Smooth muscle cell differentiation: Mechanisms and models for vascular diseases
Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min
Smooth muscle cell differentiation: Mechanisms and models for vascular diseases
BACKGROUND: Vascular smoothmuscle cells (VSMCs) are mature cells that play critical roles inboth normal and aberrant cardiovascular conditions. In response tovarious environmental cues, VSMCs can dedifferentiate from a contractilestate to a highly proliferative synthetic state through the so-called‘phenotypic switching’ process. Changes in VSMC phenotypecontribute to numerous vascular-related diseases, including atherosclerosis,calcification, and restenosis following angioplasty. Adventitial VSMCprogenitor cells also contribute to formation of the neointima.
METHODS/RESULTS: Herein, wereview both, the roles of VSMC differentiation in vascular diseases,and the in vitro models used to investigate the molecular mechanismsinvolved in the regulation of VSMC differentiation and phenotype modulation.
CONCLUSION: A comprehensiveunderstanding of VSMC behavior in vascular diseases is essential toidentify new therapeutic targets for the prevention and treatmentof cardiovascular diseases.
vascular smooth muscle cells / progenitor / differentiation / transcriptionfactor / cardiovascular disease
[1] |
Abedin M, Tintut Y, Demer L L (2004). Mesenchymal stem cells and the artery wall. Circ Res, 95(7): 671–676
CrossRef
Pubmed
Google scholar
|
[2] |
Ackers-Johnson M, Talasila A, Sage A P, Long X, Bot I, Morrell N W, Bennett M R, Miano J M, Sinha S (2015). Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler Thromb Vasc Biol, 35(4): 817–828
CrossRef
Pubmed
Google scholar
|
[3] |
Aicher A, Zeiher A M, Dimmeler S ( 2005). Mobilizing endothelial progenitor cells. Hypertension (Dallas, Tex: 1979), 45(3): 321–325
|
[4] |
Ailawadi G, Eliason J L, Upchurch G R Jr (2003). Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg, 38(3): 584–588
CrossRef
Pubmed
Google scholar
|
[5] |
Ailawadi G, Moehle C W, Pei H, Walton S P, Yang Z, Kron I L, Lau C L, Owens G K (2009). Smooth muscle phenotypicmodulation is an early event in aortic aneurysms. J Thorac Cardiovasc Surg, 138(6): 1392–1399
CrossRef
Pubmed
Google scholar
|
[6] |
Airhart N, Brownstein B H, Cobb J P, Schierding W, Arif B, Ennis T L, Thompson R W, Curci J A (2014). Smooth muscle cells from abdominal aortic aneurysms are unique and can independentlyand synergistically degrade insoluble elastin. J Vasc Surg, 60(4): 1033–1041, discussion 1041–1042
CrossRef
Pubmed
Google scholar
|
[7] |
Alexander M R, Owens G K (2012). Epigenetic control of smooth muscle cell differentiation and phenotypicswitching in vascular development and disease. Annu Rev Physiol, 74(1): 13–40
CrossRef
Pubmed
Google scholar
|
[8] |
Allahverdian S, Chehroudi A C, McManus B M, Abraham T, Francis G A (2014). Contribution of intimal smooth muscle cells to cholesterolaccumulation and macrophage-like cells in human atherosclerosis. Circulation, 129(15): 1551–1559
CrossRef
Pubmed
Google scholar
|
[9] |
Baumgartner H R, Studer Ab( 1963). Controlled over-dilatation of the abdominal aorta in normo- and hypercholesteremicrabbits. Pathol Microbiol, 26: 129–148
|
[10] |
Baxter B T, Terrin M C, Dalman R L (2008). Medical managementof small abdominal aortic aneurysms. Circulation, 117(14): 1883–1889
CrossRef
Pubmed
Google scholar
|
[11] |
Beamish J A, He P, Kottke-Marchant K, Marchant R E (2010). Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev, 16(5): 467–491
CrossRef
Pubmed
Google scholar
|
[12] |
Bennett M R, Sinha S, Owens G K (2016). Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res, 118(4): 692–702
CrossRef
Pubmed
Google scholar
|
[13] |
Bessueille L, Magne D (2015). Inflammation: a culprit for vascular calcification in atherosclerosisand diabetes. Cell Mol Life Sci, 72(13): 2475–2489
CrossRef
Pubmed
Google scholar
|
[14] |
Blank R S, Swartz E A, Thompson M M, Olson E N, Owens G K (1995). A retinoic acid-induced clonal cell line derived from multipotentialP19 embryonal carcinoma cells expresses smooth muscle characteristics. Circ Res, 76(5): 742–749
CrossRef
Pubmed
Google scholar
|
[15] |
Boström K I, Rajamannan N M, Towler D A (2011). The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res, 109(5): 564–577
CrossRef
Pubmed
Google scholar
|
[16] |
Boyd N L, Robbins K R, Dhara S K, West F D, Stice S L (2009). Human embryonic stem cell-derived mesoderm-like epithelium transitionsto mesenchymal progenitor cells. Tissue Eng Part A, 15(8): 1897–1907
CrossRef
Pubmed
Google scholar
|
[17] |
Butoi E, Gan A M, Tucureanu M M, Stan D, Macarie R D, Constantinescu C, Calin M, Simionescu M, Manduteanu I (2016). Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloproteasesynthesis and promotes angiogenesis. Biochim Biophys Acta, 1863(7 7 Pt A): 1568–1578
CrossRef
Pubmed
Google scholar
|
[18] |
Byon C H, Javed A, Dai Q, Kappes J C, Clemens T L, Darley-Usmar V M, McDonald J M, Chen Y (2008). Oxidativestress induces vascular calcification through modulation of the osteogenictranscription factor Runx2 by AKT signaling. J Biol Chem, 283(22): 15319–15327
CrossRef
Pubmed
Google scholar
|
[19] |
Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami A P, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010). Human adult vena saphena contains perivascular progenitor cells endowedwith clonogenic and proangiogenic potential. Circulation, 121(15): 1735–1745
CrossRef
Pubmed
Google scholar
|
[20] |
Chen N X, Duan D, O’Neill K D, Wolisi G O, Koczman J J, Laclair R, Moe S M (2006). The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth musclecells. Kidney Int, 70(6): 1046–1053
CrossRef
Pubmed
Google scholar
|
[21] |
Chen S, Lechleider R J (2004). Transforming growth factor-beta-induced differentiationof smooth muscle from a neural crest stem cell line. Circ Res, 94(9): 1195–1202
CrossRef
Pubmed
Google scholar
|
[22] |
Clowes A W, Reidy M A, Clowes M M (1983). Kinetics of cellularproliferation after arterial injury. I. Smooth muscle growth in theabsence of endothelium. Lab Invest, 49(3): 327–333
Pubmed
|
[23] |
Dahia P L (2000). PTEN, a unique tumor suppressor gene. Endocr Relat Cancer, 7(2): 115–129
CrossRef
Pubmed
Google scholar
|
[24] |
Doyle A J, Redmond E M, Gillespie D L, Knight P A, Cullen J P, Cahill P A, Morrow D J (2015). Differential expression of Hedgehog/Notch and transforminggrowth factor-β in human abdominal aortic aneurysms. J Vasc Surg, 62(2): 464–470
CrossRef
Pubmed
Google scholar
|
[25] |
Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang X F( 2012). Endothelial progenitor cells in atherosclerosis. Front Biosci, 17: 2327–2349
|
[26] |
Durgin B G, Cherepanova O A, Gomez D, Karaoli T, Alencar G F, Butcher J T, Zhou Y Q, Bendeck M P, Isakson B E, Owens G K, Connelly J J (2017). Smooth muscle cell-specific deletion of Col15a1 unexpectedlyleads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol, 312(5): H943–H958
CrossRef
Pubmed
Google scholar
|
[27] |
Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R (2014). Transdifferentiation of vascularsmooth muscle cells to macrophage-like cells during atherogenesis. Circ Res, 115(7): 662–667
CrossRef
Pubmed
Google scholar
|
[28] |
Fukui D, Miyagawa S, Soeda J, Tanaka K, Urayama H, Kawasaki S (2003). Overexpression of transforming growth factor beta1 in smooth muscle cells of humanabdominal aortic aneurysm. Eur J Vasc EndovascSurg, 25(6): 540–545
CrossRef
Pubmed
Google scholar
|
[29] |
Fukumoto Y, Deguchi J O, Libby P, Rabkin-Aikawa E, Sakata Y, Chin M T, Hill C C, Lawler P R, Varo N, Schoen F J, Krane S M, Aikawa M (2004). Genetically determined resistance to collagenase actionaugments interstitial collagen accumulation in atherosclerotic plaques. Circulation, 110(14): 1953–1959
CrossRef
Pubmed
Google scholar
|
[30] |
Furgeson S B, Simpson P A, Park I, Vanputten V, Horita H, Kontos C D, Nemenoff R A, Weiser-Evans M C (2010). Inactivation of the tumour suppressor, PTEN, in smooth muscle promotes a pro-inflammatoryphenotype and enhances neointima formation. Cardiovasc Res, 86(2): 274–282
CrossRef
Pubmed
Google scholar
|
[31] |
Gao F, Chambon P, Offermanns S, Tellides G, Kong W, Zhang X, Li W (2014). Disruption of TGF-β signaling in smooth muscle cell prevents elastase-induced abdominalaortic aneurysm. Biochem Biophys Res Commun, 454(1): 137–143
CrossRef
Pubmed
Google scholar
|
[32] |
Owens G K, Kumar M S, Wamhoff B R (2004). Molecular regulationof vascular smooth muscle cell differentiation in development anddisease. Physiol Rev, 84(3): 767
|
[33] |
Glass C K, Witztum J L (2001). Atherosclerosis. the road ahead. Cell, 104(4): 503–516
CrossRef
Pubmed
Google scholar
|
[34] |
Guo X, Stice S L, Boyd N L, Chen S Y (2013). A novel in vitro model system for smooth muscle differentiationfrom human embryonic stem cell-derived mesenchymal cells. Am J Physiol Cell Physiol, 304(4): C289–C298
CrossRef
Pubmed
Google scholar
|
[35] |
Ha J M, Yun S J, Jin S Y, Lee H S, Kim S J, Shin H K, Bae S S (2017). Regulation of vascular smooth muscle phenotype by cross-regulationof krüppel-like factors. Korean J Physiol Pharmacol, 21(1): 37–44
CrossRef
Pubmed
Google scholar
|
[36] |
Ha J M, Yun S J, Kim Y W, Jin S Y, Lee H S, Song S H, Shin H K, Bae S S (2015). Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammaliantarget of rapamycin complex 1. Biochem Biophys Res Commun, 464(1): 57–62
CrossRef
Pubmed
Google scholar
|
[37] |
Hayashi K, Shibata K, Morita T, Iwasaki K, Watanabe M, Sobue K (2004). Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switchingmachinery of insulin-like growth factor-I signaling in vascular smoothmuscle cells. J Biol Chem, 279(39): 40807–40818
CrossRef
Pubmed
Google scholar
|
[38] |
Hirschi K K, Majesky M W (2004). Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol, 276(1): 22–33
CrossRef
Pubmed
Google scholar
|
[39] |
Hirschi K K, Rohovsky S A, D’Amore P A (1998). PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelialcell-induced recruitment of 10T1/2 cells and their differentiationto a smooth muscle fate. J Cell Biol, 141(3): 805–814
CrossRef
Pubmed
Google scholar
|
[40] |
Holifield B, Helgason T, Jemelka S, Taylor A, Navran S, Allen J, Seidel C (1996). Differentiated vascular myocytes: are they involvedin neointimal formation? J Clin Invest, 97(3): 814–825
CrossRef
Pubmed
Google scholar
|
[41] |
Horita H, Wysoczynski C L, Walker L A, Moulton KS, Li M, Ostriker A, Tucker R, McKinsey T A, Churchill M E, Nemenoff R A, Weiser-Evans M C (2016). Nuclear PTEN functions as an essential regulator of SRF-dependent transcriptionto control smooth muscle differentiation. Nat Commun,7: 10830
|
[42] |
Hu Y, Xu Q (2011). Adventitial biology: differentiation and function. Arterioscler Thromb Vasc Biol, 31(7): 1523–1529
CrossRef
Pubmed
Google scholar
|
[43] |
Hu Y, Zhang Z, Torsney E, Afzal A R, Davison F, Metzler B, Xu Q (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosisof vein grafts in ApoE-deficient mice. J Clin Invest, 113(9): 1258–1265
CrossRef
Pubmed
Google scholar
|
[44] |
Huang H, Zhao X, Chen L, Xu C, Yao X, Lu Y, Dai L, Zhang M (2006). Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayerculture. Biochem Biophys Res Commun, 351(2): 321–327
CrossRef
Pubmed
Google scholar
|
[45] |
Jain M K, Layne M D, Watanabe M, Chin M T, Feinberg M W, Sibinga N E, Hsieh C M, Yet S F, Stemple D L, Lee M E (1998). In vitro system for differentiating pluripotent neural crest cells into smoothmuscle cells. J Biol Chem, 273(11): 5993–5996
CrossRef
Pubmed
Google scholar
|
[46] |
Kim S H, Yun S J, Kim Y H, Ha J M, Jin S Y, Lee H S, Kim S J, Shin H K, Chung S W, Bae S S (2015). Essential role of krüppel-like factor 5 during tumor necrosis factor α-induced phenotypic conversion of vascularsmooth muscle cells. Biochem Biophys ResCommun, 463(4): 1323–1327
CrossRef
Pubmed
Google scholar
|
[47] |
Kovacic J C, Boehm M (2009). Resident vascular progenitor cells: an emerging role for non-terminallydifferentiated vessel-resident cells in vascular biology. Stem Cell Res (Amst), 2(1): 2–15
CrossRef
Pubmed
Google scholar
|
[48] |
Koyama H, Raines E W, Bornfeldt K E, Roberts J M, and Ross R (1996). Fibrillar collagen inhibits arterial smooth muscle proliferationthrough regulation of Cdk2 inhibitors. Cell, 87:1069–1078
|
[49] |
Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider R K, Kuppe C, Kaesler N, Chang-Panesso M, Machado F G, Gratwohl S, Madhurima K, Hutcheson J D, Jain S, Aikawa E, Humphreys B D (2016). Adventitial MSC-like cells are progenitors of vascular smooth muscle cells anddrive vascular calcification in chronic kidney disease. Cell Stem Cell, 19(5): 628–642
CrossRef
Pubmed
Google scholar
|
[50] |
Lacolley P, Regnault V, Nicoletti A, Li Z, Michel J B (2012). The vascular smooth muscle cell in arterial pathology: a cell thatcan take on multiple roles. Cardiovasc Res, 95(2): 194–204
CrossRef
Pubmed
Google scholar
|
[51] |
Legein B, Temmerman L, Biessen E A, Lutgens E (2013). Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci, 70(20): 3847–3869
CrossRef
Pubmed
Google scholar
|
[52] |
Li D Y, Brooke B, Davis E C, Mecham R P, Sorensen L K, Boak B B, Eichwald E, Keating M T (1998). Elastin is an essential determinant of arterial morphogenesis. Nature, 393(6682): 276–280
CrossRef
Pubmed
Google scholar
|
[53] |
Li G, Chen S J, Oparil S, Chen Y F, Thompson J A (2000). Direct in vivo evidence demonstrating neointimal migration of adventitialfibroblasts after balloon injury of rat carotid arteries. Circulation, 101(12): 1362–1365
CrossRef
Pubmed
Google scholar
|
[54] |
Li M, Izpisua Belmonte J C (2016). Mending a faltering heart. Circ Res, 118(2): 344–351
CrossRef
Pubmed
Google scholar
|
[55] |
Li N, Cheng W, Huang T, Yuan J, Wang X, Song M (2015). Vascular adventitia calcification and its underlying mechanism. PLoS One, 10(7): e0132506
CrossRef
Pubmed
Google scholar
|
[56] |
Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim R W, Geirsson A, Dietz H C, Offermanns S, Humphrey J D, Tellides G (2014). Tgfbr2 disruption in postnatal smooth muscle impairsaortic wall homeostasis. J Clin Invest, 124(2): 755–767
CrossRef
Pubmed
Google scholar
|
[57] |
Libby P, Ridker P M, Hansson G K (2011). Progress and challengesin translating the biology of atherosclerosis. Nature, 473(7347): 317–325
CrossRef
Pubmed
Google scholar
|
[58] |
Liu G H, Barkho B Z, Ruiz S, Diep D, Qu J, Yang S L, Panopoulos A D, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung H L, Sancho-Martinez I, Zhang K, Yates J, Izpisua Belmonte J C (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature, 472(7342): 221–225
|
[59] |
Liu T M, Lee E H (2013). Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev, 19(3): 254–263
CrossRef
Pubmed
Google scholar
|
[60] |
Majesky M W (2007). Developmental basis of vascular smoothmuscle diversity. Arterioscler Thromb VascBiol, 27(6): 1248–1258
CrossRef
Pubmed
Google scholar
|
[61] |
Majesky M W, Dong X R, Hoglund V, Mahoney W M Jr, Daum G (2011a). The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol, 31(7): 1530–1539
CrossRef
Pubmed
Google scholar
|
[62] |
Majesky M W, Dong X R, Regan J N, Hoglund V J (2011b). Vascular smooth muscle progenitor cells: building andrepairing blood vessels. Circ Res, 108(3): 365–377
CrossRef
Pubmed
Google scholar
|
[63] |
Majesky M W, Horita H, Ostriker A, Lu S, Regan J N, Bagchi A, Dong X R, Poczobutt J, Nemenoff R A, Weiser-Evans M C (2017). Differentiated smooth muscle cells generate a subpopulation of resident vascularprogenitor cells in the adventitia regulated by Klf4. Circ Res, 120(2): 296–311
CrossRef
Pubmed
Google scholar
|
[64] |
Manabe I, Owens G K (2001). Recruitment of serum response factor and hyperacetylation of histonesat smooth muscle-specific regulatory regions during differentiationof a novel P19-derived in vitro smooth muscle differentiation system. Circ Res, 88(11): 1127–1134
CrossRef
Pubmed
Google scholar
|
[65] |
Martinez-Moreno JM, Herencia C, Montes de Oca A, Diaz-Tocados JM, Vergara N, Gomez MJ, Lopez-Arguello SD, Camargo A, Peralbo-Santaella E, Rodriguez-Ortiz ME, Canalejo A, Rodríguez M, Muñoz-Castañeda J R, Almadén Y (2017). High phosphate induces a pro-inflammatory response by vascular smooth musclecells. Modulation by vitamin D derivatives. Clin Sci (Lond), 131(13):1449–1463
|
[66] |
Marx S O, Totary-Jain H, Marks A R (2011). Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv, 4(1): 104–111
CrossRef
Pubmed
Google scholar
|
[67] |
Mason D P, Kenagy R D, Hasenstab D, Bowen-Pope D F, Seifert R A, Coats S, Hawkins S M, Clowes A W (1999). Matrix metalloproteinase-9 overexpression enhances vascular smooth musclecell migration and alters remodeling in the injured rat carotid artery. Circ Res, 85(12): 1179–1185
CrossRef
Pubmed
Google scholar
|
[68] |
Maurer J, Fuchs S, Jager R, Kurz B, Sommer L, Schorle H ( 2007). Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis. Differentiation, 75(7): 580–591
|
[69] |
McBurney M W (1993). P19 embryonal carcinoma cells. Int J Dev Biol, 37(1): 135–140
Pubmed
|
[70] |
McBurney M W, Rogers B J (1982). Isolation of male embryonal carcinoma cells and their chromosomereplication patterns. Dev Biol, 89(2): 503–508
CrossRef
Pubmed
Google scholar
|
[71] |
McCarty M F, DiNicolantonio J J (2014). The molecular biology and pathophysiology of vascularcalcification. Postgrad Med, 126(2): 54–64
CrossRef
Pubmed
Google scholar
|
[72] |
McConnell B B, Yang V W (2010). Mammalian Krüppel-like factors in health and diseases. Physiol Rev, 90(4): 1337–1381
CrossRef
Pubmed
Google scholar
|
[73] |
Mikawa T, Gourdie R G (1996). Pericardial mesoderm generates a population of coronarysmooth muscle cells migrating into the heart along with ingrowth ofthe epicardial organ. Dev Biol, 174(2): 221–232
CrossRef
Pubmed
Google scholar
|
[74] |
Mitra A K, Agrawal D K (2006). In stent restenosis: bane of the stent era. J Clin Pathol, 59(3): 232–239
CrossRef
Pubmed
Google scholar
|
[75] |
Newby A C, Zaltsman A B (2000). Molecular mechanisms in intimal hyperplasia. J Pathol, 190(3): 300–309
CrossRef
Pubmed
Google scholar
|
[76] |
Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M (2005). Disruption of tumor necrosis factor-alpha gene diminishesthe development of atherosclerosis in ApoE-deficient mice. Atherosclerosis, 180(1): 11–17
CrossRef
Pubmed
Google scholar
|
[77] |
Oparil S, Chen S J, Chen Y F, Durand J N, Allen L, Thompson J A (1999). Estrogen attenuates the adventitial contribution to neointima formation in injured rat carotid arteries. Cardiovasc Res, 44(3): 608–614
CrossRef
Pubmed
Google scholar
|
[78] |
Orlandi A, Bennett M (2010). Progenitor cell-derived smooth muscle cells in vasculardisease. Biochem Pharmacol, 79(12): 1706–1713
CrossRef
Pubmed
Google scholar
|
[79] |
Owens G K (1995). Regulation of differentiation of vascularsmooth muscle cells. Physiol Rev, 75 (3): 487–517
|
[80] |
Owens G K ( 2007). Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp.; 283(174–191; discussion 91–93, 238–241
|
[81] |
Passman J N, Dong X R, Wu S P, Maguire C T, Hogan K A, Bautch V L, Majesky M W (2008). A sonic hedgehog signaling domain in the arterial adventitiasupports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA, 105(27): 9349–9354
CrossRef
Pubmed
Google scholar
|
[82] |
Plass C A, Sabdyusheva-Litschauer I, Bernhart A, Samaha E, Petnehazy O, Szentirmai E, Petrási Z, Lamin V, Pavo N, Nyolczas N, Jakab A, Murlasits Z, Bergler-Klein J, Maurer G, Gyöngyösi M (2012). Time course of endothelium-dependent and-independent coronary vasomotor response to coronary balloons andstents. Comparison of plain and drug-eluting balloons and stents. JACC Cardiovasc Interv, 5(7): 741–751
CrossRef
Pubmed
Google scholar
|
[83] |
Psaltis P J, Harbuzariu A, Delacroix S, Holroyd E W, Simari R D (2011). Resident vascular progenitor cells--diverse origins, phenotype, andfunction. J Cardiovasc Transl Res, 4(2): 161–176
CrossRef
Pubmed
Google scholar
|
[84] |
Rao M S, Anderson D J (1997). Immortalization and controlled in vitro differentiation of murine multipotent neuralcrest stem cells. J Neurobiol, 32(7): 722–746
CrossRef
Pubmed
Google scholar
|
[85] |
Regan C P, Adam P J, Madsen C S, Owens G K (2000). Molecular mechanisms of decreased smooth muscle differentiationmarker expression after vascular injury. J Clin Invest, 106(9): 1139–1147
CrossRef
Pubmed
Google scholar
|
[86] |
Reznikoff C A, Brankow D W, Heidelberger C (1973). Establishment and characterization of a cloned line of C3H mouse embryo cells sensitiveto postconfluence inhibition of division. Cancer Res, 33(12): 3231–3238
Pubmed
|
[87] |
Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar A A, Striker G, Pham S M, Vazquez-Padron R I (2009). The origin of post-injury neointimal cells in the ratballoon injury model. Cardiovasc Res, 81(1): 46–53
CrossRef
Pubmed
Google scholar
|
[88] |
Rohwedder I, Montanez E, Beckmann K, Bengtsson E, Dunér P, Nilsson J, Soehnlein O, Fässler R (2012). Plasma fibronectin deficiency impedes atherosclerosisprogression and fibrous cap formation. EMBO Mol Med, 4(7): 564–576
CrossRef
Pubmed
Google scholar
|
[89] |
Rudnicki M A, Sawtell N M, Reuhl K R, Berg R, Craig J C, Jardine K, Lessard J L, McBurney M W (1990). Smooth muscle actin expression during P19 embryonal carcinoma differentiationin cell culture. J Cell Physiol, 142(1): 89–98
CrossRef
Pubmed
Google scholar
|
[90] |
Rzucidlo E M, Martin K A, Powell R J (2007). Regulation of vascular smooth muscle cell differentiation. J Vasc Surg, 45 (Suppl A): A25–32
|
[91] |
Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P (2001). Contribution of adventitial fibroblasts to neointimaformation and vascular remodeling: from innocent bystander to activeparticipant. Circ Res, 89(12): 1111–1121
CrossRef
Pubmed
Google scholar
|
[92] |
Schober A (2008). Chemokines in vascular dysfunctionand remodeling. Arterioscler Thromb VascBiol, 28(11): 1950–1959
CrossRef
Pubmed
Google scholar
|
[93] |
Schwartz S M, Stemerman M B, Benditt E P (1975). The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol, 81(1): 15–42
Pubmed
|
[94] |
Scott N A, Cipolla G D, Ross C E, Dunn B, Martin F H, Simonet L, Wilcox J N (1996). Identification of a potential role for the adventitiain vascular lesion formation after balloon overstretch injury of porcinecoronary arteries. Circulation, 93(12): 2178–2187
CrossRef
Pubmed
Google scholar
|
[95] |
Shanahan C M, Crouthamel M H, Kapustin A, Giachelli C M (2011). Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res, 109(6): 697–711
CrossRef
Pubmed
Google scholar
|
[96] |
Shankman L S, Gomez D, Cherepanova O A, Salmon M, Alencar G F, Haskins R M, Swiatlowska P, Newman A A, Greene E S, Straub A C, Isakson B, Randolph G J, Owens G K (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has akey role in atherosclerotic plaque pathogenesis. Nat Med, 21(6): 628–637
CrossRef
Pubmed
Google scholar
|
[97] |
Shi N, Chen S Y (2016). Smooth muscle cell differentiation: model systems, regulatory mechanisms,and vascular diseases. J Cell Physiol, 231(4): 777–787
CrossRef
Pubmed
Google scholar
|
[98] |
Shi N, Xie W B, Chen S Y (2012). Cell division cycle7 is a novel regulator of transforming growth factor-β-induced smooth muscle cell differentiation. J Biol Chem, 287(9): 6860–6867
CrossRef
Pubmed
Google scholar
|
[99] |
Shi Y, O’Brien J E, Fard A, Mannion J D, Wang D, Zalewski A (1996). Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation, 94(7): 1655–1664
CrossRef
Pubmed
Google scholar
|
[100] |
Shikatani E A, Chandy M, Besla R, Li C C, Momen A, El-Mounayri O, Robbins C S, Husain M (2016). c-Myb Regulates Proliferation and Differentiation of Adventitial Sca1+ VascularSmooth Muscle Cell Progenitors by Transactivation of Myocardin. Arterioscler Thromb Vasc Biol, 36(7): 1367–1376
CrossRef
Pubmed
Google scholar
|
[101] |
Speer M Y, Yang H Y, Brabb T, Leaf E, Look A, Lin W L, Frutkin A, Dichek D, Giachelli C M (2009). Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res, 104(6): 733–741
CrossRef
Pubmed
Google scholar
|
[102] |
Spin J M, Nallamshetty S, Tabibiazar R, Ashley E A, King J Y, Chen M, Tsao P S, Quertermous T (2004). Transcriptional profiling of in vitro smooth muscle cell differentiation identifiesspecific patterns of gene and pathway activation. Physiol Genomics, 19(3): 292–302
CrossRef
Pubmed
Google scholar
|
[103] |
Steinbach S K, Husain M ( 2016). Vascular smooth muscle cell differentiation from human stem/progenitorcells. Methods, 101: 85–92.
|
[104] |
Steitz S A, Speer M Y, Curinga G, Yang H Y, Haynes P, Aebersold R, Schinke T, Karsenty G, Giachelli C M (2001). Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulationof smooth muscle lineage markers. Circ Res, 89(12): 1147–1154
CrossRef
Pubmed
Google scholar
|
[105] |
Stemerman M B, Ross R (1972). Experimental arteriosclerosis. I. Fibrous plaque formation in primates,an electron microscope study. J Exp Med, 136(4): 769–789
CrossRef
Pubmed
Google scholar
|
[106] |
Sun Y, Byon C H, Yuan K, Chen J, Mao X, Heath J M, Javed A, Zhang K, Anderson P G, Chen Y (2012). Smoothmuscle cell-specific runx2 deficiency inhibits vascular calcification. Circ Res, 111(5): 543–552
CrossRef
Pubmed
Google scholar
|
[107] |
Swirski F K, Nahrendorf M (2014). Do vascular smooth muscle cells differentiate to macrophagesin atherosclerotic lesions? Circ Res, 115(7): 605–606
CrossRef
Pubmed
Google scholar
|
[108] |
Tabas I, García-Cardeña G, Owens G K (2015). Recent insights into the cellular biology of atherosclerosis. J Cell Biol, 209(1): 13–22
CrossRef
Pubmed
Google scholar
|
[109] |
Tamguney T, Stokoe D (2007). New insights into PTEN. J Cell Sci, 120(Pt 23): 4071–4079
CrossRef
Pubmed
Google scholar
|
[110] |
Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu J S, Helms J A, Li S (2012). Differentiation of multipotent vascularstem cells contributes to vascular diseases. Nat Commun, 3(2): 875
CrossRef
Pubmed
Google scholar
|
[111] |
Torsney E, Xu Q (2011). Resident vascular progenitor cells. J Mol Cell Cardiol, 50(2): 304–311
CrossRef
Pubmed
Google scholar
|
[112] |
Tyson K L, Reynolds J L, McNair R, Zhang Q, Weissberg P L, Shanahan C M (2003). Osteo/chondrocytic transcription factors and their target genes exhibit distinct patternsof expression in human arterial calcification. Arterioscler Thromb Vasc Biol, 23(3): 489–494
CrossRef
Pubmed
Google scholar
|
[113] |
Vazquez F, Ramaswamy S, Nakamura N, Sellers W R (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol, 20(14): 5010–5018
CrossRef
Pubmed
Google scholar
|
[114] |
Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez F O, Cassella C P, Moore K J, Ramsey S A, Miano J M, Fisher E A (2015). Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smoothmuscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol, 35(3): 535–546
CrossRef
Pubmed
Google scholar
|
[115] |
Vilahur G, Badimon L (2013). Antiplatelet properties of natural products. Vascul Pharmacol, 59(3-4): 67–75
CrossRef
Pubmed
Google scholar
|
[116] |
Virmani R, Kolodgie F D, Burke A P, Farb A, Schwartz S M (2000). Lessons from sudden coronary death: a comprehensivemorphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 20(5): 1262–1275
CrossRef
Pubmed
Google scholar
|
[117] |
Wang C C, Gurevich I, Draznin B (2003a). Insulin affects vascular smooth muscle cell phenotype and migration via distinctsignaling pathways. Diabetes, 52(10): 2562–2569
CrossRef
Pubmed
Google scholar
|
[118] |
Wang D Z, Olson E N (2004). Control of smooth muscle development by the myocardin family of transcriptionalcoactivators. Curr Opin Genet Dev, 14(5): 558–566
CrossRef
Pubmed
Google scholar
|
[119] |
Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadière C, Rénia L, Johnson J L, Tharaux P L, Tedgui A, Mallat Z (2010). TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensinII-infused mice. J Clin Invest, 120(2): 422–432
CrossRef
Pubmed
Google scholar
|
[120] |
Wang Y, Krishna S, Walker P J, Norman P, Golledge J (2013). Transforming growth factor-β and abdominal aortic aneurysms. Cardiovasc Pathol, 22(2): 126–132
CrossRef
Pubmed
Google scholar
|
[121] |
Wang Z, Wang D Z, Pipes G C, Olson E N (2003b). Myocardin is a master regulator of smooth muscle geneexpression. Proc Natl Acad Sci USA, 100(12): 7129–7134
CrossRef
Pubmed
Google scholar
|
[122] |
Xiao Q, Zeng L, Zhang Z, Hu Y, Xu Q (2007). Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells,which is mediated by collagen IV-integrin alpha1/beta1/alphav andPDGF receptor pathways. Am J Physiol CellPhysiol, 292(1): C342–C352
CrossRef
Pubmed
Google scholar
|
[123] |
Xiao Q, Zeng L, Zhang Z, Margariti A, Ali Z A, Channon K M, Xu Q, Hu Y (2006). Sca-1+ progenitors derived from embryonicstem cells differentiate into endothelial cells capable of vascularrepair after arterial injury. Arterioscler Thromb Vasc Biol, 26(10): 2244–2251
CrossRef
Pubmed
Google scholar
|
[124] |
Xie C Q, Huang H, Wei S, Song L S, Zhang J, Ritchie R P, Chen L, Zhang M, Chen Y E (2009). A comparison of murine smooth muscle cells generatedfrom embryonic versus induced pluripotent stem cells. Stem Cells Dev, 18(5): 741–748
CrossRef
Pubmed
Google scholar
|
[125] |
Xu Q (2007). Progenitor cells in vascular repair. Curr Opin Lipidol, 18(5): 534–539
CrossRef
Pubmed
Google scholar
|
[126] |
Yang L, Geng Z, Nickel T, Johnson C, Gao L, Dutton J, Hou C, Zhang J (2016). Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: TwoNovel Protocols. PLoS One, 11(1): e0147155
CrossRef
Pubmed
Google scholar
|
[127] |
Yoshida T, Kaestner K H, Owens G K (2008). Conditional deletion of Krüppel-like factor 4 delays downregulation of smoothmuscle cell differentiation markers but accelerates neointimal formationfollowing vascular injury. Circ Res, 102(12): 1548–1557
CrossRef
Pubmed
Google scholar
|
[128] |
Yoshida T, Owens G K (2005). Molecular determinants of vascular smooth muscle cell diversity. Circ Res, 96(3): 280–291
CrossRef
Pubmed
Google scholar
|
[129] |
Zengin E, Chalajour F, Gehling U M, Ito W D, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006). Vascular wall resident progenitor cells: a source forpostnatal vasculogenesis. Development, 133(8): 1543–1551
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |