The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury

Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, Qiaojie Xiong

PDF(2519 KB)
PDF(2519 KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (2) : 124-138. DOI: 10.1007/s11515-017-1447-1
RESEARCH ARTICLE

The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury

Author information +
History +

Abstract

BACKGROUND: Neuronal primary cilia are sensory organelles that are critically involved in the proper growth, development, and function of the central nervous system (CNS). Recent work also suggests that they signal in the context of CNS injury, and that abnormal ciliary signaling may be implicated in neurological diseases.

METHODS: We quantified the distribution of neuronal primary cilia alignment throughout the normal adult mouse brain by immunohistochemical staining for the primary cilia marker adenylyl cyclase III (ACIII) and measuring the angles of primary cilia with respect to global and local coordinate planes. We then introduced two different models of acute brain insult—temporal lobe seizure and cerebral ischemia, and re-examined neuronal primary cilia distribution, as well as ciliary lengths and the proportion of neurons harboring cilia.

RESULTS: Under basal conditions, cortical cilia align themselves radially with respect to the cortical surface, while cilia in the dentate gyrus align themselves radially with respect to the granule cell layer. Cilia of neurons in the striatum and thalamus, by contrast, exhibit a wide distribution of ciliary arrangements. In both cases of acute brain insult, primary cilia alignment was significantly disrupted in a region-specific manner, with areas affected by the insult preferentially disrupted. Further, the two models promoted differential effects on ciliary lengths, while only the ischemia model decreased the proportion of ciliated cells.

CONCLUSIONS:These findings provide evidence for the regional anatomical organization of neuronal primary cilia in the adult brain and suggest that various brain insults may disrupt this organization.

Keywords

cerebral cortex / dentate gyrus / temporal lobe seizure / cerebral ischemia

Cite this article

Download citation ▾
Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, Qiaojie Xiong. The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury. Front. Biol., 2017, 12(2): 124‒138 https://doi.org/10.1007/s11515-017-1447-1

References

[1]
Albrecht P J, Dahl  J P, Stoltzfus  O K, Levenson  R, Levison S W  (2002). Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol, 173(1): 46–62
CrossRef Google scholar
[2]
Benes F M, Berretta  S (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25(1): 1–27
CrossRef Google scholar
[3]
Berbari N F, Lewis  J S, Bishop  G A, Askwith  C C, Mykytyn  K (2008). Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA, 105(11): 4242–4246 
CrossRef Google scholar
[4]
Berbari N F, O’Connor  A K, Haycraft  C J, Yoder  B K (2009). The primary cilium as a complex signaling center. Curr Biol, 19(13): R526–R535
CrossRef Google scholar
[5]
Bishop G A, Berbari  N F, Lewis  J, Mykytyn K  (2007). Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol, 505(5): 562–571 
CrossRef Google scholar
[6]
Breunig J J, Sarkisian  M R, Arellano  J I, Morozov  Y M, Ayoub  A E, Sojitra  S, Wang B ,  Flavell R A ,  Rakic P ,  Town T (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA, 105(35): 13127–13132
CrossRef Google scholar
[7]
Bruce A J, Boling  W, Kindy M S ,  Peschon J ,  Kraemer P J ,  Carpenter M K ,  Holtsberg F W ,  Mattson M P  (1996). Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med, 2(7): 788–794
CrossRef Google scholar
[8]
Buendia B, Bre  M H, Griffiths  G, Karsenti E  (1990). Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J Cell Biol, 110(4): 1123–1135
CrossRef Google scholar
[9]
Busceti C L, Biagioni  F, Aronica E ,  Riozzi B ,  Storto M ,  Battaglia G ,  Giorgi F S ,  Gradini R ,  Fornai F ,  Caricasole A ,  Nicoletti F ,  Bruno V  (2007). Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia, 48(4): 694–705
CrossRef Google scholar
[10]
Coyle P (1976). Vascular patterns of the rat hippocampal formation. Exp Neurol, 52(3): 447–458
CrossRef Google scholar
[11]
Curia G, Longo  D, Biagini G ,  Jones R S ,  Avoli M  (2008). The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods, 172(2): 143–157
CrossRef Google scholar
[12]
DeCaen P G, Delling  M, Vien T N ,  Clapham D E  (2013). Direct recording and molecular identification of the calcium channel of primary cilia. Nature, 504(7479): 315–318
CrossRef Google scholar
[13]
Dorr A, Sled  J G, Kabani  N (2007). Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage, 35(4): 1409–1423 
CrossRef Google scholar
[14]
Dutta R, McDonough  J, Chang A ,  Swamy L ,  Siu A, Kidd  G J, Rudick  R, Mirnics K ,  Trapp B D  (2007). Activation of the ciliary neurotrophic factor (CNTF) signalling pathway in cortical neurons of multiple sclerosis patients. Brain, 130(10): 2566–2576
CrossRef Google scholar
[15]
Einstein E B, Patterson  C A, Hon  B J, Regan  K A, Reddi  J, Melnikoff D E ,  Mateer M J ,  Schulz S ,  Johnson B N ,  Tallent M K  (2010). Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci, 30(12): 4306–4314
CrossRef Google scholar
[16]
Fuchs J L, Schwark  H D (2004). Neuronal primary cilia: a review. Cell Biol Int, 28(2): 111–118
CrossRef Google scholar
[17]
Garcia J H, Yoshida  Y, Chen H ,  Li Y, Zhang  Z G, Lian  J, Chen S ,  Chopp M  (1993). Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol, 142: 623–635
[18]
Goetz S C, Anderson  K V (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5): 331–344
CrossRef Google scholar
[19]
Han Y G, Alvarez-Buylla  A (2010). Role of primary cilia in brain development and cancer. Curr Opin Neurobiol, 20(1): 58–67
CrossRef Google scholar
[20]
Han Y G, Spassky  N, Romaguera-Ros M ,  Garcia-Verdugo J M ,  Aguilar A ,  Schneider-Maunoury S ,  Alvarez-Buylla A  (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci, 11(3): 277–284
CrossRef Google scholar
[21]
Handel M, Schulz  S, Stanarius A ,  Schreff M ,  Erdtmann-Vourliotis M ,  Schmidt H ,  Wolf G, Hollt  V (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 89(3): 909–926
CrossRef Google scholar
[22]
Huang L T, Yang  S N, Liou  C W, Hung  P L, Lai  M C, Wang  C L, Wang  T J (2002). Pentylenetetrazol-induced recurrent seizures in rat pups: time course on spatial learning and long-term effects. Epilepsia, 43(6): 567–573
CrossRef Google scholar
[23]
Inose Y, Kato  Y, Kitagawa K ,  Uchiyama S ,  Shibata N  (2015). Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes. Neuropathology, 35(3): 209–223
CrossRef Google scholar
[24]
Irle E, Markowitsch  H J (1982). Connections of the hippocampal formation, mamillary bodies, anterior thalamus and cingulate cortex. A retrograde study using horseradish peroxidase in the cat. Exp Brain Res, 47(1): 79–94 
CrossRef Google scholar
[25]
Ishikawa H, Marshall  W F (2011). Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol, 12(4): 222–234
CrossRef Google scholar
[26]
Khan A A, Mao  X O, Banwait  S, DerMardirossian C M ,  Bokoch G M ,  Jin K, Greenberg  D A (2008). Regulation of hypoxic neuronal death signaling by neuroglobin. FASEB J, 22(6): 1737–1747
CrossRef Google scholar
[27]
Kumamoto N, Gu  Y, Wang J ,  Janoschka S ,  Takemaru K ,  Levine J ,  Ge S (2012). A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci, 15: 399–405, S391
[28]
Lee J E, Gleeson  J G (2011). Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol, 24(2): 98–105
CrossRef Google scholar
[29]
Madsen T M, Newton  S S, Eaton  M E, Russell  D S, Duman  R S (2003). Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role in adult neurogenesis. Biol Psychiatry, 54(10): 1006–1014
CrossRef Google scholar
[30]
Maguschak K A ,  Ressler K J  (2012). The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology, 62(1): 78–88
CrossRef Google scholar
[31]
Marchi N, Oby  E, Batra A ,  Uva L, De Curtis  M, Hernandez N ,  Van Boxel-Dezaire A ,  Najm I, Janigro  D (2007). In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia, 48(10): 1934–1946
CrossRef Google scholar
[32]
Massinen S, Hokkanen  M E, Matsson  H, Tammimies K ,  Tapia-Paez I ,  Dahlstrom-Heuser V ,  Kuja-Panula J ,  Burghoorn J ,  Jeppsson K E ,  Swoboda P ,  Peyrard-Janvid M ,  Toftgård R ,  Castrén E ,  Kere J (2011). Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS One, 6(6): e20580
CrossRef Google scholar
[33]
Ota A, Ikeda  T, Ikenoue T ,  Toshimori K  (1997). Sequence of neuronal responses assessed by immunohistochemistry in the newborn rat brain after hypoxia-ischemia. Am J Obstet Gynecol, 177(3): 519–526
CrossRef Google scholar
[34]
Pan W X, Mao  T, Dudman J T  (2010). Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain. Front Neuroanat, 4: 147
CrossRef Google scholar
[35]
Parent J M, Elliott  R C, Pleasure  S J, Barbaro  N M, Lowenstein  D H (2006). Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol, 59(1): 81–91
CrossRef Google scholar
[36]
Parker A K, Le  M M, Smith  T S, Hoang-Minh  L B, Atkinson  E W, Ugartemendia  G, Semple-Rowland S ,  Coleman J E ,  Sarkisian M R  (2016). Neonatal seizures induced by pentylenetetrazol or kainic acid disrupt primary cilia growth on developing mouse cortical neurons. Exp Neurol, 282: 119–127
CrossRef Google scholar
[37]
Pedersen L B, Rosenbaum  J L (2008). Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol, 85: 23–61
CrossRef Google scholar
[38]
Pessoa D, Cruz  R, Machado B ,  Tenorio B ,  Nogueira R  (2016). Analysis of electrocorticographic patterns in rats fed standard or hyperlipidic diets in a normal state or during status epilepticus. Nutr Neurosci, 19(5): 206–212
CrossRef Google scholar
[39]
Quinlan R J, Tobin  J L, Beales  P L (2008). Modeling ciliopathies: Primary cilia in development and disease. Curr Top Dev Biol, 84: 249–310
CrossRef Google scholar
[40]
Rhee S, Kirschen  G W, Gu  Y, Ge S  (2016). Depletion of primary cilia from mature dentate granule cells impairs hippocampus-dependent contextual memory. Sci Rep, 6: 34370
CrossRef Google scholar
[41]
Rowley S, Liang  L P, Fulton  R, Shimizu T ,  Day B, Patel  M (2015). Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis, 75: 151–158
CrossRef Google scholar
[42]
Sierra A, Martin-Suarez  S, Valcarcel-Martin R ,  Pascual-Brazo J ,  Aelvoet S A ,  Abiega O ,  Deudero J J ,  Brewster A L ,  Bernales I ,  Anderson A E ,  Baekelandt V ,  Maletić-Savatić M ,  Encinas J M  (2015). Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell, 16(5): 488–503
CrossRef Google scholar
[43]
Singla V, Reiter  J F (2006). The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science, 313(5787): 629–633
CrossRef Google scholar
[44]
Spruston N (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci, 9(3): 206–221
CrossRef Google scholar
[45]
Theilhaber J, Rakhade  S N, Sudhalter  J, Kothari N ,  Klein P ,  Pollard J ,  Jensen F E  (2013). Gene expression profiling of a hypoxic seizure model of epilepsy suggests a role for mTOR and Wnt signaling in epileptogenesis. PLoS One, 8(9): e74428
CrossRef Google scholar
[46]
Valente E M, Rosti  R O, Gibbs  E, Gleeson J G  (2014). Primary cilia in neurodevelopmental disorders. Nat Rev Neurol, 10(1): 27–36
CrossRef Google scholar
[47]
Wang Z, Phan  T, Storm D R  (2011). The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J Neurosci, 31(15): 5557–5561
CrossRef Google scholar
[48]
Ware S M, Aygun  M G, Hildebrandt  F (2011). Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc, 8(5): 444–450
CrossRef Google scholar
[49]
Winter C G, Saotome  Y, Levison S W ,  Hirsh D  (1995). A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Natl Acad Sci USA, 92(13): 5865–5869
CrossRef Google scholar
[50]
Wolf H K, Buslei  R, Schmidt-Kastner R ,  Schmidt-Kastner P K ,  Pietsch T ,  Wiestler O D ,  Blumcke I  (1996). NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem, 44(10): 1167–1171
CrossRef Google scholar
[51]
Yagita Y, Kitagawa  K, Ohtsuki T ,  Takasawa K ,  Miyata T ,  Okano H ,  Hori M, Matsumoto  M (2001). Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke, 32(8): 1890–1896
CrossRef Google scholar
[52]
Yin Y, Zhao  X, Fang Y ,  Huang L  (2010). Carotid artery wire injury mouse model with a nonmicrosurgical procedure. Vascular, 18(4): 221–226
CrossRef Google scholar
[53]
Yoder B K (2007). Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol, 18(5): 1381–1388
CrossRef Google scholar
[54]
Zhao C, Teng  E M, Summers  R G Jr, Ming  G L, Gage  F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11 
CrossRef Google scholar

Acknowledgements

This work was supported by 1R21AG046875 and R01NS089770 to S.G., 1F30MH110103 to G.W.K., and departmental internal funding to Q.X., and the Simons Summer Research Program (SSRP) to Tracy Lang.

Compliance with ethics guidelines

Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, and Qiaojie Xiong declare that they have no conflicts of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(2519 KB)

Accesses

Citations

Detail

Sections
Recommended

/