Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment

Arooj Arshad , Bisma Ashraf , Iftikhar Ali , Nazia Jamil

Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 210 -218.

PDF (2126KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 210 -218. DOI: 10.1007/s11515-017-1446-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment

Author information +
History +
PDF (2126KB)

Abstract

BACKGROUND: Styrene and its metabolites are known to have serious adverse effects on human health and hence, strategies to prevent its release, eradicate it from the environment, and understand its route of degradation are being considered.

METHODS: A total of 18 strains were isolated from 4 samples of diesel contaminated soils. Among them 5 strains were selected for their ability to degrade styrene and use it as a sole carbon source to produce PHA. These strains were identified as Enterobacter spp. on the basis of 16S rRNA gene sequencing. Bacteria were screened for their ability to produce PHA by utilizing glucose and styrene as a carbon sources. Screening for PHA production was done by Nile blue A, Sudan black B, and phase contrast microscopy and the selected 3 strains showed positive results. Growth kinetics along with time profiling of PHA was performed for glucose and styrene as carbon sources.

RESULTS:PHA extraction was done at equal intervals of 12 h by sodium hypochlorite method which showed that these strains accumulate maximum amount of PHA after 48 h in glucose (30.60%). FTIR analysis of PHA was done which revealed homopolymer PHB and copolymer (PHB-co-PHV) production in strains by utilizing glucose and styrene. Gas chromatography mass spectrometry was carried out to identify the metabolites produced by bacterial strains grown on styrene. Metabolites of styrene degradation included propyne and phenylalanine. Genomic DNA isolation was carried out to amplify phaC gene which encodes PHA synthase enzyme.

CONCLUSIONS: The conversion of styrene to polyhydroxyalkanoates (PHA) provides a new and unique link between an aromatic environmental pollutant and aliphatic PHA accumulation.

Keywords

biodegradable polymers / environmental pollutants / PHA / FTIR / recycling / bacteria

Cite this article

Download citation ▾
Arooj Arshad, Bisma Ashraf, Iftikhar Ali, Nazia Jamil. Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment. Front. Biol., 2017, 12(3): 210-218 DOI:10.1007/s11515-017-1446-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali IJamil N (2014). Enhanced biosynthesis of poly(3-hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter. Prep Biochem Biotechnol44(8): 822–833

[2]

Ali IJamil N (2016). Polyhydroxyalkanoates: Current applications in the medical field. Front Biol11(1): 19–27

[3]

Ali IJamil N ( 2016).Biosynthesis and characterization of poly3-hydroxyalkanote (PHA) from newly isolated bacterium Bacillus sp. AZR-1. Iran J Sci Technol Trans Sci, pp. 1–8

[4]

Beltrametti FMarconi A MBestetti GColombo CGalli ERuzzi MZennaro E (1997). Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol63(6): 2232–2239

[5]

Chanprateep S (2010). Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng110(6): 621–632

[6]

Chaudhry W NJamil NAli IAyaz M HHasnain S (2011). Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol61(3): 623–629

[7]

Choi JLee S Y (1999). Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol51(1): 13–21

[8]

Hartmans Svan der Werf M Jde Bont J A (1990). Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol56(5): 1347–1351

[9]

Hindré TBrüggemann HBuchrieser CHéchard Y (2008). Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology154(Pt 1): 30–41

[10]

Hollmann FLin P CWitholt BSchmid A (2003). Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc125(27): 8209–8217

[11]

Hussain ZKhan K MHussain K (2010). Microwave–metal interaction pyrolysis of polystyrene. J Anal Appl Pyrolysis89(1): 39–43

[12]

Luhana K, Patel V(2013). Quantitative extraction and analysis of bioplastic (PHA) accumulated in bacterial isolates of paint industry effluent. International Journal of Chemtech Applications (INTJCA)2(3): 52–62

[13]

Michael PLoganayagi RNancy DRanandkumar S GIndra  A P(2012). Isolation and characterization of indigenous Ralstonia strain, YRF1 for high Polyhydroxy Alkanoates (PHA) production. Elixir Appl Biol, 48(2012): 9424–9427

[14]

Miskolczi NBorsodi NBuyong FAngyal AWilliams P T (2011). Production of pyrolytic oils by catalytic pyrolysis of Malaysian refuse-derived fuels in continuously stirred batch reactor. Fuel Process Technol92(5): 925–932

[15]

Mohammadi MHassan M AShirai YMan H CAriffin HYee L NMumtaz TChong M LPhang L Y (2012). Separation and purification of polyhydroxyalkanoates from newly isolated Comamonas sp. EB172 by simple digestion with sodium hydroxide. Sep Sci Technol47(3): 534–541

[16]

Moita RLemos P C (2012). Biopolymers production from mixed cultures  and  pyrolysis   by-products.  J  Biotechnol157(4): 578–583

[17]

O’Leary N DO’Connor K EDobson A D (2002). Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev26(4): 403–417

[18]

Obruca SMarova ISvoboda ZMikulikova R (2010). Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiol (Praha)55(1): 17–22

[19]

Otari SGhosh J (2009). Production and characterization of the polymer polyhydroxy butyrate-copolyhydroxy valerate by Bacillus megaterium NCIM 2475. Current Research Journal of Biological Sciences1(2): 23–26

[20]

Paladino L P A ( 2009) .Screening, optimization and extraction of polyhydroxyalkanoates and peptidoglycan from Bacillus megaterium

[21]

Park M SHan J HYoo S SLee E YLee S GPark S (2005). Degradation of styrene by a new isolate Pseudomonas putida SN1. Korean J Chem Eng22(3): 418–424

[22]

Peplinski KEhrenreich ADöring CBömeke MReinecke FHutmacher CSteinbüchel A (2010). Genome-wide transcriptome analyses of the ‘Knallgas’ bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology156(Pt 7): 2136–2152

[23]

Pötter MSteinbüchel A (2005). Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules6(2): 552–560

[24]

Rosazza J PHuang ZDostal LVolm TRousseau B (1995). Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol15(6): 457–471

[25]

Rossi GMonticelli LPuisto S RVattulainen IAla-Nissila T (2011). Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter7(2): 698–708

[26]

Sambrook JRussell D W (2001). Molecular cloning: a laboratory manual (3-volume set). Vol. 999. Cold spring harbor laboratory press Cold Spring Harbor, New York

[27]

Sathesh Prabu CMurugesan A (2010). Effective utilization and management of coir industrial waste for the production of poly-Î2-hydroxybutyrate (PHB) using the bacterium Azotobacter beijerinickii. Int J Environ Res4(3): 519–524

[28]

Spiekermann PRehm B HKalscheuer RBaumeister DSteinbüchel A (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol171(2): 73–80

[29]

Sudesh KAbe HDoi Y (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci25(10): 1503–1555

[30]

Tamura KStecher GPeterson DFilipski AKumar S (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30(12): 2725–2729

[31]

Velasco AAlonso SGarcía J LPerera JDíaz E (1998). Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol180(5): 1063–1071

[32]

Xiao NJiao N (2011). Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability. Appl Environ Microbiol77(21): 7445–7450

[33]

Yang CZhang WLiu RZhang CGong TLi QWang SSong C (2013). Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate. FEMS Microbiol Lett346(1): 56–64

[34]

Younas TAli IJamil N (2015). Polyhydroxyalkanotes (PHAs) production by using canola oil as carbon source from bacteria isolated near paper pulp industry. Kuwait Journal of Science42(2)

[35]

Zhu CNomura C TPerrotta J AStipanovic A JNakas J P (2010). Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog26(2): 424–430

[36]

Zinn MWitholt BEgli T (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev53(1): 5–21

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2126KB)

Supplementary files

FIB-10446-OF-IA_suppl_1

1165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/