PDF
(109KB)
Abstract
BACKGROUND: Inflammatory conditions are involved in the pathophysiology of cancer. Recent findings have revealed that excessive salt and fat intake is involved in the development of severe inflammatory reactions.
METHODS: A literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of high salt and fat intake in the induction of inflammatory reactions and their roles in the etiopathogenesis of cancer.
RESULTS: The results indicate that high salt and fat intake can induce severe inflammatory conditions. However, various inflammatory conditions have been strongly linked to the development of cancer. Hence, high salt and fat intake might be involved in the pathogenesis of cancer progression via putative mechanisms related to inflammatory reactions.
CONCLUSION: Reducing salt and fat intake may decrease the risk of cancer.
Keywords
cancer
/
inflammation
/
nutrition
/
salt
/
fat
Cite this article
Download citation ▾
Amir Abdoli.
High salt and fat intake, inflammation, and risk of cancer.
Front. Biol., 2017, 12(6): 387-391 DOI:10.1007/s11515-017-1471-1
| [1] |
Alizadeh D, Katsanis E, Larmonier N (2013). The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clin Dev Immunol, 2013: 957878
|
| [2] |
Amara S, Alotaibi D, Tiriveedhi V (2016). NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards inductionof VEGF-A expression in breast cancer cells. Oncol Lett, 12(2): 933–943
|
| [3] |
Amara S, Ivy M T, Myles E L,Tiriveedhi V (2016). Sodium channel ENaC mediates IL-17 synergized highsalt induced inflammatory stress in breast cancer cells. Cell Mmunol, 302: 1–10
|
| [4] |
Barbaresko J, Koch M, Schulze M B, Nöthlings U (2013). Dietary pattern analysis and biomarkers of low-gradeinflammation: a systematic literature review. Nutr Rev, 71(8): 511–527
|
| [5] |
Binger K J, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W, Hilgers K, Manzel A, Schwartz C, Kleinewietfeld M, Voelkl J, Schatz V, Linker R A, Lang F, Voehringer D, Wright M D, Hubner N, Dechend R, Jantsch J, Titze J, Müller D N (2015). High salt reduces the activation of IL-4- and IL-13-stimulatedmacrophages. J Clin Invest, 125(11): 4223–4238
|
| [6] |
Binger K J, Linker R A, Muller D N, Kleinewietfeld M (2015). Sodium chloride, SGK1, and Th17 activation. Pflugers Arch, 467(3): 543–550
|
| [7] |
Catta-Preta M, Martins, M A, Cunha Brunini T M, Mendes-Ribeiro A C, Mandarim-de-Lacerda C A, Aguila M B (2012).Modulation of cytokines, resistin,and distribution of adipose tissue in C57BL/6 mice by different high-fatdiets. Nutrition, 28(2): 212–219
|
| [8] |
Cho H J, Kwon G T, Park H, Song H, Lee K W, Kim J I, Park J H (2015). A high-fat diet containing lard accelerates prostate cancer progressionand reduces survival rate in mice: possible contribution of adiposetissue-derived cytokines. Nutrients, 7(4): 2539–2561
|
| [9] |
Coussens L M, Werb Z (2002). Inflammation and cancer. Nature, 420(6917): 860–867
|
| [10] |
Cowen S, McLaughlin S L, Hobbs G, Coad J, Martin K H, Olfert I M, Vona-Davis L (2015). High-fat, high-calorie diet enhances mammary carcinogenesisand local inflammation in MMTV-PyMT mouse model of breast cancer. Cancers (Basel), 7(3): 1125–1142
|
| [11] |
D’Elia L, Rossi G, Ippolito R, Cappuccio F P, Strazzullo P (2012). Habitual salt intake and risk of gastric cancer: a meta-analysis of prospectivestudies. Clin Nutr, 31(4): 489–498
|
| [12] |
Dutheil S, Ota K T, Wohleb E S, Rasmussen K, Duman R S (2016). High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis andInflammation. Neuropsychopharmacology, 41(7): 1874–1887 (Original Article)
|
| [13] |
Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K (2016). Effect of plant-based diets on obesity-relatedinflammatory profiles: a systematic review and meta-analysis of interventiontrials. Obes Rev, 17(11): 1067–1079
|
| [14] |
Faeh D, Rohrmann S, Puhan M, Braun J (2014). Added salt and cancer mortality: confounding by smoking. Epidemiology, 25(4): 615–616
|
| [15] |
Farez M F, Fiol M P, Gaitán M I, Quintana F J, Correale J (2015). Sodium intake is associated with increased disease activityin multiple sclerosis. J Neurol NeurosurgPsychiatry, 86(1): 26–31
|
| [16] |
Fox J G, Dangler C A, Taylor N S, King A, Koh T J, Wang T C (1999). High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhancesHelicobacter pylori colonization in C57BL/6 mice. Cancer Res, 59(19): 4823–4828
|
| [17] |
Gaddy J A, Radin J N, Loh J T, Zhang F, Washington M K, Peek R M Jr, Algood H M, Cover T L (2013). High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis. Infect Immun, 81(6): 2258–2267
|
| [18] |
Grivennikov S I, Greten F R, Karin M (2010). Immunity, inflammation, and cancer. Cell, 140(6): 883–899
|
| [19] |
Guéry L, Hugues S (2015). Th17 cell plasticity and functions in cancer immunity. Biomed Res Int, 2015: 314620
|
| [20] |
Gulhane M, Murray L, Lourie R, Tong H, Sheng Y H, Wang R, Kang A, Schreiber V, Wong K Y, Magor G, Denman S, Begun J, Florin T H, Perkins A, Cuív P Ó, McGuckin M A, Hasnain S Z (2016). High fat diets induce colonic epithelial cell stressand inflammation that is reversed by IL-22. Sci Rep, 6: 28990
|
| [21] |
Han J, Jiang Y, Liu X, Meng Q, Xi Q, Zhuang Q, Han Y, Gao Y, Ding Q, Wu G (2015). Dietaryfat intake and risk of gastric cancer: a meta-analysis of observationalstudies. PLoS One, 10(9): e0138580
|
| [22] |
Hemdan N Y (2013). Anti-cancer versus cancer-promotingeffects of the interleukin-17-producing T helper cells. Immunol Lett, 149(1-2): 123–133
|
| [23] |
Hernandez A L, Kitz A, Wu C, Lowther D E, Rodriguez D M, Vudattu N, Deng S, Herold K C, Kuchroo V K, Kleinewietfeld M, Hafler D A (2015). Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest, 125(11): 4212–4222
|
| [24] |
Howe L R, Subbaramaiah K, Hudis C A, Dannenberg A J (2013). Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res, 19(22): 6074–6083
|
| [25] |
Hucke S, Eschborn M, Liebmann M, Herold M, Freise N, Engbers A, Ehling P, Meuth S G, Roth J, Kuhlmann T, Wiendl H, Klotz L (2016). Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J Autoimmun, 67: 90–101
|
| [26] |
Jhun J Y, Yoon B Y, Park M K, Oh H J, Byun J K, Lee S Y, Min J K, Park S H, Kim H Y, Cho M L (2012). Obesity aggravates the joint inflammation in a collagen-induced arthritismodel through deviation to Th17 differentiation. Exp Mol Med, 44(7): 424–431
|
| [27] |
Jörg S, Kissel J, Manzel A, Kleinewietfeld M, Haghikia A, Gold R, Müller D N, Linker R A (2016). High salt drives Th17 responses in experimental autoimmune encephalomyelitiswithout impacting myeloid dendritic cells. Exp Neurol, 279: 212–222
|
| [28] |
Kato S, Tsukamoto T, Mizoshita T, Tanaka H, Kumagai T, Ota H, Katsuyama T, Asaka M, Tatematsu M (2006). High salt diets dose-dependently promote gastric chemical carcinogenesis in Helicobacter pylori-infected Mongolian gerbils associatedwith a shift in mucin production from glandular to surface mucouscells. Int J Cancer, 119(7): 1558–1566
|
| [29] |
Kim I H, Xu J, Liu X, Koyama Y, Ma H Y, Diggle K, You Y H, Schilling J M, Jeste D, Sharma K, Brenner D A, Kisseleva T (2016). Aging increases the susceptibility of hepatic inflammation,liver fibrosis and aging in response to high-fat diet in mice. Age (Dordr), 38(4): 291–302 (journal article)
|
| [30] |
Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker R A, Muller D N, Hafler D A (2013). Sodium chloride drives autoimmune disease by the induction of pathogenicTH17 cells. Nature, 496(7446): 518–522
|
| [31] |
Kotchen T A, Cowley A W Jr, Frohlich E D (2013). Salt in health and disease--a delicate balance. N Engl J Med, 368(13): 1229–1237
|
| [32] |
Krementsov D N, Case L K, Hickey W F, Teuscher C (2015). Exacerbation of autoimmune neuroinflammation by dietarysodium is genetically controlled and sex specific. FASEB J, 29(8): 3446–3457
|
| [33] |
Kroenke C H, Kwan M L, Sweeney C, Castillo A, Caan B J (2013). High- and low-fat dairy intake, recurrence, and mortality after breast cancerdiagnosis. J Natl Cancer Inst, 105(9): 616–623
|
| [34] |
Lin W W, Karin M (2007). A cytokine-mediated link between innate immunity, inflammation, andcancer. J Clin Invest, 117(5): 1175–1183
|
| [35] |
Lippitz B E (2013). Cytokine patterns in patients withcancer: a systematic review. Lancet Oncol, 14(6): e218–e228
|
| [36] |
Loh J T, Gaddy J A, Algood H M S, Gaudieri S, Mallal S, Cover T L (2015). Helicobacter pylori adaptation in vivo in response toa high-salt diet. Infect Immun, 83(12): 4871–4883
|
| [37] |
Manzel A, Muller D N, Hafler D A, Erdman S E, Linker R A, Kleinewietfeld M (2014). Role of “Western diet” in inflammatory autoimmune diseases. Curr Allergy Asthma Rep, 14(1): 404
|
| [38] |
Monteleone I, Marafini I, Dinallo V, Di Fusco D, Troncone E, Zorzi F, (2017). Sodium chloride-enriched diet enhances inflammatory cytokine productionand exacerbates experimental colitis in mice. J Crohn’s Colitis, 11(2):237–245
|
| [39] |
Mozaffarian D, Fahimi S, Singh G M, Micha R, Khatibzadeh S, Engell R E, Lim S, Danaei G, Ezzati M, Powles J, the Global Burden ofDiseases Nutrition and Chronic Diseases Expert Group (2014). Global sodium consumption and deathfrom cardiovascular causes. N Engl J Med, 371(7): 624–634
|
| [40] |
Nagini S (2012). Carcinoma of the stomach: A reviewof epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol, 4(7): 156–169
|
| [41] |
Nozaki K, Shimizu N, Inada K, Tsukamoto T, Inoue M, Kumagai T, Sugiyama A, Mizoshita T, Kaminishi M, Tatematsu M (2002). Synergistic promoting effects of Helicobacter pyloriinfection and high-salt diet on gastric carcinogenesis in Mongoliangerbils. Jpn J Cancer Res, 93(10): 1083–1089
|
| [42] |
Okada Y, Tsuzuki Y, Sato H, Narimatsu K, Hokari R, Kurihara C, Watanabe C, Tomita K, Komoto S, Kawaguchi A, Nagao S, Miura S (2013). Trans fatty acids exacerbate dextran sodium sulphate-induced colitis by promoting the up-regulation ofmacrophage-derived proinflammatory cytokines involved in T helper17 cell polarization. Clin Exp Immunol, 174(3): 459–471
|
| [43] |
Paik J, Fierce Y, Treuting P M, Brabb T, Maggio-Price L (2013). High-fat diet-induced obesity exacerbates inflammatorybowel disease in genetically susceptible Mdr1a-/- male mice. J Nutr, 143(8): 1240–1247
|
| [44] |
Reddy B S, Maeura Y (1984). Tumor promotion by dietary fat in azoxymethane-induced colon carcinogenesisin female F344 rats: influence of amount and source of dietary fat. J Natl Cancer Inst, 72(3): 745–750
|
| [45] |
Richman E L, Kenfield S A, Chavarro J E, Stampfer M J, Giovannucci E L, Willett W C, Chan J M (2013). Fat intake after diagnosis and riskof lethal prostate cancer and all-cause mortality. JAMA Intern Med, 173(14): 1318–1326
|
| [46] |
Schwingshackl L, Hoffmann G (2014). Adherence to Mediterranean diet and risk of cancer:a systematic review and meta-analysis of observational studies. Int J Cancer, 135(8): 1884–1897
|
| [47] |
Schwingshackl L, Hoffmann G (2014). Mediterranean dietary pattern, inflammation and endothelialfunction: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis, 24(9): 929–939
|
| [48] |
Teodoro J S, Varela A T, Rolo A P, Palmeira C M (2014). High-fat and obesogenic diets: current and future strategiesto fight obesity and diabetes. Genes Nutr, 9(4): 406
|
| [49] |
Timmermans S, Bogie J F J, Vanmierlo T, Lütjohann D, Stinissen P, Hellings N, Hendriks J J (2014). High fat diet exacerbates neuroinflammation in an animalmodel of multiple sclerosis by activation of the Renin Angiotensinsystem. J Neuroimmune Pharmacol, 9(2): 209–217 (journal article)
|
| [50] |
Wang D D, Li Y, Chiuve S E, Stampfer M J, Manson J E, Rimm E B, Willett W C, Hu F B (2016). Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med, 176(8): 1134–1145
|
| [51] |
Wicki A, Hagmann J (2011). Diet and cancer. Swiss Med Wkly, 141: w13250
|
| [52] |
Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo V K (2013). Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature, 496(7446): 513–517
|
| [53] |
Xu Y, Yan Y, Hou M X, Liu Y E (2015). NaCl pretreatment attenuates H.pylori-induced DNA damageand exacerbates proliferation of gastric epithelial cells (GES-1). Infect Agent Cancer, 10(1): 8
|
| [54] |
Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G, Morukov B, Choukèr A (2015). Effects of dietary salt levels on monocytic cells and immune responses in healthy humansubjects: a longitudinal study. Transl Res, 166(1): 103–110
|
| [55] |
Yusof A S, Isa Z M, Shah S A (2012). Dietary patterns and risk of colorectal cancer: a systematic review of cohort studies(2000-2011). Asian Pac J Cancer Prev, 13(9): 4713–4717
|
| [56] |
Zhang T, Fang S, Wan C, Kong Q, Wang G, Wang S, Zhang H, Zou H, Sun B, Sun W, Zhang Y, Mu L, Wang J, Wang J, Zhang H, Wang D, Li H (2015). Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependentpathway in permanent cerebral ischemia. Scientific Rep, 5: 16548
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature