How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?

Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri

PDF(438 KB)
PDF(438 KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 183-191. DOI: 10.1007/s11515-017-1452-4
REVIEW
REVIEW

How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?

Author information +
History +

Abstract

OBJECTIVES: Single nucleotide polymorphisms (SNPs), genetic background, and epigenetics play important roles in rheumatoid arthritis (RA). These factors can be useful in RA diagnosis, prognosis, and treatment response evaluation, particularly with the growing trends in personalized medicine. Therefore, categorizing classic genes and SNPs in RA can present an appropriate guideline for RA management.

DISCUSSION: Prognostic and diagnostic biomarkers play important roles in RA diagnosis and treatment. Categorizing SNPs is not an easy process yet, but selecting classic SNPs can be useful worldwide, according to basic similarities that exist in genomes. In this review, we compiled some of these RA-associated SNPs and biomarkers in a table, according to newly identified factors. The role of epigenetics in RA is undeniable; using epigenetic biomarkers like histone deacetylase (HDACs) can be useful in RA diagnosis and treatment. miRs such as miR-146a, miR-155, and miR-222 are useful in diagnosis and can be used in treatment by interfering with other factors’ functions. Interleukins (ILs) seem to be good prognostic and diagnostic markers and can be targeted in RA treatment.

CONCLUSION: Using multiple types of biomarkers, such as genes, SNPs, and epigenetic biomarkers like HDACs can be useful in RA management and treatment. PTPN22, HLA-DR polymorphisms, miRs, and HDACs are considerable in RA susceptibility; hence, they can be valuable biomarkers in future studies. This article gathered separate information from approximately 100 articles to present useful biomarkers and polymorphisms in one review.

Keywords

polymorphism / rheumatoid arthritis / miRs / HLA-DR / epigenetics

Cite this article

Download citation ▾
Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?. Front. Biol., 2017, 12(3): 183‒191 https://doi.org/10.1007/s11515-017-1452-4

References

[1]
Aletaha D, Alasti F, Smolen J S (2015). Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. Arthritis Res Ther, 17(1): 229
CrossRef Pubmed Google scholar
[2]
Anaya J M, Ramirez-Santana C, Alzate M A, Molano-Gonzalez N, Rojas-Villarraga A (2016). The autoimmune ecology. Front Immunol, 7: 139
CrossRef Pubmed Google scholar
[3]
Anderson A E, Pratt A G, Sedhom M A, Doran J P, Routledge C, Hargreaves B, Brown P M, Lê Cao K A, Isaacs J D, Thomas R (2016). IL-6-driven STAT signalling in circulating CD4+ lymphocytes is a marker for early anticitrullinated peptide antibody-negative rheumatoid arthritis. Ann Rheum Dis, 75(2): 466–473
CrossRef Pubmed Google scholar
[4]
Angiolilli C, Baeten D L, Radstake T R, Reedquist K A ( 2017). The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics, 9(4):447–461
[5]
Angiolilli C, Grabiec A, Ferguson B, Fernandez BM, Tak P, McKinsey T, Baeten D L, Reedquist K A (2014). HDAC5 regulates CXCL chemokine expression in RA FLS via the transcription factor IRF1. Ann Rheum Dis,73(Suppl 1):A8 
CrossRef Google scholar
[6]
Arleevskaya M I, Kravtsova O A, Lemerle J, Renaudineau Y, Tsibulkin A P (2016). How rheumatoid arthritis can result from provocation of the immune system by microorganisms and viruses. Front Microbiol, 7: 1296
CrossRef Pubmed Google scholar
[7]
Barbi J, Pardoll D, Pan F (2013). Metabolic control of the Treg/Th17 axis. Immunol Rev, 252(1): 52–77
CrossRef Pubmed Google scholar
[8]
Brzustewicz E, Bryl E (2015). The role of cytokines in the pathogenesis of rheumatoid arthritis--Practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine, 76(2): 527–536
CrossRef Pubmed Google scholar
[9]
Castro-Santos P, Laborde C M, Díaz-Peña R (2015). Genomics, proteomics and metabolomics: their emerging roles in the discovery and validation of rheumatoid arthritis biomarkers. Clin Exp Rheumatol, 33(2): 279–286
Pubmed
[10]
Chimenti M S, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R (2015). The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis, 6(9): e1887
CrossRef Pubmed Google scholar
[11]
Choe J Y, Kim S K (2015). Association between serum uric acid and inflammation in rheumatoid arthritis: perspective on lowering serum uric acid of leflunomide. Clin Chim Acta, 438: 29–34
CrossRef Pubmed Google scholar
[12]
Chung I M, Ketharnathan S, Thiruvengadam M, Rajakumar G (2016). Rheumatoid Arthritis: The Stride from Research to Clinical Practice. Int J Mol Sci, 17(6): E900160;
CrossRef Pubmed Google scholar
[13]
Connolly M, Mullan R H, McCormick J, Matthews C, Sullivan O, Kennedy A, FitzGerald O, Poole A R, Bresnihan B, Veale D J, Fearon U (2012). Acute-phase serum amyloid A regulates tumor necrosis factor α and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologic therapy. Arthritis Rheum, 64(4): 1035–1045
CrossRef Pubmed Google scholar
[14]
Cuppen B V, Pardali K, Kraan M C, Marijnissen A C, Yrlid L, Olsson M, Bijlsma J W, Lafeber F P, Fritsch-Stork R D (2017). Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment. Rheumatol Int, 37(4): 531–536
CrossRef Pubmed Google scholar
[15]
Deane K D, El-Gabalawy H (2014). Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE. Nat Rev Rheumatol, 10(4): 212–228
CrossRef Pubmed Google scholar
[16]
Desiderio V, Tirino V, Papaccio G, Paino F (2014). Bone defects: molecular and cellular therapeutic targets. Int J Biochem Cell Biol, 51: 75–78
CrossRef Pubmed Google scholar
[17]
Elmesmari A, Fraser A R, Wood C, Gilchrist D, Vaughan D, Stewart L, McSharry C, McInnes I B, Kurowska-Stolarska M (2016). MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis. Rheumatology (Oxford), 55(11): 2056–2065
CrossRef Pubmed Google scholar
[18]
Gall B J, Wilson A, Schroer A B, Gross J D, Stoilov P, Setola V, Watkins C M, Siderovski D P (2016). Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance. Genes Immun, 17(2): 139–147
CrossRef Pubmed Google scholar
[19]
Gavrilă B I, Ciofu C, Stoica V (2016). Biomarkers in rheumatoid arthritis, what is new? J Med Life, 9(2): 144–148
Pubmed
[20]
Glant T T, Mikecz K, Rauch T A (2014). Epigenetics in the pathogenesis of rheumatoid arthritis. BMC Med, 12(1): 35
CrossRef Pubmed Google scholar
[21]
Guerreiro-Cacais A O, Norin U, Gyllenberg A, Berglund R, Beyeen A D, Petit-Teixeira E, Cornélis F, Saoudi A, Fournié G J, Holmdahl R, Alfredsson L, Klareskog L, Jagodic M, Olsson T, Kockum I, Padyukov L, and the Rheumatoid Arthritis Consortium International (RACI) (2017). VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis. Genes Immun, 18(1): 48–56
CrossRef Pubmed Google scholar
[22]
Guo W, Yu D, Wang X, Luo C, Chen Y, Lei W, Wang C, Ge Y, Xue W, Tian Q, Gao X, Yao W (2016). Anti-inflammatory effects of interleukin-23 receptor cytokine-binding homology region rebalance T cell distribution in rodent collagen-induced arthritis. Oncotarget, 7(22): 31800–31813
Pubmed
[23]
Guo Y, Wu Q, Ni B, Mou Z, Jiang Q, Cao Y, Dong H, Wu Y (2014). Tryptase is a candidate autoantigen in rheumatoid arthritis. Immunology, 142(1): 67–77
CrossRef Pubmed Google scholar
[24]
Hashemi M, Sandoughi M, Fazeli SA, Bahari G, Rezaei M, Zakeri Z( 2016). Evaluation of HLA-G 14 bp Ins/Del and+3142G>C polymorphism with susceptibility and early disease activity in rheumatoid arthritis. Adv Med, 2016:4985745
[25]
Heard E, Martienssen R A (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157(1): 95–109
CrossRef Pubmed Google scholar
[26]
Henrotin Y, Sanchez C, Cornet A, Van de Put J, Douette P, Gharbi M (2015). Soluble biomarkers development in osteoarthritis: from discovery to personalized medicine. Biomarkers, 20(8): 540–546
CrossRef Pubmed Google scholar
[27]
Honne K, Hallgrímsdóttir I, Wu C, Sebro R, Jewell N P, Sakurai T, Iwamoto M, Minota S, Jawaheer D (2016). A longitudinal genome-wide association study of anti-tumor necrosis factor response among Japanese patients with rheumatoid arthritis. Arthritis Res Ther, 18(1): 12
CrossRef Pubmed Google scholar
[28]
Hu J, Zhai C, Hu J, Li Z, Fei H, Wang Z, Fan W (2017). MiR-23a inhibited IL-17-mediated proinflammatory mediators expression via targeting IKKα in articular chondrocytes. Int Immunopharmacol, 43: 1–6
CrossRef Pubmed Google scholar
[29]
Hwang Y G, Balasubramani G K, Metes I D, Levesque M C, Bridges S L Jr, Moreland L W (2016). Differential response of serum amyloid A to different therapies in early rheumatoid arthritis and its potential value as a disease activity biomarker. Arthritis Res Ther, 18(1): 108
CrossRef Pubmed Google scholar
[30]
Ibrahim M, Mohan S, Xing M J, Kesavan C (2016). Conditional knockout of the microRNA 17-92 cluster in type-I collagen-expressing cells decreases alveolar bone size and incisor tooth mechanical properties. Folia Biol (Praha), 62(4): 175–179
Pubmed
[31]
Jiang X, Askling J, Saevarsdottir S, Padyukov L, Alfredsson L, Viatte S, Frisell T (2016). A genetic risk score composed of rheumatoid arthritis risk alleles, HLA-DRB1 haplotypes, and response to TNFi therapy- results from a Swedish cohort study. Arthritis Res Ther, 18(1): 288
CrossRef Pubmed Google scholar
[32]
Kang K Y, Woo J W, Park S H (2014). S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients with rheumatoid arthritis. Korean J Intern Med, 29(1): 12–19
CrossRef Pubmed Google scholar
[33]
Khalifa O, Pers Y M, Ferreira R, Sénéchal A, Jorgensen C, Apparailly F, Duroux-Richard I (2016). X-linked  miRNAs associated with gender differences in Rheumatoid arthritis. Int J Mol Sci, 17(11): E1852
CrossRef Pubmed Google scholar
[34]
Kim K S, Choi H M, Lee Y A, Choi I A, Lee S H, Hong S J, Yang H I, Yoo M C (2011). Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis. Rheumatol Int, 31(4): 543–547
CrossRef Pubmed Google scholar
[35]
Lavric M, Miranda-García M A, Holzinger D, Foell D, Wittkowski H (2016). Alarmins firing arthritis: Helpful diagnostic tools and promising therapeutic targets. Joint Bone Spine: S1297-319X(16)30127-0
Pubmed
[36]
Li Z, Cai J, Cao X (2016). MiR-19 suppresses fibroblast-like synoviocytes cytokine release by targeting toll like receptor 2 in rheumatoid arthritis. Am J Transl Res, 8(12): 5512–5518
Pubmed
[37]
Liu F, Wang X, Zhang X, Ren C, Xin J (2016). Role of serum cartilage oligomeric matrix protein (COMP) in the diagnosis of rheumatoid arthritis (RA): A case-control study. J Int Med Res, 44(4): 940–949
CrossRef Pubmed Google scholar
[38]
Ma Y, Shan Z, Ma J, Wang Q, Chu J, Xu P, Qin A, Fan S (2016). Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. Mol Med Rep, 13(3): 2273–2280
Pubmed
[39]
Martin N T, Martin M U (2016). Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol, 17(2): 122–131
CrossRef Pubmed Google scholar
[40]
Mc Ardle A, Flatley B, Pennington S R, FitzGerald O (2015). Early biomarkers of joint damage in rheumatoid and psoriatic arthritis. Arthritis Res Ther, 17(1): 141
CrossRef Pubmed Google scholar
[41]
McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, Yarwood A, Pratt A G, Anderson A E, Isaacs J D, Diboll J, Thalayasingam N, Ospelt C, Barton A, Worthington J, Fraser P, Eyre S, Orozco G (2016). Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol, 17(1): 212
CrossRef Pubmed Google scholar
[42]
Nell V P, Machold K P, Stamm T A, Eberl G, Heinzl H, Uffmann M, Smolen J S, Steiner G (2005). Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis. Ann Rheum Dis, 64(12): 1731–1736
CrossRef Pubmed Google scholar
[43]
Niki Y, Takeuchi T, Nakayama M, Nagasawa H, Kurasawa T, Yamada H, Toyama Y, Miyamoto T (2012). Clinical significance of cartilage biomarkers for monitoring structural joint damage in rheumatoid arthritis patients treated with anti-TNF therapy. PLoS One, 7(5): e37447
CrossRef Pubmed Google scholar
[44]
Niu X, Chen G( 2014). Clinical biomarkers and pathogenic-related cytokines in rheumatoid arthritis. J Immunol Res, 2014:698192
[45]
Ombrello M J, Remmers E F, Tachmazidou I, Grom A, Foell D, Haas J P, Martini A, Gattorno M, Özen S, Prahalad S, Zeft A S, Bohnsack J F, Mellins E D, Ilowite N T, Russo R, Len C, Hilario M O, Oliveira S, Yeung R S, Rosenberg A, Wedderburn L R, Anton J, Schwarz T, Hinks A, Bilginer Y, Park J, Cobb J, Satorius C L, Han B, Baskin E, Signa S, Duerr R H, Achkar J P, Kamboh M I, Kaufman K M, Kottyan L C, Pinto D, Scherer S W, Alarcón-Riquelme M E, Docampo E, Estivill X, Gül A, de Bakker P I, Raychaudhuri S, Langefeld C D, Thompson S, Zeggini E, Thomson W, Kastner D L, Woo P, and the British Society of Pediatric and Adolescent Rheumatology (BSPAR) Study Group, and the Childhood Arthritis Prospective Study (CAPS) Group, and the Randomized Placebo Phase Study of Rilonacept in sJIA (RAPPORT) Investigators, and the Sparks-Childhood Arthritis Response to Medication Study (CHARMS) Group, and the Biologically Based Outcome Predictors in JIA (BBOP) Group, and the International Childhood Arthritis Genetics (INCHARGE) Consortium (2015). HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc Natl Acad Sci USA, 112(52): 15970–15975
CrossRef Pubmed Google scholar
[46]
Ortea I, Roschitzki B, López-Rodríguez R, Tomero E G, Ovalles J G, López-Longo J, de la Torre I, González-Alvaro I, Gómez-Reino J J, González A (2016). Independent Candidate Serum Protein Biomarkers of Response to Adalimumab and to Infliximab in Rheumatoid Arthritis: An Exploratory Study. PLoS One, 11(4): e0153140
CrossRef Pubmed Google scholar
[47]
Ospelt C (2016). Epigenetic biomarkers in rheumatology–the future? Swiss Med Wkly, 146: w14312
Pubmed
[48]
Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer C A, Viatte S, Finckh A, Smith D E, Gabay C (2009). Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum, 60(3): 738–749
CrossRef Pubmed Google scholar
[49]
Paradowska-Gorycka A, Wojtecka-Lukasik E, Trefler J, Wojciechowska B, Lacki J K, Maslinski S (2010). Association between IL-17F gene polymorphisms and susceptibility to and severity of rheumatoid arthritis (RA). Scand J Immunol, 72(2): 134–141
CrossRef Pubmed Google scholar
[50]
Parra M (2015). Class IIa HDACs- new insights into their functions in physiology and pathology. FEBS J, 282(9): 1736–1744
CrossRef Pubmed Google scholar
[51]
Pawlik A, Kotrych D, Malinowski D, Dziedziejko V, Czerewaty M, Safranow K (2016). IL17A and IL17F gene polymorphisms in patients with rheumatoid arthritis. BMC Musculoskelet Disord, 17(1): 208
CrossRef Pubmed Google scholar
[52]
Picascia A, Grimaldi V, Pignalosa O, De Pascale M R, Schiano C, Napoli C (2015). Epigenetic control of autoimmune diseases: from bench to bedside. Clin Immunol, 157(1): 1–15
CrossRef Pubmed Google scholar
[53]
Plant D, Webster A, Nair N, Oliver J, Smith S L, Eyre S, Hyrich K L, Wilson A G, Morgan A W, Isaacs J D, Worthington J, Barton A (2016). Differential methylation as a biomarker of response to etanercept in patients with rheumatoid arthritis. Arthritis Rheumatol, 68(6): 1353–1360
CrossRef Pubmed Google scholar
[54]
Robinson W H, Lindstrom T M, Cheung R K, Sokolove J (2013). Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nat Rev Rheumatol, 9(5): 267–276
CrossRef Pubmed Google scholar
[55]
Ruyssen-Witrand A, Degboé Y, Cantagrel A, Nigon D, Lukas C, Scaramuzzino S, Allanore Y, Vittecoq O, Schaeverbeke T, Morel J, Sibilia J, Cambon-Thomsen A, Dieudé P, Constantin A (2016). Association between RANK, RANKL and OPG polymorphisms with ACPA and erosions in rheumatoid arthritis: results from a meta-analysis involving three French cohorts. RMD Open, 2(2): e000226
CrossRef Pubmed Google scholar
[56]
Sellam J, Rivière E, Courties A, Rouzaire P O, Tolusso B, Vital E M, Emery P, Ferraciolli G, Soubrier M, Ly B, Hendel Chavez H, Taoufik Y, Dougados M, Mariette X (2016). Serum IL-33, a new marker predicting response to rituximab in rheumatoid arthritis. Arthritis Res Ther, 18(1): 294
CrossRef Pubmed Google scholar
[57]
Sharma J, Bhar S (2017). C SD. A review on Interleukins: the key manipulators in Rheumatoid Arthritis. Mod Rheumatol, doi:10.1080/14397595.2016.1266071
[58]
Siebuhr A S, Wang J, Karsdal M, Bay-Jensen A C, Jin Y, Zheng Q (2012). Matrix metalloproteinase-dependent turnover of cartilage, synovial membrane, and connective tissue is elevated in rats with collagen induced arthritis. J Transl Med, 10(1): 195
CrossRef Pubmed Google scholar
[59]
Smolenska Z, Smolenski R T, Zdrojewski Z (2016). Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis--potential biomarkers of disease activity and drug treatment. Biomarkers, 21(3): 218–224
CrossRef Pubmed Google scholar
[60]
Snir O, Gomez-Cabrero D, Montes A, Perez-Pampin E, Gómez-Reino J J, Seddighzadeh M, Klich K U, Israelsson L, Ding B, Catrina A I, Holmdahl R, Alfredsson L, Klareskog L, Tegnér J, Gonzalez A, Malmström V, Padyukov L (2014). Non-HLA genes PTPN22, CDK6 and PADI4 are associated with specific autoantibodies in HLA-defined subgroups of rheumatoid arthritis. Arthritis Res Ther, 16(4): 414
CrossRef Pubmed Google scholar
[61]
Sode J, Vogel U, Bank S, Andersen PS, Hetland ML, Locht H, Heegaard NH, Andersen V (2016). Confirmation of an IRAK3 polymorphism as a genetic marker predicting response to anti-TNF treatment in rheumatoid arthritis. Pharmacogenomics J. 
CrossRef Google scholar
[62]
Song J, Jin E H, Kim D, Kim K Y, Chun C H, Jin E J (2014). MicroRNA-222 regulates MMP-13 via targeting HDAC-4 during osteoarthritis pathogenesis. BBA Clin, 3: 79–89
CrossRef Pubmed Google scholar
[63]
Syversen S W, Gaarder P I, Goll G L, Ødegård S, Haavardsholm E A, Mowinckel P, van der Heijde D, Landewé R, Kvien T K (2008). High anti-cyclic citrullinated peptide levels and an algorithm of four variables predict radiographic progression in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann Rheum Dis, 67(2): 212–217
CrossRef Pubmed Google scholar
[64]
Tedesco A, D’Agostino D, Soriente I, Amato P, Piccoli R, Sabatini P (2009). A new strategy for the early diagnosis of rheumatoid arthritis: a combined approach. Autoimmun Rev, 8(3): 233–237
CrossRef Pubmed Google scholar
[65]
Tejasvi T, Stuart P E, Chandran V, Voorhees J J, Gladman D D, Rahman P, Elder J T, Nair R P (2012). TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol, 132(3 Pt 1): 593–600
CrossRef Pubmed Google scholar
[66]
Torices S, Julia A, Muñoz P, Varela I, Balsa A, Marsal S, Fernández-Nebro A, Blanco F, López-Hoyos M, Martinez-Taboada V, Fernández-Luna J L (2016). A functional  variant  of TLR10 modifies the  activity  of  NFkB  and  may help  predict  a  worse  prognosis  in patients with  rheumatoid  arthritis.  Arthritis  Res  Ther, 18(1):  221
CrossRef Pubmed Google scholar
[67]
Toussirot E, Abbas W, Khan K A, Tissot M, Jeudy A, Baud L, Bertolini E, Wendling D, Herbein G (2013). Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production. PLoS One, 8(8): e70939
CrossRef Pubmed Google scholar
[68]
Uemura Y, Hayashi H, Takahashi T, Saitho T, Umeda R, Ichise Y, Sendo S, Tsuji G, Kumagai S (2015). MMP-3 as a biomarker of disease activity of rheumatoid Arthritis Rinsho Byori, 63(12): 1357–1364 
Pubmed
[69]
van Steenbergen H W, Raychaudhuri S, Rodríguez-Rodríguez L, Rantapää-Dahlqvist S, Berglin E, Toes R E, Huizinga T W, Fernández-Gutiérrez B, Gregersen P K, van der Helm-van Mil A H (2015). Association of valine and leucine at HLA-DRB1 position 11 with radiographic progression in rheumatoid arthritis, independent of the shared epitope alleles but not independent of anti-citrullinated protein antibodies. Arthritis Rheumatol, 67(4): 877–886
CrossRef Pubmed Google scholar
[70]
Viatte S, Lee J C, Fu B, Espéli M, Lunt M, De Wolf J N, Wheeler L, Reynolds J A, Castelino M, Symmons D P, Lyons P A, Barton A, Smith K G (2016). Association between genetic variation in FOXO3 and reductions in inflammation and disease activity in inflammatory polyarthritis. Arthritis Rheumatol, 68(11): 2629–2636
CrossRef Pubmed Google scholar
[71]
Viatte S, Plant D, Raychaudhuri S (2013). Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol, 9(3): 141–153
CrossRef Pubmed Google scholar
[72]
Visvanathan S, Wagner C, Rojas J, Kay J, Dasgupta B, Matteson E L, Mack M, Baker D G, Rahman M U (2009). E-selectin, interleukin 18, serum amyloid a, and matrix metalloproteinase 9 are associated with clinical response to golimumab plus methotrexate in patients with active rheumatoid arthritis despite methotrexate therapy. J Rheumatol, 36(7): 1371–1379
CrossRef Pubmed Google scholar
[73]
Walsh A M, Whitaker J W, Huang C C, Cherkas Y, Lamberth S L, Brodmerkel C, Curran M E, Dobrin R (2016). Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations. Genome Biol, 17(1): 79
CrossRef Pubmed Google scholar
[74]
Watanabe T, Takahashi N, Hirabara S, Ishiguro N, Kojima T (2016). Hyaluronan inhibits Tlr-4-dependent RANKL expression in human rheumatoid arthritis synovial fibroblasts. PLoS One, 11(4): e0153142
CrossRef Pubmed Google scholar
[75]
Wei S T, Sun Y H, Zong S H, Xiang Y B (2015). Serum levels of IL-6 and TNF-α may correlate with activity and severity of rheumatoid arthritis. Med Sci Monit, 21: 4030–4038
CrossRef Pubmed Google scholar
[76]
Yamamoto K, Okada Y, Suzuki A, Kochi Y (2015). Genetic studies of rheumatoid arthritis. Proc Jpn Acad, Ser B, Phys Biol Sci, 91(8): 410–422
CrossRef Pubmed Google scholar
[77]
Yang J, Du H, Lv J, Zhang L (2016). Association of rs1137101 polymorphism in LEPR and susceptibility to knee osteoarthritis in a Northwest Chinese Han population. BMC Musculoskelet Disord, 17(1): 311
CrossRef Pubmed Google scholar
[78]
Yi J P, Wu Y Z, Yu N, Yu Z W, Xie F Y, Yuan Q (2016). VEGF gene polymorphisms affect serum protein levels and alter disease activity and synovial lesions in rheumatoid arthritis. Med Sci Monit, 22: 316–324
CrossRef Pubmed Google scholar
[79]
Zengin O, Onder M E, Kalem A, Bilici M, Türkbeyler I H, Ozturk Z A, Kisacik B, Onat A M (2016). New inflammatory markers in early rheumatoid arthritis. Z Rheumatol,doi:10.10071S00393-016-0187-y
[80]
Zhai T, Gao C, Huo R, Sheng H, Sun S, Xie J, He Y, Gao H, Li H, Zhang J, Li H, Sun Y, Lin J, Shen B, Xiao L, Li N (2016). Cyr61 participates in the pathogenesis of rheumatoid arthritis via promoting MMP-3 expression by fibroblast-like synoviocytes. Mod Rheumatol, 27(3): 466–475160;
CrossRef Pubmed Google scholar
[81]
Zhang Y, Ren G, Guo M, Ye X, Zhao J, Xu L, Qi J, Kan F, Liu M, Li D (2013). Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol, 15(2): 199–205
CrossRef Pubmed Google scholar

Acknowledgements

We wish to thank all our colleagues in Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences.

Compliance with ethics guidelines

This article does not contain any studies with human participants or animals performed by any of the authors.
The authors declare no conflict of interest.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(438 KB)

Accesses

Citations

Detail

Sections
Recommended

/