(8): 916-922

DOI PMID

48
WeingartenH P (1983). Conditioned cues elicit feeding in sated rats: a role for learning in meal initiation. Science, 220(4595): 431-433

DOI PMID

49
WoodsS C (2005). Signals that influence food intake and body weight. Physiol Behav, 86(5): 709-716

DOI PMID

50
YauK W, HardieR C (2009). Phototransduction motifs and variations. Cell, 139(2): 246-264

DOI PMID

51
YouY J, KimJ, RaizenD M, AveryL (2008). Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab, 7(3): 249-257

DOI PMID

52
ZhangM, SuY Q, SugiuraK, XiaG, EppigJ J (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 330(6002): 366-369

DOI PMID

Outlines

/