Epigenetic regulators sculpt the plastic brain
Ji-Song Guan, Hong Xie, San-Xiong Liu
Epigenetic regulators sculpt the plastic brain
BACKGROUND: Epigenetic regulation is a level of transcriptional regulation that occurs in addition to the genetic programming found in biological systems. In the brain, the epigenetic machinery gives the system an opportunity to adapt to a given environment to help not only the individual but also the species survive and expand. However, such a regulatory system has risks, as mutations resulting from epigenetic regulation can cause severe neurological or psychiatric disorders.
OBJECTIVE: Here, we review the most recent findings regarding the epigenetic mechanisms that control the activity-dependent gene transcription leading to synaptic plasticity and brain function and the defects in these mechanisms that lead to neurological disorders.
METHODS: A search was carried out systematically, searching all relevant publications up to June 2017, using the PubMed search engine. The following keywords were used: “activity induced epigenetic,” “gene transcription,” and “neurological disorders.”
RESULTS: A wide range of studies focused on the roles of epigenetics in transgenerational inheritance, neural differentiation, neural circuit assembly and brain diseases. Thirty-one articles focused specifically on activity-induced epigenetic modifications that regulated gene transcription and memory formation and consolidation.
CONCLUSION: Activity-dependent epigenetic mechanisms of gene expression regulation contribute to basic neuronal physiology, and defects were associated with an elevated risk for brain disorders.
epigenetic / activity-dependent gene expression / memory / neurological diseases
[1] |
Devor A, Andreassen O A, Wang Y, Mäki-Marttunen T, Smeland O B , Fan C C , Schork A J , Holland D , Thompson W K , Witoelar A , Chen C H , Desikan R S , McEvoy L K , Djurovic S , Greengard P , Svenningsson P , Einevoll G T , Dale A M (2017). Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Mol Psychiatry, 22(6): 792–801
CrossRef
Pubmed
Google scholar
|
[2] |
De Rubeis S, He X, Goldberg A P , Poultney C S , Samocha K , Cicek A E , Kou Y, Liu L, Fromer M , Walker S , Singh T , Klei L, Kosmicki J, Shih-Chen F , Aleksic B , Biscaldi M , Bolton P F , Brownfeld J M , Cai J, Campbell N G, Carracedo A, Chahrour M H , Chiocchetti A G , Coon H, Crawford E L, Curran S R, Dawson G, Duketis E , Fernandez B A , Gallagher L , Geller E , Guter S J , Hill R S , Ionita-Laza J , Jimenz Gonzalez P , Kilpinen H , Klauck S M , Kolevzon A , Lee I, Lei I, Lei J , Lehtimäki T , Lin C F , Ma’ayan A , Marshall C R , McInnes A L , Neale B , Owen M J , Ozaki N , Parellada M , Parr J R , Purcell S , Puura K , Rajagopalan D , Rehnström K , Reichenberg A , Sabo A, Sachse M, Sanders S J , Schafer C , Schulte-Rüther M , Skuse D , Stevens C , Szatmari P , Tammimies K , Valladares O , Voran A , Li-San W , Weiss L A , Willsey A J , Yu T W , Yuen R K , Cook E H , Freitag C M , Gill M, Hultman C M, Lehner T, Palotie A , Schellenberg G D , Sklar P , State M W , Sutcliffe J S , Walsh C A , Scherer S W , Zwick M E , Barett J C , Cutler D J , Roeder K , Devlin B , Daly M J , Buxbaum J D , and the DDD Study, and the Homozygosity Mapping Collaborative for Autism, and the UK10K Consortium (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526): 209–215
CrossRef
Pubmed
Google scholar
|
[3] |
Stessman H A, Xiong B, Coe B P , Wang T, Hoekzema K, Fenckova M , Kvarnung M , Gerdts J , Trinh S , Cosemans N , Vives L , Lin J, Turner T N, Santen G, Ruivenkamp C , Kriek M , van Haeringen A , Aten E, Friend K, Liebelt J , Barnett C , Haan E, Shaw M, Gecz J , Anderlid B M , Nordgren A , Lindstrand A , Schwartz C , Kooy R F , Vandeweyer G , Helsmoortel C , Romano C , Alberti A , Vinci M , Avola E , Giusto S , Courchesne E , Pramparo T , Pierce K , Nalabolu S , Amaral D G , Scheffer I E , Delatycki M B , Lockhart P J , Hormozdiari F , Harich B , Castells-Nobau A , Xia K, Peeters H, Nordenskjöld M, Schenck A , Bernier R A , Eichler E E (2017). Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet, 49(4): 515–526
CrossRef
Google scholar
|
[4] |
Guan J S, Haggarty S J, Giacometti E, Dannenberg J H , Joseph N , Gao J, Nieland T J, Zhou Y, Wang X , Mazitschek R , Bradner J E , DePinho R A , Jaenisch R , Tsai L H (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243): 55–60
CrossRef
Pubmed
Google scholar
|
[5] |
Gräff J, Rei D, Guan J S , Wang W Y , Seo J, Hennig K M, Nieland T J, Fass D M, Kao P F, Kahn M, Su S C , Samiei A , Joseph N , Haggarty S J , Delalle I , Tsai L H (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 483(7388): 222–226
CrossRef
Pubmed
Google scholar
|
[6] |
Waddington C H (2012). The epigenotype. 1942. Int J Epidemiol, 41(1): 10–13
CrossRef
Pubmed
Google scholar
|
[7] |
Bird A (2007). Perceptions of epigenetics. Nature, 447(7143): 396–398
CrossRef
Pubmed
Google scholar
|
[8] |
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
CrossRef
Pubmed
Google scholar
|
[9] |
Laird P W (2003). The power and the promise of DNA methylation markers. Nat Rev Cancer, 3(4): 253–266
CrossRef
Pubmed
Google scholar
|
[10] |
Ramsahoye B H , Biniszkiewicz D , Lyko F, Clark V, Bird A P , Jaenisch R (2000). Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA, 97(10): 5237–5242
CrossRef
Pubmed
Google scholar
|
[11] |
Matzke M A, Birchler J A (2005). RNAi-mediated pathways in the nucleus. Nat Rev Genet, 6(1): 24–35
CrossRef
Pubmed
Google scholar
|
[12] |
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
CrossRef
Pubmed
Google scholar
|
[13] |
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
CrossRef
Pubmed
Google scholar
|
[14] |
Pusarla R H, Bhargava P (2005). Histones in functional diversification. Core histone variants. FEBS J, 272(20): 5149–5168
CrossRef
Pubmed
Google scholar
|
[15] |
Talbert P B, Henikoff S (2010). Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 11(4): 264–275
CrossRef
Pubmed
Google scholar
|
[16] |
Becker P B, Hörz W (2002). ATP-dependent nucleosome remodeling. Annu Rev Biochem, 71(1): 247–273
CrossRef
Pubmed
Google scholar
|
[17] |
Clapier C R, Cairns B R (2009). The biology of chromatin remodeling complexes. Annu Rev Biochem, 78(1): 273–304
CrossRef
Pubmed
Google scholar
|
[18] |
Borrelli E, Nestler E J, Allis C D, Sassone-Corsi P (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6): 961–974
CrossRef
Pubmed
Google scholar
|
[19] |
Roth T L, Sweatt J D (2009). Regulation of chromatin structure in memory formation. Curr Opin Neurobiol, 19(3): 336–342
CrossRef
Pubmed
Google scholar
|
[20] |
Sweatt J D (2016). GENE EXPRESSION. Chromatin controls behavior. Science, 353(6296): 218–219
CrossRef
Pubmed
Google scholar
|
[21] |
Zovkic I B, Sweatt J D (2015). Memory-Associated Dynamic Regulation of the “Stable” Core of the Chromatin Particle. Neuron, 87(1): 1–4
CrossRef
Pubmed
Google scholar
|
[22] |
Sweatt J D (2013). The emerging field of neuroepigenetics. Neuron, 80(3): 624–632
CrossRef
Pubmed
Google scholar
|
[23] |
Kim T K, Hemberg M, Gray J M , Costa A M , Bear D M , Wu J, Harmin D A, Laptewicz M, Barbara-Haley K , Kuersten S , Markenscoff-Papadimitriou E , Kuhl D, Bito H, Worley P F , Kreiman G , Greenberg M E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187
CrossRef
Pubmed
Google scholar
|
[24] |
Sui L, Wang Y, Ju L H , Chen M (2012). Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem, 97(4): 425–440
CrossRef
Pubmed
Google scholar
|
[25] |
Malik A N, Vierbuchen T, Hemberg M , Rubin A A , Ling E, Couch C H, Stroud H, Spiegel I , Farh K K , Harmin D A , Greenberg M E (2014). Genome-wide identification and characterization of functional neuronal activity-dependent enhancers. Nat Neurosci, 17(10): 1330–1339
CrossRef
Pubmed
Google scholar
|
[26] |
Gräff J, Woldemichael B T, Berchtold D, Dewarrat G , Mansuy I M (2012). Dynamic histone marks in the hippocampus and cortex facilitate memory consolidation. Nat Commun, 3: 991
CrossRef
Pubmed
Google scholar
|
[27] |
Naruse Y, Oh-hashi K, Iijima N , Naruse M , Yoshioka H , Tanaka M (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol, 24(14): 6278–6287
CrossRef
Pubmed
Google scholar
|
[28] |
Martinowich K, Hattori D, Wu H , Fouse S , He F, Hu Y, Fan G , Sun Y E (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302(5646): 890–893
CrossRef
Pubmed
Google scholar
|
[29] |
Guo J U, Ma D K, Mo H, Ball M P , Jang M H , Bonaguidi M A , Balazer J A , Eaves H L , Xie B, Ford E, Zhang K , Ming G L , Gao Y, Song H (2011). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci, 14(10): 1345–1351
CrossRef
Pubmed
Google scholar
|
[30] |
Crosio C, Heitz E, Allis C D , Borrelli E , Sassone-Corsi P (2003). Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci, 116(Pt 24): 4905–4914
CrossRef
Pubmed
Google scholar
|
[31] |
Levenson J M, O’Riordan K J, Brown K D, Trinh M A, Molfese D L, Sweatt J D (2004). Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem, 279(39): 40545–40559
CrossRef
Pubmed
Google scholar
|
[32] |
Crosio C, Cermakian N, Allis C D , Sassone-Corsi P (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci, 3(12): 1241–1247
CrossRef
Pubmed
Google scholar
|
[33] |
Dyrvig M, Hansen H H, Christiansen S H, Woldbye D P, Mikkelsen J D, Lichota J (2012). Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res Bull, 88(5): 507–513
CrossRef
Pubmed
Google scholar
|
[34] |
Gupta S, Kim S Y, Artis S, Molfese D L , Schumacher A , Sweatt J D , Paylor R E , Lubin F D (2010). Histone methylation regulates memory formation. J Neurosci, 30(10): 3589–3599
CrossRef
Pubmed
Google scholar
|
[35] |
Gupta-Agarwal S, Franklin A V, Deramus T, Wheelock M , Davis R L , McMahon L L , Lubin F D (2012). G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci, 32(16): 5440–5453
CrossRef
Pubmed
Google scholar
|
[36] |
Chwang W B, O’Riordan K J, Levenson J M, Sweatt J D (2006). ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem, 13(3): 322–328
CrossRef
Pubmed
Google scholar
|
[37] |
Miller C A, Sweatt J D (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6): 857–869
CrossRef
Pubmed
Google scholar
|
[38] |
Lubin F D, Roth T L, Sweatt J D (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci, 28(42): 10576–10586
CrossRef
Pubmed
Google scholar
|
[39] |
Miller C A, Gavin C F, White J A, Parrish R R, Honasoge A, Yancey C R , Rivera I M , Rubio M D , Rumbaugh G , Sweatt J D (2010). Cortical DNA methylation maintains remote memory. Nat Neurosci, 13(6): 664–666
CrossRef
Pubmed
Google scholar
|
[40] |
Ma D K, Jang M H, Guo J U, Kitabatake Y, Chang M L , Pow-Anpongkul N , Flavell R A , Lu B, Ming G L, Song H (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917): 1074–1077
CrossRef
Pubmed
Google scholar
|
[41] |
Chen W G, Chang Q, Lin Y , Meissner A , West A E , Griffith E C , Jaenisch R , Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889
CrossRef
Pubmed
Google scholar
|
[42] |
Zhou Z, Hong E J, Cohen S, Zhao W N , Ho H Y , Schmidt L , Chen W G , Lin Y, Savner E, Griffith E C , Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269
CrossRef
Pubmed
Google scholar
|
[43] |
Kaas G A, Zhong C, Eason D E , Ross D L , Vachhani R V , Ming G L , King J R , Song H, Sweatt J D (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6): 1086–1093
CrossRef
Pubmed
Google scholar
|
[44] |
Zhu T, Liang C, Li D , Tian M, Liu S, Gao G , Guan J S (2016). Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Sci Rep, 6(1): 26597160;
CrossRef
Pubmed
Google scholar
|
[45] |
Ding X, Liu S, Tian M , Zhang W , Zhu T, Li D, Wu J , Deng H, Jia Y, Xie W , Xie H, Guan J S (2017). Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation. Nat Neurosci, 20(5): 690–699
CrossRef
Pubmed
Google scholar
|
[46] |
Su Y, Shin J, Zhong C , Wang S, Roychowdhury P, Lim J , Kim D, Ming G L, Song H (2017). Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat Neurosci, 20(3): 476–483
CrossRef
Pubmed
Google scholar
|
[47] |
Rudenko A, Dawlaty M M, Seo J, Cheng A W , Meng J, Le T, Faull K F , Jaenisch R , Tsai L H (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79(6): 1109–1122
CrossRef
Pubmed
Google scholar
|
[48] |
Gräff J, Joseph N F, Horn M E, Samiei A, Meng J , Seo J, Rei D, Bero A W , Phan T X , Wagner F , Holson E , Xu J, Sun J, Neve R L , Mach R H , Haggarty S J , Tsai L H (2014). Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell, 156(1-2): 261–276
CrossRef
Pubmed
Google scholar
|
[49] |
Zovkic I B, Paulukaitis B S, Day J J, Etikala D M, Sweatt J D (2014). Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature, 515(7528): 582–586
CrossRef
Pubmed
Google scholar
|
[50] |
Halder R, Hennion M, Vidal R O , Shomroni O , Rahman R U , Rajput A , Centeno T P , van Bebber F , Capece V , Garcia Vizcaino J C , Schuetz A L , Burkhardt S , Benito E , Navarro Sala M , Javan S B , Haass C , Schmid B , Fischer A , Bonn S (2016). DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci, 19(1): 102–110
CrossRef
Pubmed
Google scholar
|
[51] |
Nelson E D, Kavalali E T, Monteggia L M (2008). Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci, 28(2): 395–406
CrossRef
Pubmed
Google scholar
|
[52] |
Rajasethupathy P, Antonov I, Sheridan R , Frey S, Sander C, Tuschl T , Kandel E R (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 149(3): 693–707
CrossRef
Pubmed
Google scholar
|
[53] |
Meadows J P, Guzman-Karlsson M C, Phillips S, Holleman C , Posey J L , Day J J , Hablitz J J , Sweatt J D (2015). DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal, 8(382): ra61
CrossRef
Pubmed
Google scholar
|
[54] |
Südhof T C (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215): 903–911
CrossRef
Pubmed
Google scholar
|
[55] |
Banerjee T, Chakravarti D (2011). A peek into the complex realm of histone phosphorylation. Mol Cell Biol, 31(24): 4858–4873
CrossRef
Pubmed
Google scholar
|
[56] |
Goll M G, Bestor T H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514
CrossRef
Pubmed
Google scholar
|
[57] |
Su, Y., Shin, J., Zhong, C. & Wang, S. Neuronal activity modifies the chromatin accessibility landscape in the adult brain. 20, 476–483, doi:10.1038/nn.4494 (2017).
|
[58] |
Guo J U, Su Y, Zhong C , Ming G L , Song H (2011). Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 10(16): 2662–2668
CrossRef
Pubmed
Google scholar
|
[59] |
59 (!!! INVALID CITATION !!!).
|
[60] |
Batsché E, Yaniv M, Muchardt C (2006). The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol, 13(1): 22–29
CrossRef
Pubmed
Google scholar
|
[61] |
Martinez E, Palhan V B, Tjernberg A, Lymar E S , Gamper A M , Kundu T K , Chait B T , Roeder R G (2001). Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol, 21(20): 6782–6795
CrossRef
Pubmed
Google scholar
|
[62] |
Cheng D, Côté J, Shaaban S , Bedford M T (2007). The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell, 25(1): 71–83
CrossRef
Pubmed
Google scholar
|
[63] |
Kolasinska-Zwierz P , Down T, Latorre I, Liu T , Liu X S , Ahringer J (2009). Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet, 41(3): 376–381
CrossRef
Pubmed
Google scholar
|
[64] |
Spies N, Nielsen C B, Padgett R A, Burge C B (2009). Biased chromatin signatures around polyadenylation sites and exons. Mol Cell, 36(2): 245–254
CrossRef
Pubmed
Google scholar
|
[65] |
Andersson R, Enroth S, Rada-Iglesias A , Wadelius C , Komorowski J (2009). Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res, 19(10): 1732–1741
CrossRef
Pubmed
Google scholar
|
[66] |
Schwartz S, Meshorer E, Ast G (2009). Chromatin organization marks exon-intron structure. Nat Struct Mol Biol, 16(9): 990–995
CrossRef
Pubmed
Google scholar
|
[67] |
Luco R F, Pan Q, Tominaga K , Blencowe B J , Pereira-Smith O M , Misteli T (2010). Regulation of alternative splicing by histone modifications. Science, 327(5968): 996–1000
CrossRef
Pubmed
Google scholar
|
[68] |
Nogues G, Kadener S, Cramer P , Bentley D , Kornblihtt A R (2002). Transcriptional activators differ in their abilities to control alternative splicing. J Biol Chem, 277(45): 43110–43114
CrossRef
Pubmed
Google scholar
|
[69] |
Schor I E, Rascovan N, Pelisch F , Alló M , Kornblihtt A R (2009). Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA, 106(11): 4325–4330
CrossRef
Pubmed
Google scholar
|
[70] |
Sims R J 3rd, Millhouse S, Chen C F, Lewis B A, Erdjument-Bromage H, Tempst P , Manley J L , Reinberg D (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell, 28(4): 665–676
CrossRef
Pubmed
Google scholar
|
[71] |
Piacentini L, Fanti L, Negri R , Del Vescovo V , Fatica A , Altieri F , Pimpinelli S (2009). Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet, 5(10): e1000670
CrossRef
Pubmed
Google scholar
|
[72] |
Luco R F, Allo M, Schor I E , Kornblihtt A R , Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16–26
CrossRef
Pubmed
Google scholar
|
[73] |
Rountree M R, Bachman K E, Herman J G, Baylin S B (2001). DNA methylation, chromatin inheritance, and cancer. Oncogene, 20(24): 3156–3165
CrossRef
Pubmed
Google scholar
|
[74] |
Probst A V, Dunleavy E, Almouzni G (2009). Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol, 10(3): 192–206
CrossRef
Pubmed
Google scholar
|
[75] |
Okano M, Bell D W, Haber D A, Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3): 247–257
CrossRef
Pubmed
Google scholar
|
[76] |
Jia D, Jurkowska R Z, Zhang X, Jeltsch A , Cheng X (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 449(7159): 248–251
CrossRef
Pubmed
Google scholar
|
[77] |
Pollack Y, Stein R, Razin A , Cedar H (1980). Methylation of foreign DNA sequences in eukaryotic cells. Proc Natl Acad Sci USA, 77(11): 6463–6467
CrossRef
Pubmed
Google scholar
|
[78] |
Wigler M, Levy D, Perucho M (1981). The somatic replication of DNA methylation. Cell, 24(1): 33–40
CrossRef
Pubmed
Google scholar
|
[79] |
Gruenbaum Y, Cedar H, Razin A (1982). Substrate and sequence specificity of a eukaryotic DNA methylase. Nature, 295(5850): 620–622
CrossRef
Pubmed
Google scholar
|
[80] |
Cheng X (2014). Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol, 6(8): a018747
CrossRef
Pubmed
Google scholar
|
[81] |
Kimura H, Shiota K (2003). Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem, 278(7): 4806–4812
CrossRef
Pubmed
Google scholar
|
[82] |
Reik W (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143): 425–432
CrossRef
Pubmed
Google scholar
|
[83] |
Nakatani Y, Ray-Gallet D, Quivy J P , Tagami H , Almouzni G (2004). Two distinct nucleosome assembly pathways: dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes. Cold Spring Harb Symp Quant Biol, 69(0): 273–280
CrossRef
Pubmed
Google scholar
|
[84] |
Bannister A J , Zegerman P , Partridge J F , Miska E A , Thomas J O , Allshire R C , Kouzarides T (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410(6824): 120–124
CrossRef
Pubmed
Google scholar
|
[85] |
Lachner M, O’Carroll D, Rea S , Mechtler K , Jenuwein T (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410(6824): 116–120
CrossRef
Pubmed
Google scholar
|
[86] |
Fritsch L, Robin P, Mathieu J R , Souidi M , Hinaux H , Rougeulle C , Harel-Bellan A , Ameyar-Zazoua M , Ait-Si-Ali S (2010). A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell, 37(1): 46–56
CrossRef
Pubmed
Google scholar
|
[87] |
Hansen K H, Helin K (2009). Epigenetic inheritance through self-recruitment of the polycomb repressive complex 2. Epigenetics, 4(3): 133–138
CrossRef
Pubmed
Google scholar
|
[88] |
Margueron R, Justin N, Ohno K , Sharpe M L , Son J, Drury W J 3rd, Voigt P, Martin S R , Taylor W R , De Marco V , Pirrotta V , Reinberg D , Gamblin S J (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature, 461(7265): 762–767
CrossRef
Pubmed
Google scholar
|
[89] |
Vaute O, Nicolas E, Vandel L , Trouche D (2002). Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res, 30(2): 475–481
CrossRef
Pubmed
Google scholar
|
[90] |
Scharf A N, Meier K, Seitz V , Kremmer E , Brehm A , Imhof A (2009). Monomethylation of lysine 20 on histone H4 facilitates chromatin maturation. Mol Cell Biol, 29(1): 57–67
CrossRef
Pubmed
Google scholar
|
[91] |
Fuks F, Burgers W A, Brehm A, Hughes-Davies L , Kouzarides T (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet, 24(1): 88–91
CrossRef
Pubmed
Google scholar
|
[92] |
Fujita N, Watanabe S, Ichimura T , Tsuruzoe S , Shinkai Y , Tachibana M , Chiba T , Nakao M (2003). Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem, 278(26): 24132–24138
CrossRef
Pubmed
Google scholar
|
[93] |
Dietrich J, Han R, Yang Y , Mayer-Pröschel M , Noble M (2006). CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol, 5(7): 22
CrossRef
Pubmed
Google scholar
|
[94] |
Mizutani K, Yoon K, Dang L , Tokunaga A , Gaiano N (2007). Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature, 449(7160): 351–355
CrossRef
Pubmed
Google scholar
|
[95] |
Namihira M, Kohyama J, Abematsu M , Nakashima K (2008). Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci, 363(1500): 2099–2109
CrossRef
Pubmed
Google scholar
|
[96] |
Hirabayashi Y, Gotoh Y (2010). Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci, 11(6): 377–388
CrossRef
Pubmed
Google scholar
|
[97] |
Lunyak V V, Burgess R, Prefontaine G G , Nelson C , Sze S H , Chenoweth J , Schwartz P , Pevzner P A , Glass C , Mandel G , Rosenfeld M G (2002). Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science, 298(5599): 1747–1752
CrossRef
Pubmed
Google scholar
|
[98] |
Ballas N, Grunseich C, Lu D D , Speh J C , Mandel G (2005). REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell, 121(4): 645–657
CrossRef
Pubmed
Google scholar
|
[99] |
Sikorska M, Sandhu J K, Deb-Rinker P, Jezierski A , Leblanc J , Charlebois C , Ribecco-Lutkiewicz M , Bani-Yaghoub M , Walker P R (2008). Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J Neurosci Res, 86(8): 1680–1693
CrossRef
Pubmed
Google scholar
|
[100] |
Sun Y, Nadal-Vicens M, Misono S , Lin M Z , Zubiaga A , Hua X, Fan G, Greenberg M E (2001). Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell, 104(3): 365–376
CrossRef
Pubmed
Google scholar
|
[101] |
Takizawa T, Nakashima K, Namihira M , Ochiai W , Uemura A , Yanagisawa M , Fujita N , Nakao M , Taga T (2001). DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell, 1(6): 749–758
CrossRef
Pubmed
Google scholar
|
[102] |
Namihira M, Nakashima K, Taga T (2004). Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett, 572(1-3): 184–188
CrossRef
Pubmed
Google scholar
|
[103] |
Fan G, Martinowich K, Chin M H , He F, Fouse S D, Hutnick L, Hattori D , Ge W, Shen Y, Wu H , ten Hoeve J , Shuai K , Sun Y E (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development, 132(15): 3345–3356
CrossRef
Pubmed
Google scholar
|
[104] |
Brooks P J, Marietta C, Goldman D (1996). DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci, 16(3): 939–945
Pubmed
|
[105] |
Wu Z, Huang K, Yu J , Le T, Namihira M, Liu Y , Zhang J , Xue Z, Cheng L, Fan G (2012). Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. J Neurosci Res, 90(10): 1883–1891
CrossRef
Pubmed
Google scholar
|
[106] |
Bai S, Ghoshal K, Datta J , Majumder S , Yoon S O , Jacob S T (2005). DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol, 25(2): 751–766
CrossRef
Pubmed
Google scholar
|
[107] |
Williams R R, Azuara V, Perry P , Sauer S , Dvorkina M , Jørgensen H , Roix J, McQueen P, Misteli T , Merkenschlager M , Fisher A G (2006). Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci, 119(Pt 1): 132–140
CrossRef
Pubmed
Google scholar
|
[108] |
Attia M, Rachez C, De Pauw A , Avner P , Rogner U C (2007). Nap1l2 promotes histone acetylation activity during neuronal differentiation. Mol Cell Biol, 27(17): 6093–6102
CrossRef
Pubmed
Google scholar
|
[109] |
Gogolla N, Leblanc J J, Quast K B, Südhof T C, Fagiolini M, Hensch T K (2009). Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord, 1(2): 172–181
CrossRef
Pubmed
Google scholar
|
[110] |
Geschwind D H , Levitt P (2007). Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol, 17(1): 103–111
CrossRef
Pubmed
Google scholar
|
[111] |
Wood L, Shepherd G M (2010). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis, 38(2): 281–287
CrossRef
Pubmed
Google scholar
|
[112] |
Ho L, Crabtree G R (2010). Chromatin remodelling during development. Nature, 463(7280): 474–484
CrossRef
Pubmed
Google scholar
|
[113] |
Ronan J L, Wu W, Crabtree G R (2013). From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet, 14(5): 347–359
CrossRef
Pubmed
Google scholar
|
[114] |
Yamada T, Yang Y, Hemberg M , Yoshida T , Cho H Y , Murphy J P , Fioravante D , Regehr W G , Gygi S P , Georgopoulos K , Bonni A (2014). Promoter decommissioning by the NuRD chromatin remodeling complex triggers synaptic connectivity in the mammalian brain. Neuron, 83(1): 122–134
CrossRef
Pubmed
Google scholar
|
[115] |
Yang Y, Yamada T, Hill K K , Hemberg M , Reddy N C , Cho H Y , Guthrie A N , Oldenborg A , Heiney S A , Ohmae S , Medina J F , Holy T E , Bonni A (2016). Chromatin remodeling inactivates activity genes and regulates neural coding. Science, 353(6296): 300–305
CrossRef
Pubmed
Google scholar
|
[116] |
Fortin D A, Srivastava T, Soderling T R (2012). Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist, 18(4): 326–341
CrossRef
Pubmed
Google scholar
|
[117] |
Chen D Y, Bambah-Mukku D, Pollonini G , Alberini C M (2012). Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci, 15(12): 1707–1714
CrossRef
Pubmed
Google scholar
|
[118] |
Ding, X.
CrossRef
Google scholar
|
[119] |
Maze I, Wenderski W, Noh K M , Bagot R C , Tzavaras N , Purushothaman I , Elsässer S J , Guo Y, Ionete C, Hurd Y L , Tamminga C A , Halene T , Farrelly L , Soshnev A A , Wen D, Rafii S, Birtwistle M R , Akbarian S , Buchholz B A , Blitzer R D , Nestler E J , Yuan Z F , Garcia B A , Shen L, Molina H, Allis C D (2015). Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron, 87(1): 77–94
CrossRef
Pubmed
Google scholar
|
[120] |
Levenson J M, Roth T L, Lubin F D, Miller C A, Huang I C, Desai P, Malone L M , Sweatt J D (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem, 281(23): 15763–15773
CrossRef
Pubmed
Google scholar
|
[121] |
Morris M J, Adachi M, Na E S , Monteggia L M (2014). Selective role for DNMT3a in learning and memory. Neurobiol Learn Mem, 115: 30–37
CrossRef
Pubmed
Google scholar
|
[122] |
Mitchnick K A , Creighton S , O’Hara M , Kalisch B E , Winters B D (2015). Differential contributions of de novo and maintenance DNA methyltransferases to object memory processing in the rat hippocampus and perirhinal cortex--a double dissociation. Eur J Neurosci, 41(6): 773–786
CrossRef
Pubmed
Google scholar
|
[123] |
Kamakaka R T, Biggins S (2005). Histone variants: deviants? Genes Dev, 19(3): 295–310
CrossRef
Pubmed
Google scholar
|
[124] |
Kendler K S (2001). Twin studies of psychiatric illness: an update. Arch Gen Psychiatry, 58(11): 1005–1014
CrossRef
Pubmed
Google scholar
|
[125] |
Millan M J, Agid Y, Brüne M , Bullmore E T , Carter C S , Clayton N S , Connor R , Davis S , Deakin B , DeRubeis R J , Dubois B , Geyer M A , Goodwin G M , Gorwood P , Jay T M , Joëls M , Mansuy I M , Meyer-Lindenberg A , Murphy D , Rolls E , Saletu B , Spedding M , Sweeney J , Whittington M , Young L J (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov, 11(2): 141–168
CrossRef
Pubmed
Google scholar
|
[126] |
Gibson G (2012). Rare and common variants: twenty arguments. Nat Rev Genet, 13(2): 135–145
CrossRef
Pubmed
Google scholar
|
[127] |
Eichler E E, Flint J, Gibson G , Kong A, Leal S M, Moore J H, Nadeau J H (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet, 11(6): 446–450
CrossRef
Pubmed
Google scholar
|
[128] |
Gershon E S, Alliey-Rodriguez N, Liu C (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. Am J Psychiatry, 168(3): 253–256
CrossRef
Pubmed
Google scholar
|
[129] |
So H C, Gui A H, Cherny S S, Sham P C (2011). Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol, 35(5): 310–317
CrossRef
Pubmed
Google scholar
|
[130] |
BohacekJ, Mansuy I M(2013).Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology, 38: 220–236
CrossRef
Google scholar
|
[131] |
Danchin É, Charmantier A, Champagne F A , Mesoudi A , Pujol B , Blanchet S (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet, 12(7): 475–486
CrossRef
Pubmed
Google scholar
|
[132] |
Daxinger L, Whitelaw E (2010). Transgenerational epigenetic inheritance: more questions than answers. Genome Res, 20(12): 1623–1628
CrossRef
Pubmed
Google scholar
|
[133] |
Horsthemke B (2007). Heritable germline epimutations in humans. Nat Genet, 39(5): 573–574, author reply 575–576
CrossRef
Pubmed
Google scholar
|
[134] |
Sha K (2008). A mechanistic view of genomic imprinting. Annu Rev Genomics Hum Genet, 9(1): 197–216
CrossRef
Pubmed
Google scholar
|
[135] |
Paoloni-Giacobino A , Chaillet J R (2006). The role of DMDs in the maintenance of epigenetic states. Cytogenet Genome Res, 113(1-4): 116–121
CrossRef
Pubmed
Google scholar
|
[136] |
Bartolomei M S , Ferguson-Smith A C (2011). Mammalian genomic imprinting. Cold Spring Harb Perspect Biol, 3(7): a002592
CrossRef
Pubmed
Google scholar
|
[137] |
Feng S, Jacobsen S E, Reik W (2010). Epigenetic reprogramming in plant and animal development. Science, 330(6004): 622–627
CrossRef
Pubmed
Google scholar
|
[138] |
Franklin T B, Russig H, Weiss I C , Gräff J , Linder N , Michalon A , Vizi S, Mansuy I M (2010). Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry, 68(5): 408–415
CrossRef
Pubmed
Google scholar
|
[139] |
Johnson G D, Lalancette C, Linnemann A K , Leduc F , Boissonneault G , Krawetz S A (2011). The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction, 141(1): 21–36
CrossRef
Pubmed
Google scholar
|
[140] |
Hammoud S S, Nix D A, Zhang H, Purwar J , Carrell D T , Cairns B R (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature, 460(7254): 473–478
CrossRef
Pubmed
Google scholar
|
[141] |
Puri D, Dhawan J, Mishra R K (2010). The paternal hidden agenda: Epigenetic inheritance through sperm chromatin. Epigenetics, 5(5): 386–391
CrossRef
Pubmed
Google scholar
|
[142] |
Brykczynska U, Hisano M, Erkek S , Ramos L , Oakeley E J , Roloff T C , Beisel C , Schübeler D , Stadler M B , Peters A H (2010). Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol, 17(6): 679–687
CrossRef
Pubmed
Google scholar
|
[143] |
Hallmayer J, Cleveland S, Torres A , Phillips J , Cohen B , Torigoe T , Miller J , Fedele A , Collins J , Smith K , Lotspeich L , Croen L A , Ozonoff S , Lajonchere C , Grether J K , Risch N (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry, 68(11): 1095–1102
CrossRef
Pubmed
Google scholar
|
[144] |
Cannon T D, Kaprio J, Lönnqvist J , Huttunen M , Koskenvuo M (1998). The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry, 55(1): 67–74
CrossRef
Pubmed
Google scholar
|
[145] |
Gatz M, Pedersen N L, Berg S, Johansson B , Johansson K , Mortimer J A , Posner S F , Viitanen M , Winblad B , Ahlbom A (1997). Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci, 52(2): M117–M125
CrossRef
Pubmed
Google scholar
|
[146] |
Fraga M F, Ballestar E, Paz M F , Ropero S , Setien F , Ballestar M L , Heine-Suñer D , Cigudosa J C , Urioste M , Benitez J , Boix-Chornet M , Sanchez-Aguilera A , Ling C, Carlsson E, Poulsen P , Vaag A, Stephan Z, Spector T D , Wu Y Z , Plass C , Esteller M (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 102(30): 10604–10609
CrossRef
Pubmed
Google scholar
|
[147] |
Gershon A, Sudheimer K, Tirouvanziam R , Williams L M , O’Hara R (2013). The long-term impact of early adversity on late-life psychiatric disorders. Curr Psychiatry Rep, 15(4): 352
CrossRef
Pubmed
Google scholar
|
[148] |
Bagot R C, Zhang T Y, Wen X, Nguyen T T , Nguyen H B , Diorio J , Wong T P , Meaney M J (2012). Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci USA, 109(Suppl 2): 17200–17207
CrossRef
Pubmed
Google scholar
|
[149] |
Zhang T Y, Hellstrom I C, Bagot R C, Wen X, Diorio J , Meaney M J (2010). Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci, 30(39): 13130–13137
CrossRef
Pubmed
Google scholar
|
[150] |
Roth T L, Lubin F D, Funk A J, Sweatt J D (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry, 65(9): 760–769
CrossRef
Pubmed
Google scholar
|
[151] |
Hashimoto T, Bergen S E, Nguyen Q L, Xu B, Monteggia L M , Pierri J N , Sun Z, Sampson A R, Lewis D A (2005). Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci, 25(2): 372–383
CrossRef
Pubmed
Google scholar
|
[152] |
Jin B, Tao Q, Peng J , Soo H M , Wu W, Ying J, Fields C R , Delmas A L , Liu X, Qiu J, Robertson K D (2008). DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet, 17(5): 690–709
CrossRef
Pubmed
Google scholar
|
[153] |
Jowaed A, Schmitt I, Kaut O , Wüllner U (2010). Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci, 30(18): 6355–6359
CrossRef
Pubmed
Google scholar
|
[154] |
Winkelmann J, Lin L, Schormair B , Kornum B R , Faraco J , Plazzi G , Melberg A , Cornelio F , Urban A E , Pizza F , Poli F, Grubert F, Wieland T , Graf E, Hallmayer J, Strom T M , Mignot E (2012). Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet, 21(10): 2205–2210
CrossRef
Pubmed
Google scholar
|
[155] |
Chestnut B A, Chang Q, Price A , Lesuisse C , Wong M, Martin L J (2011). Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci, 31(46): 16619–16636
CrossRef
Pubmed
Google scholar
|
[156] |
Amir R E, Van den Veyver I B, Wan M, Tran C Q , Francke U , Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188
CrossRef
Pubmed
Google scholar
|
[157] |
Mnatzakanian G N , Lohi H, Munteanu I, Alfred S E , Yamada T , MacLeod P J , Jones J R , Scherer S W , Schanen N C , Friez M J , Vincent J B , Minassian B A (2004). A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet, 36(4): 339–341
CrossRef
Pubmed
Google scholar
|
[158] |
Chen R Z, Akbarian S, Tudor M , Jaenisch R (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 27(3): 327–331
CrossRef
Pubmed
Google scholar
|
[159] |
Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L , Noebels J L , David Sweatt J , Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689
CrossRef
Pubmed
Google scholar
|
[160] |
Guy J, Hendrich B, Holmes M , Martin J E , Bird A (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 27(3): 322–326
CrossRef
Pubmed
Google scholar
|
[161] |
Carney R M, Wolpert C M, Ravan S A, Shahbazian M, Ashley-Koch A , Cuccaro M L , Vance J M , Pericak-Vance M A (2003). Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol, 28(3): 205–211
CrossRef
Pubmed
Google scholar
|
[162] |
Kleefstra T, van Zelst-Stams W A, Nillesen W M, Cormier-Daire V, Houge G , Foulds N , van Dooren M , Willemsen M H , Pfundt R , Turner A , Wilson M , McGaughran J , Rauch A , Zenker M , Adam M P , Innes M , Davies C , López A G , Casalone R , Weber A , Brueton L A , Navarro A D , Bralo M P , Venselaar H , Stegmann S P , Yntema H G , van Bokhoven H , Brunner H G (2009). Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet, 46(9): 598–606
CrossRef
Pubmed
Google scholar
|
[163] |
Kirov G, Pocklington A J, Holmans P, Ivanov D , Ikeda M , Ruderfer D , Moran J , Chambert K , Toncheva D , Georgieva L , Grozeva D , Fjodorova M , Wollerton R , Rees E, Nikolov I, van de Lagemaat L N, Bayés A, Fernandez E , Olason P I , Böttcher Y , Komiyama N H , Collins M O , Choudhary J , Stefansson K , Stefansson H , Grant S G , Purcell S , Sklar P , O’Donovan M C , Owen M J (2012). De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry, 17(2): 142–153
CrossRef
Pubmed
Google scholar
|
[164] |
Roelfsema J H , Peters D J (2007). Rubinstein-Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med, 9(23): 1–16
CrossRef
Pubmed
Google scholar
|
[165] |
Zollino M, Orteschi D, Murdolo M , Lattante S , Battaglia D , Stefanini C , Mercuri E , Chiurazzi P , Neri G, Marangi G (2012). Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat Genet, 44(6): 636–638
CrossRef
Pubmed
Google scholar
|
[166] |
Michelson D J , Shevell M I , Sherr E H , Moeschler J B , Gropman A L , Ashwal S (2011). Evidence report: Genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology, 77(17): 1629–1635
CrossRef
Pubmed
Google scholar
|
[167] |
Adegbola A, Gao H, Sommer S , Browning M (2008). A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A, 146A(4): 505–511
CrossRef
Pubmed
Google scholar
|
[168] |
Berdasco M, Ropero S, Setien F , Fraga M F , Lapunzina P , Losson R , Alaminos M , Cheung N K , Rahman N , Esteller M (2009). Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA, 106(51): 21830–21835
CrossRef
Pubmed
Google scholar
|
[169] |
Kleine-Kohlbrecher D , Christensen J , Vandamme J , Abarrategui I , Bak M, Tommerup N, Shi X , Gozani O , Rappsilber J , Salcini A E , Helin K (2010). A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell, 38(2): 165–178
CrossRef
Pubmed
Google scholar
|
[170] |
Pereira P M, Schneider A, Pannetier S , Heron D , Hanauer A (2010). Coffin-Lowry syndrome. Eur J Hum Genet, 18(6): 627–633
CrossRef
Pubmed
Google scholar
|
[171] |
Gibson W T, Hood R L, Zhan S H, Bulman D E, Fejes A P, Moore R, Mungall A J , Eydoux P , Babul-Hirji R , An J, Marra M A, Chitayat D, Boycott K M , Weaver D D , Jones S J , and the FORGE Canada Consortium (2012). Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet, 90(1): 110–118
CrossRef
Pubmed
Google scholar
|
[172] |
Jones W D, Dafou D, McEntagart M , Woollard W J , Elmslie F V , Holder-Espinasse M , Irving M , Saggar A K , Smithson S , Trembath R C , Deshpande C , Simpson M A (2012). De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am J Hum Genet, 91(2): 358–364
CrossRef
Pubmed
Google scholar
|
[173] |
Ng S B, Bigham A W, Buckingham K J, Hannibal M C, McMillin M J, Gildersleeve H I, Beck A E, Tabor H K, Cooper G M, Mefford H C, Lee C, Turner E H , Smith J D , Rieder M J , Yoshiura K , Matsumoto N , Ohta T, Niikawa N, Nickerson D A , Bamshad M J , Shendure J (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet, 42(9): 790–793
CrossRef
Pubmed
Google scholar
|
[174] |
Campeau P M, Kim J C, Lu J T, Schwartzentruber J A, Abdul-Rahman O A, Schlaubitz S, Murdock D M , Jiang M M , Lammer E J , Enns G M , Rhead W J , Rowland J , Robertson S P , Cormier-Daire V , Bainbridge M N , Yang X J , Gingras M C , Gibbs R A , Rosenblatt D S , Majewski J , Lee B H (2012). Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am J Hum Genet, 90(2): 282–289
CrossRef
Pubmed
Google scholar
|
[175] |
Lederer D, Grisart B, Digilio M C , Benoit V , Crespin M , Ghariani S C , Maystadt I , Dallapiccola B , Verellen-Dumoulin C (2012). Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet, 90(1): 119–124
CrossRef
Pubmed
Google scholar
|
[176] |
Williams S R, Aldred M A, Der Kaloustian V M, Halal F, Gowans G , McLeod D R , Zondag S , Toriello H V , Magenis R E , Elsea S H (2010). Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet, 87(2): 219–228
CrossRef
Pubmed
Google scholar
|
[177] |
Iossifov I, Ronemus M, Levy D , Wang Z, Hakker I, Rosenbaum J , Yamrom B , Lee Y H , Narzisi G , Leotta A , Kendall J , Grabowska E , Ma B, Marks S, Rodgers L , Stepansky A , Troge J , Andrews P , Bekritsky M , Pradhan K , Ghiban E , Kramer M , Parla J , Demeter R , Fulton L L , Fulton R S , Magrini V J , Ye K, Darnell J C, Darnell R B, Mardis E R, Wilson R K, Schatz M C, McCombie W R, Wigler M (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2): 285–299
CrossRef
Pubmed
Google scholar
|
[178] |
Steffan J S, Bodai L, Pallos J , Poelman M , McCampbell A , Apostol B L , Kazantsev A , Schmidt E , Zhu Y Z , Greenwald M , Kurokawa R , Housman D E , Jackson G R , Marsh J L , Thompson L M (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413(6857): 739–743
CrossRef
Pubmed
Google scholar
|
[179] |
Ferrante R J, Kubilus J K, Lee J, Ryu H , Beesen A , Zucker B , Smith K , Kowall N W , Ratan R R , Luthi-Carter R , Hersch S M (2003). Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci, 23(28): 9418–9427
Pubmed
|
[180] |
Richards C, Jones C, Groves L , Moss J, Oliver C (2015). Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry, 2(10): 909–916
CrossRef
Pubmed
Google scholar
|
[181] |
Beyer K S, Blasi F, Bacchelli E , Klauck S M , Maestrini E , Poustka A ,Molecular Genetic Study of Autism C I, and the International Molecular Genetic Study of Autism Consortium (IMGSAC) (2002). Mutation analysis of the coding sequence of the MECP2 gene in infantile autism. Hum Genet, 111(4-5): 305–309
CrossRef
Pubmed
Google scholar
|
[182] |
Crawford D C, Acuna J M, Sherman S L ( 2001). FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med, 3: 359–371
CrossRef
Google scholar
|
[183] |
Bernier R, Golzio C, Xiong B , Stessman H A , Coe B P , Penn O, Witherspoon K, Gerdts J , Baker C , Vulto-van Silfhout A T , Schuurs-Hoeijmakers J H , Fichera M , Bosco P , Buono S , Alberti A , Failla P , Peeters H , Steyaert J , Vissers L E , Francescatto L , Mefford H C , Rosenfeld J A , Bakken T , O’Roak B J , Pawlus M , Moon R, Shendure J, Amaral D G , Lein E, Rankin J, Romano C , de Vries B B , Katsanis N , Eichler E E (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158(2): 263–276
CrossRef
Pubmed
Google scholar
|
[184] |
Merner N, Forgeot d’Arc B, Bell S C , Maussion G , Peng H, Gauthier J, Crapper L , Hamdan F F , Michaud J L , Mottron L , Rouleau G A , Ernst C (2016). A de novo frameshift mutation in chromodomain helicase DNA-binding domain 8 (CHD8): A case report and literature review. Am J Med Genet A, 170A(5): 1225–1235
CrossRef
Pubmed
Google scholar
|
[185] |
Johansson M, Råstam M, Billstedt E , Danielsson S , Strömland K , Miller M , Gillberg C (2006). Autism spectrum disorders and underlying brain pathology in CHARGE association. Dev Med Child Neurol, 48(1): 40–50
CrossRef
Pubmed
Google scholar
|
[186] |
Smith I M, Nichols S L, Issekutz K, Blake K , and the Canadian Paediatric Surveillance Program (2005). Behavioral profiles and symptoms of autism in CHARGE syndrome: preliminary Canadian epidemiological data. Am J Med Genet A, 133A(3): 248–256
CrossRef
Pubmed
Google scholar
|
[187] |
Ladd-Acosta C, Hansen K D, Briem E, Fallin M D , Kaufmann W E , Feinberg A P (2014). Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry, 19(8): 862–871
CrossRef
Pubmed
Google scholar
|
[188] |
Nardone S, Sams D S, Reuveni E, Getselter D , Oron O, Karpuj M, Elliott E (2014). DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry, 4(9): e433
CrossRef
Pubmed
Google scholar
|
[189] |
Elagoz Yuksel M , Yuceturk B , Karatas O F , Ozen M, Dogangun B (2016). The altered promoter methylation of oxytocin receptor gene in autism. J Neurogenet, 30(3-4): 280–284
CrossRef
Pubmed
Google scholar
|
[190] |
Gregory S G, Connelly J J, Towers A J, Johnson J, Biscocho D , Markunas C A , Lintas C , Abramson R K , Wright H H , Ellis P , Langford C F , Worley G , Delong G R , Murphy S K , Cuccaro M L , Persico A , Pericak-Vance M A (2009). Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med, 7(1): 62
CrossRef
Pubmed
Google scholar
|
[191] |
Jiang Y H, Sahoo T, Michaelis R C , Bercovich D , Bressler J , Kashork C D , Liu Q, Shaffer L G, Schroer R J, Stockton D W, Spielman R S, Stevenson R E, Beaudet A L (2004). A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A, 131(1): 1–10
CrossRef
Pubmed
Google scholar
|
[192] |
Nagarajan R P , Hogart A R , Gwye Y, Martin M R, LaSalle J M (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics, 1(4): e1–e11
CrossRef
Pubmed
Google scholar
|
[193] |
Zhu L, Wang X, Li X L , Towers A , Cao X, Wang P, Bowman R , Yang H, Goldstein J, Li Y J , Jiang Y H (2014). Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet, 23(6): 1563–1578
CrossRef
Pubmed
Google scholar
|
[194] |
Shulha H P, Cheung I, Whittle C , Wang J, Virgil D, Lin C L , Guo Y, Lessard A, Akbarian S , Weng Z (2012). Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry, 69(3): 314–324
CrossRef
Pubmed
Google scholar
|
[195] |
Sun W, Poschmann J, Cruz-Herrera Del Rosario R, Parikshak N N , Hajan H S , Kumar V , Ramasamy R , Belgard T G , Elanggovan B , Wong C C , Mill J, Geschwind D H, Prabhakar S (2016). Histone Acetylome-wide Association Study of Autism Spectrum Disorder. Cell, 167(5): 1385–1397.e11
CrossRef
Pubmed
Google scholar
|
[196] |
Hernandez D G , Nalls M A , Gibbs J R , Arepalli S , van der Brug M , Chong S , Moore M , Longo D L , Cookson M R , Traynor B J , Singleton A B (2011). Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet, 20(6): 1164–1172
CrossRef
Pubmed
Google scholar
|
[197] |
Lu H, Liu X, Deng Y , Qing H (2013). DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci, 5: 85
CrossRef
Pubmed
Google scholar
|
[198] |
Lu T, Aron L, Zullo J , Pan Y, Kim H, Chen Y , Yang T H , Kim H M , Drake D , Liu X S , Bennett D A , Colaiácovo M P , Yankner B A (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature, 507(7493): 448–454
CrossRef
Pubmed
Google scholar
|
[199] |
De Jager P L , Srivastava G , Lunnon K , Burgess J , Schalkwyk L C , Yu L, Eaton M L, Keenan B T, Ernst J, McCabe C , Tang A, Raj T, Replogle J , Brodeur W , Gabriel S , Chai H S , Younkin C , Younkin S G , Zou F, Szyf M, Epstein C B , Schneider J A , Bernstein B E , Meissner A , Ertekin-Taner N , Chibnik L B , Kellis M , Mill J, Bennett D A (2014). Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci, 17(9): 1156–1163
CrossRef
Pubmed
Google scholar
|
[200] |
Lunnon K, Smith R, Hannon E , De Jager P L , Srivastava G , Volta M , Troakes C , Al-Sarraj S , Burrage J , Macdonald R , Condliffe D , Harries L W , Katsel P , Haroutunian V , Kaminsky Z , Joachim C , Powell J , Lovestone S , Bennett D A , Schalkwyk L C , Mill J (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci, 17(9): 1164–1170
CrossRef
Pubmed
Google scholar
|
[201] |
Chouliaras L, Mastroeni D, Delvaux E , Grover A , Kenis G , Hof P R , Steinbusch H W , Coleman P D , Rutten B P , van den Hove D L (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging, 34(9): 2091–2099
CrossRef
Pubmed
Google scholar
|
[202] |
Mastroeni D, McKee A, Grover A , Rogers J , Coleman P D (2009). Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One, 4(8): e6617
CrossRef
Pubmed
Google scholar
|
[203] |
Wang S C, Oelze B, Schumacher A (2008). Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One, 3(7): e2698
CrossRef
Pubmed
Google scholar
|
[204] |
Bakulski K M, Dolinoy D C, Sartor M A, Paulson H L, Konen J R, Lieberman A P, Albin R L, Hu H, Rozek L S (2012). Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis, 29(3): 571–588
CrossRef
Pubmed
Google scholar
|
[205] |
Savas J N, Makusky A, Ottosen S , Baillat D , Then F, Krainc D, Shiekhattar R , Markey S P , Tanese N (2008). Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci USA, 105(31): 10820–10825
CrossRef
Pubmed
Google scholar
|
[206] |
Buckley N J, Johnson R, Zuccato C , Bithell A , Cattaneo E (2010). The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis, 39(1): 28–39
CrossRef
Pubmed
Google scholar
|
[207] |
Zuccato C, Tartari M, Crotti A , Goffredo D , Valenza M , Conti L , Cataudella T , Leavitt B R , Hayden M R , Timmusk T , Rigamonti D , Cattaneo E (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet, 35(1): 76–83
CrossRef
Pubmed
Google scholar
|
[208] |
Zuccato C, Belyaev N, Conforti P , Ooi L, Tartari M, Papadimou E , MacDonald M , Fossale E , Zeitlin S , Buckley N , Cattaneo E (2007). Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci, 27(26): 6972–6983
CrossRef
Pubmed
Google scholar
|
[209] |
von Schimmelmann M , Feinberg P A , Sullivan J M , Ku S M , Badimon A , Duff M K , Wang Z, Lachmann A, Dewell S , Ma’ayan A , Han M H , Tarakhovsky A , Schaefer A (2016). Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration. Nat Neurosci, 19(10): 1321–1330
CrossRef
Pubmed
Google scholar
|
[210] |
Wang F, Yang Y, Lin X , Wang J Q , Wu Y S , Xie W, Wang D, Zhu S , Liao Y Q , Sun Q, Yang Y G, Luo H R, Guo C, Han C , Tang T S (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet, 22(18): 3641–3653
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |