Intestinal organoid as an in vitromodel in studying host-microbial interactions

Jun Sun

Front. Biol. ›› 2017, Vol. 12 ›› Issue (2) : 94 -102.

PDF (1859KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (2) : 94 -102. DOI: 10.1007/s11515-017-1444-4
REVIEW
REVIEW

Intestinal organoid as an in vitromodel in studying host-microbial interactions

Author information +
History +
PDF (1859KB)

Abstract

BACKGROUND: Organoid is an in vitro three-dimensional organ-bud that shows realistic microanatomy and physiological relevance. The progress in generating organoids that faithfully recapitulate humanin vivo tissue composition has extended organoid applications from being just a basic research tool to a translational platform with a wide range of uses. Study of host-microbial interactions relies on model systems to mimic thein vivo infection. Researchers have developed various experimental models in vitro and in vivo to examine the dynamic host-microbial interactions. For some infectious pathogens, model systems are lacking whereas some of the used systems are far from optimal.

OBJECTIVE: In the present work, we will review the brief history and recent findings using organoids for studying host-microbial interactions.

METHODS: A systematic literature search was performed using the PubMed search engine. We also shared our data and research contribution to the field.

RESULTS: we summarize the brief history of 3D organoids. We discuss the feasibility of using organoids in studying host-microbial interactions, focusing on the development of intestinal organoids and gastric organoids. We highlight the advantage and challenges of the new experimental models. Further, we discuss the future direction in using organoids in studying host-microbial interactions and its potential application in biomedical studies.

CONCLUSION: In combination with genetic, transcriptome and proteomic profiling, both murine- and human-derived organoids have revealed crucial aspects of development, homeostasis and diseases. Specifically, human organoids from susceptible host will be used to test their responses to pathogens, probiotics, and drugs. Organoid system is an exciting tool for studying infectious disease, microbiome, and therapy.

Keywords

bacteria / colonoids / enteroids / gastric organoids / host-microbial interactions / H. pylori / inflammation / intestinal organoids / microbiome / organoids / tight junctions / Salmonella / stem-cell differentiation / ZO-1

Cite this article

Download citation ▾
Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions. Front. Biol., 2017, 12(2): 94-102 DOI:10.1007/s11515-017-1444-4

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Researchers have employed various in vitro and in vivo experimental models to investigate interactions taking place between microbes (e.g. bacteria, parasites, virus) and their host (e.g. humans, animals). These models consist of cell cultures deriving from human or animal cells (Dingli and Nowak, 2006), animals that can be inoculated with pathogens orally or parenterally (Fang et al., 2013), and organoids modeling host-microbial interactions (Fatehullah et al., 2016). The ultimate aim of these models is to create an environment in vitro that can imitate the real circumstances of the human to elucidate physiological mechanisms of host responses in health and diseases.

In this review, we will summarize the brief history of 3D organoids, focusing on the development of intestinal organoids and gastric organoids. We will discuss the feasibility of using organoids in studying the effects and mechanisms of host-microbial interactions. Also, we will highlight the advantage and challenges of the newly developed experimental models. Further, we will discuss the future direction in using organoids as anin vitro model to study host-microbial interactions and its potential application in biomedical studies.

History of organoids

Cell culture was first invented at the beginning of the twentieth century, and was used to study frog embryo nerve fiber outgrowth (Harrison, 1907). Using of dispersed cell cultures rapidly increased in the second half of the twentieth century (Hilleman 1990). Organ culture is a development from cell culture methods. It retains histological structure and the architecture characteristic of the tissue. However, compared with other types of tissue culture, organ culture has several shortcomings, including difficulty in quantification of tissues or cells, limitation in the amounts of cultured samples, the requirement of skillful manipulation of the samples, and the challenge of reproducibility.

The 3D culture system has made it possible to recapitulate partially the complexity of mammalian organogenesis in vitro. The newly developed organoid system acts as a bridge between in vivo and in vitro systems. They can be derived from pluripotent stem cells (PSCs), both from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), as well as from adult stem cells (AdSCs) (Kristin et al., 2016).

ESCs are derived from the inner cell mass (ICM) of the preimplantation blastocyst. Under appropriate in vitro culture conditions, ESCs proliferate indefinitely without differentiation, a property hereinafter referred to as “self-renewal,” and at the same time retain the developing potential to generate cells of all three primary germ layers (Huang et al., 2015a).

Over the past three decades, researchers have developed methods to derive ESCs from the epiblast and expand them continuouslyin vitro. More recently, induced pluripotent stem cells (iPSCs) can be generated from almost any mature cell type in our bodies. These breakthroughs have allowed the differentiation of various PSC populations into somatic cell derivatives (Huch and Koo, 2015). Culturing human derivatives (hESCs/hiPSCs/hAdSCs) in three-dimension (3D) has opened up new horizons for the exploration of development and regenerative medicine approaches.

In the late 1980s, organoids derived from adult stem cells experiments performed on skin proved that epidermal stem cells were expandable and could generate vast amounts of epitheliumin vitro, supported by lethally irradiated 3T3 cells (Barrandon and Green, 1987). Until recently, the AdSC maintenance and tissue repair have been instrumental for the development of primary AdSCs cultures. AdSCs have gained much attention also for their intrinsic abilities to self-renew and differentiate into the cell types present in adult tissues while retaining genomic stability. Thus, organoids have all been derivedin vitro from AdSCs, including mammary gland, bone, stomach, small intestine, colon and liver. A recent review from Nature Cell Biology has excellently summarized the organoids from different tissues (Fatehullah et al., 2016). Here, we will focus on the intestinal organoids derived from adult stem/progenitor cells. We follow the definition from (Fatehullah et al., 2016) an organoid is an in vitro 3D cellular cluster derived exclusively from primary tissue, ESCs or iPSCs, capable of self-renewal and self-organization, and exhibiting similar organ functionality as the tissue of origin. Most of the documented organoid cultures contain functional tissue units that lack the mesenchymal, stromal, immune and neural cells that intersperse the tissuein vivo. These organoids rely on artificial extracellular matrices to facilitate self-organization into structures that resemble native tissue architecture.

In 2009, the development of intestinal organoid culture was an outstanding technological advance for the stem cell field (Ootani et al., 2009; Sato et al., 2009). Establishing intestinal organoids is challenging because it requires tissue-specific modifications that reflect the individual niche and lineage commitment factors for the resident stem cell populations and their progeny. Ootani et al. (2009) has reported a complex culture system from minced whole intestinal tissue embedded in a 3D collagen structure with support of stromal cells. Sato et al. (2009) has established a relatively simple organoid culture system, using Matrigel as an extracellular matrix (ECM) substitute, supplemented with growth factors constituting key endogenous niche signals. The system was used to create 3D structures with distinct crypt-like and villus-like domains bordering a central lumen containing dead cells extruded from the constantly renewing epithelial layer (Sato et al., 2009). Furthermore, these organoids from small intestine could be expanded for over a yearin vitro (Huch and Koo, 2015). In the organoids, the domains bordering a central lumen containing dead cells extruded from the constantly renewing epithelial layer. This new method takes advantage of our knowledge of endogenous intestinal stem cell niche components to deliver a well-defined, stable culture system capable of sustaining the long-term growth of near-physiological epithelia from purified Lgr5+ stem cells or isolated crypts.

Two years later, mouse- and human-derived colonic stem cells could also be expanded in culture with a minor modification to the culture medium composition (Jung et al., 2011; Sato et al., 2011a). Human colonic organoids could be expanded for at least 1 month. From 1 month onward, the colonic organoids changed their morphology from budding structures into cystic structures (Sato et al., 2011a). Coinciding with the morphologic conversion, proliferation progressively decreased. Occasionally, cystic organoids regained their proliferative potential. However, all organoids eventually arrested growth within 3 months. Microarray analysis revealed that the human small intestinal and colonic organoids possess comparable molecular signatures of intestinal crypts, including the expression of intestinal stem cell genes. Alk receptor and p38 signaling negatively regulate long-term maintenance of human intestinal epithelial cells (Sato et al., 2011a).

Miyoshi and Stappenbeck in 2013 published a very nice paper on how to perform expansion and genetic modification of organoids (Miyoshi and Stappenbeck, 2013). Based on their protocol, isolation of epithelial cell units from mice takes up to 2 h and stem cell-enriched gastrointestinal organoids are obtained within 3 days. Genetically modified organoids with lentiviruses can be obtained in 2 weeks. As shown in Fig. 1, the organoids derived from mouse small intestinal stem cells show organ-buds 7 days after isolation from crypts and recapitulated thein vivo tissue architecture.

Despite the similarities with the murine orgaoind system, the human organoids require specific molecules to enhance and sustain their growth over time. Compared to the culture of mouse organoids, the other challenge in human organoid culture is to obtain fresh samples and establish feasible protocol. In 2015, Mahe et al. reported the detailed protocol and procedure to establish human epithelial enteroids and colonoids using whole tissue and biopsy (Mahe et al., 2015). In this methodological paper, the authors emphasize the crypt collection from whole tissue and biopsies. They recapitulate the culture modalities that are critical for the successful growth and maintenance of human epithelial organoids (enteroids) (Mahe et al., 2013) and colonoids. Commonly, termed “enteroids” when derived from small intestine and “colonoids” when derived from colon (Mahe et al., 2015).

The intestinal epithelium of mammals consists of absorptive enterocytes and of three secretory cell types, paneth, goblet, and enteroendocrine cells, which are continuously replenished from stem cells that reside in niches in the lower parts of the crypts (Crosnier et al., 2006). Organoids contain the full complement of stem, progenitor and differentiated cell types (Sato et al., 2009; Fatehullah et al., 2016). Marker-specific antibodies for mucin 2 (goblet cells), lysozyme (Paneth cells), and chromogranin A (enteroendocrine cells) are used to validate the presence of intestinal secretory cell lineages in orgaoinds. The enteroids/colonoids continuously produce all cell types found normally within the intestinal epithelium. Researchers who focus on specialized cell types, such as goblet cells or Paneth cells, find the organoid as a very usefulin vitro model for insights into GI development, tissue homeostasis, and diseases (Dedhia et al., 2016). In human intestinal organoids treated with Notch inhibition dibenzazepine (DBZ, 10 mol/ L), the intestinal organoids ceased their proliferation and most cells converted into goblet cells within 3 days (Sato et al., 2011a). It is reported that Mitogen-activated Protein Kinase (MAPK) signaling controls goblet/Paneth cell fate decisions in the intestine (Heuberger et al., 2014). Ablation of the tyrosine phosphatase Shp2 in the intestinal epithelium reduced MAPK signaling and led to a reduction of goblet cells while promoting Paneth cell development. Inhibition of MAPK signaling in mouse intestinal organoids changed the relative abundance of T cell factor 4 isoforms, which promoted Wnt/b-catenin activity. The data show that Shp2-mediated MAPK signaling controls the choice between goblet and Paneth cell fates by regulating Wnt/b-catenin activity.

Goblet and Paneth cells represent two secretory cell types in the intestinal epithelium It is believed that the intestinal organoids derived from human IPSCs are more small intestine like in structure than mouse organoids because of the presence of Paneth-like cells and the villus-like protrusions (Forbester et al., 2015). The organoids provide a new tool to study the development and functions of these cell types that are critical for the host-microbe interactions in health and diseases.

The organoids subsequently adapted for generating human organoids and also from animal models with different genetic modification have been used for various basic and clinic research, including host-microbial interactions.

Feasibility and application of organoids in studying host-microbial interactions

Study of host-microbial interactions relies on model systems to mimic the in vivo infection. For some infectious pathogens, model systems are lacking whereas some of the used systems are far from optimal. Recent reports have shown the feasibility to use organoids as anin vitro model to study host-pathogen interactions (Zhang et al., 2014) (Bartfeld and Clevers, 2015). These studies have used organoids to model infections with bacteria, such asSalmonella (Forbester et al., 2014; Zhang et al., 2014; Forbester et al., 2015; Wilson et al., 2015), Helicobacter pylori (McCracken et al., 2014; Bartfeld et al., 2015; Huang et al., 2015b; Schumacher et al., 2015; Sigal et al., 2015; Schlaermann et al., 2016) , Bacterioides thetaiotaomicron (Engevik et al., 2013), Clostridium difficile(Leslie et al., 2015), viruses (e.g. rotavirus (Finkbeiner et al., 2012; Finkbeiner et al., 2012; Yin et al., 2015), Cytomegalovirus (D’Aiuto et al., 2012; Penkert and Kalejta, 2013), Zika virus (Garcez et al., 2016) or Hepatitis C Virus (Yoshida et al., 2011; Roelandt et al., 2012; Schwartz et al., 2012; Wu et al., 2012; Shlomai et al., 2014)) and parasites, such as Plasmodium falciparum (Ng et al., 2015) or Toxoplasma gondii (Klotz et al., 2012).

Intestinal organoids in host-pathogenic bacterial interactions

Salmonella Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so thatSalmonella reach the intestinal epithelium and trigger gastrointestinal disease. In 2014, we reported using an intestinal organoid culture system to study pathophysiology of bacterial-epithelial interactions postS.Typhimurium infection (Zhang et al., 2014). Using crypt-derived mouse intestinal organoids, we were able to visualize the invasiveness ofS.Typhimurium and the morphologic changes of the organoids (Fig. 1B). S.Typhimurium entered the epithelial cells of the organoids and this resulted in disruption of the tight junctions (Fig. 2). We showed that distribution of ZO-1, a tight junction protein, was weak and disconnected in the organoids infected withSalmonella. Using the organoids, we also established methods for western blot, PCR, and immunofluorescence to demonstrate the changes of stem cell markers (Lgr5 and Bmi1). We found that Lgr5 and Bmi1 were significantly decreased bySalmonella infection. We also cultured GFP-labeled Lgr5 organoids to study the pathogen regulation of stem cells (Zhang et al., 2014).

The NF-kB pathway in intestine is activated by Salmonella infection in vitro and in vivo. We examined the changes of NF-kB pathway in the organoids infected with Salmonella. Salmonella-infected organoids had a significantly decreased total IkBα and increased phospho-IkBα. The phospho-NF-kB p65 was also increased in the Salmonella-infected organoids. By confocal microscopy, we found that NF-kB p65 was translocated into the nucleus in organoids-infected with Salmonella. As the downstream targets of NF-kB activation, inflammatory cytokines (e.g. IL-2, IL-4, IL-6, and TNF-a) were significantly increased in the infected organoids compared to the organoids without any infection. Moreover, we found that the ELISA was sensitive enough to detect IL-6 protein in the culture medium 1 h postSalmonella infection. IL-6 protein was significantly enhanced in the culture medium post 1 h, 2-, and 4- hours post infection (Zhang et al., 2014). For the first time, we have created an in vitro model system that recapitulated a number of observations from in vivo studies of the Salmonella-infected intestine: bacterial invasion, altered tight junctions, inflammatory responses, and decreased stem cells during host-bacterial interactions. We have demonstrated that theSalmonella-infected organoid culture system is a new and feasible experimental tool for studying host–bacterial interactions (Zhang et al., 2014). Our study has demonstrated the complexity of the host response to bacterial infection, even in the absence of immune cells.

Using intestinal organoids (iHOs) derived from human induced pluripotent stem cells (hIPSCs), Forbester et al. (2014, 2015) established microinjection of S.Typhimurium into the lumen of iHOs. They reported that 1448 genes significantly upregulated in iHOs infected withS.Typhimurium and 577 genes significantly downregulated compared to controls, by RNA sequencing. Genes encoding proinflammatory cytokines, including CCL20, IL1B, and IL23A, were significantly upregulated. Utilizing aS.Typhimurium mutant strains that lacked the invA component of the SPI-1 type III secretion system, they have demonstrated that this system could be utilized to functionally assess the pathogenesis of defined mutants (Forbester et al., 2014, 2015). It is believed that the intestinal organoids derived from human IPSCs are more small intestine like in structure because of the presence of Paneth-like cells and the villus-like protrusions (Forbester et al., 2015).

Microinjection of organoids with bacteria can mimic bacterial infection in a relatively well-controlled environment, allowing for direct examination of pathogen interactions with epithelial cells in the absence of confounding variables introduced by immune cells or the commensal microbiota. Wilson et al. reported that Paneth cells in organoids from both wild-type mice and Mmp7-/- mice produced granules containing pro-a-defensins. Organoids form a sealed lumen that contains concentrations of a-defensins capable of restricting growth of S. Typhimurium for at least 20 h postinfection (Wilson et al., 2015). In human intestinal organoids (Leslie et al., 2015), toxin production by clostridium difficile result in disruption of epithelial paracellular barrier function.

Organoids also provide a novel and powerful ex vivo model for studying commensal bacteria, probiotics, and microbiome studies. For example, inoculation ofBacterioides thetaiotaomicron, a Bacteroidetes member, in wild-type and NHE3-/- terminal ileum organoids displayed increased fut2 and fucosylation. These data suggest thatB. thetaiotaomicron alone is sufficient for the increased fucosylation seen in vivo (Engevik et al., 2013).

Probiotic Lactobacillus rhamnosus GG (LGG) has been reported to be therapeutically effective against acute secretory diarrhea by rotavirus infection; however, the underlying mechanisms remain to be completely elucidated. Intestinal organoids derived from small intestinal crypts treated with LGG showed increased Toll-like receptor 3 (TLR3) mRNA levels, by quantitative real-time polymerase chain reaction (Aoki-Yoshida et al., 2016).

A recent study has examined the transcriptional response of organoids upon exposure to short-chain fatty acids (SCFAs) and products generated by two abundant microbiota constituents,Akkermansia muciniphila and Faecalibacterium prausnitzii (Arnold et al., 2016). A. muciniphila metabolites affect various transcription factors and genes involved in cellular lipid metabolism and growth, supporting previousin vivo findings. Contrastingly, F. prausnitzii products exerted only weak effects on host transcription. In addition, A. muciniphila and its metabolite propionate modulated expression of Fiaf, Gpr43, histone deacetylases, and peroxisome proliferator-activated receptor gamma, important regulators of transcription factor regulation, cell cycle control, lipolysis, and satiety.A. muciniphila induces stronger effects on the host than F. prausnitzii. This study thus illustrates that specific bacteria and their metabolites differentially modulate epithelial transcription in mouse organoids.

VanDussen et al. (2015) reported a culture system for human gastrointestinal epithelial cells from multiple regions of the gastrointestinal tract. Key advantages of this system include use of endoscopic biopsy tissue as starting material and the rapid expansion of the spheroids, which allows for line establishment from an individual patient within a time frame that is commensurate with patient care (~2–3 weeks). The mucus layer is a critical component of the physical barrier separating the host from the luminal environment, thus providing protection from pathogens. The spheroid-derived intestinal epithelial cells produced a mucus layer that could be mechanically dissociated. The adherence phenotypes of diarrheagenicE. coli was also test in this culture system. It has great potential for use in patient-specific assays (VanDussen et al., 2015).

Gastric organoids/enteroids in host-bacterial interactions

Gastric organoids have evolved to a new state-of-the-art in vitro tool for Helicobacter pylori research. H. pylori is a gastric pathogen that colonizes approximately 50% of the world’s population. Infection with H. pylori causes chronic inflammation, peptic ulcers and ultimately leads to gastric cancer (Wroblewski et al., 2010; Salama et al., 2013). Bartfeld et al. generated human gastric organoids (hGO) from surgical samples of gastric corpus. hGO maintained many characteristics of their respective tissues based on their histology, expression of markers, and euploidy. They performed microinjection of GFP-expressingH. pylori into the lumen of gastric organoids. Plating of bacteria from organoids 2 h after injection verified that the bacteria are alive inside the organoids. Electron microscopy showed that bacteria were engaged in very intimate contact with the epithelial cells. The primary response of the hGO toH. pylori showed robust NF-kB pathway, like IL-8, by microarray (Bartfeld et al., 2015).

McCracken et al. reported that bacteria were tightly associated with the hGO epithelium. The major physiological changes include an increase in proliferation due to oncogenicH. pylori protein CagA and increased b-catenin signaling (McCracken et al., 2014). Schumacher and colleagues has examined the epithelial response to infection with H. pylori, using both mouse and human gastric enteroids. Enteroids are epithelial organoids. H. pylori infection of gastric organoids induced Shh expression, triggering Shh expression via CagA dependent activation of NF-kB (Schumacher et al., 2015). Sigal et al. (2015) described a direct colonization of Lgr5+ stem cells by H. pylori. Gland-associated H. pylori induce increased Lgr5-lineage tracing at the level of individual glands. Antral glands from infected mice formed organoids with a significantly higher capacity and larger sizes (Sigal et al., 2015). These data indicate bacterial ability to alter the stem cells and important implications for gastrointestinal stem cell biology andH. pylori–induced gastric pathology.

The studies in gastric enteroids allow researcher to identify new mechanisms which was not found in the animal models. Using spent media from both gastric enteroids and polarized cell lines, Huang et al. (2015b) demonstrated that H. pylori used the chemoreceptor TlpB to sense urea emanating. It suggests that H. pylori concurrently senses and modulates its environment while colonizing its gastric niche. Surprisingly, the authors noted that TlpB is sensitive to low levels of urea and that physiological levels of urea in the stomach would inactivate the receptor. Ultimately, they found thatH. pyloriʼs ability to break down urea via its urease facilitates its ability to sense host urea. Gastric enteroids were particularly useful as the absence of immune cells in this model enabled the authors to determine that NF-κB activation resulted directly fromH. pylori infection rather than recruitment of other cell types, a finding that would be more difficult to make in an animal model. This group has continued to use enteroids to demonstrate that the host receptor CD44 played a functional role in the epithelial cell proliferation triggered by theH. pylori Cag pathogenicity island (Bertaux-Skeirik et al., 2015).

Organoids/enteroids for host-virus interactions

Organoids have been used for host-virus interactions, including rotavirus (Finkbeiner et al., 2012; Yin et al., 2015), Cytomegalovirus (DʼAiuto et al., 2012; Penkert and Kalejta, 2013), Zika virus (Garcez et al., 2016) or Hepatitis C Virus (Yoshida et al., 2011; Roelandt et al., 2012; Schwartz et al., 2012; Wu et al., 2012; Shlomai et al., 2014). Organoids/enteroids potentially can be used to determine ways to correct the diarrhea-induced ion transport abnormalities via drug therapy (VanDussen et al., 2015).

Spence et al. (2011) has reported directed differentiation of stem cell lines into intestine-like tissue called “induced human intestinal organoids” (iHIOs). iHIOs is used as a new model to cultivate and study enteric viruses (Finkbeiner et al., 2012). iHIOs support replication of rotavirus, on the basis of detection of nonstructural viral proteins by immunofluorescence, increased levels of viral RNA, and production of infectious progeny virus. iHIOs also support replication of 12/13 clinical rotavirus isolates directly from stool samples. Interestingly, rotavirus infection is not only detected in the epithelial cells, but also in the mesenchymal cell population of the iHIOs. Thus, iHIOs offer a new model to study rotaviruses and other gastrointestinal viruses (Finkbeiner et al., 2012).

Garcez et al. (2016) used human iPS-derived human neural stem cells (NSCs) infection with Zika virus. They demonstrated that Zika virus was detected in NSCs after 24 h. Zika Virus targets human brain cells by reducing their viability and growth and causing cell death in neurospheres and brain organoids.

Researchers have made advancement by using human enteroids for rotavirus and norovirus research (Foulke-Abel et al., 2014;Saxena et al., 2015; Ettayebi et al., 2016; In et al., 2016). Particularly, norovirus culture is an important advancement made by using enterioids (Ettayebi et al., 2016). Bile is required for strain-dependent human norovirus replication. Lack of appropriate histoblood group antigen expression in intestinal cells restricts virus replication, and infectivity is abrogated by inactivation (e.g., irradiation, heating) and serum neutralization. Multiple human norovirus strains are cultured in enterocytes in stem cell–derived, nontransformed human intestinal enteroid monolayer cultures. This culture system permits human host-pathogen studies of previously noncultivatable pathogens, and allows the assessment of strategies to prevent and treat norovirus infections.

Organoids for studying host-parasite interaction

Studying human protozoan parasites and their interaction with the host remain severely limited, because of non-existent or inappropriate animal models and challenge to culture parasitesin vitro due to strict human-host specificity or physiology. Using organoids is a strategy to address many of these experimental bottlenecks (Klotz et al., 2012). Studies on Plasmodium falciparum (Ng et al., 2015) and Toxoplasma gondii (Klotz et al., 2012) in organoids allow us to address questions of cell and developmental biology, immunology, and pharmacology in unprecedented ways.

Advantage and challenges of using organoid system in studying host-microbial interactions

The first advantages of using organoid systems in studying host-microbial interactions is that adult stem cells from many murine and human tissues can be grownin vitro and self-organize into organoids that resemble the in vivo counterpart. Using the traditional in vitro models to investigate interactions between microbes and intestinal epithelial cells, many studies fail to recreate the differentiated tissue components and structure observed in the normal intestine. One approach to creating differentiated cells is through a suspension culture technology using a rotating wall vessel bioreactor that allows cells to remain in suspension with bubble free aeration (Unsworth and Lelkes, 1998). However, this system may lack normal stem cell niches, which are responsible for the renewal of normal intestinal tissues.

Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia are known to resist cloning in their elemental states. A recent study has reported cloning and propagation of highly clonogenic, ‘ground state’ stem cells of the human intestine and colon (Wang et al., 2015). Interestedly, derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. Using clonally derived colonic epithelium, toxins A or B of theClostridium difficile recapitulate the salient features of pseudomembranous colitis (Wang et al., 2015). These stem cells may have certain advantages for use in host-microbial interactions.

The second advantage of organoids is that researcher can work on the tissue-specific or site-specific host interaction with a particular pathogen. Organoids can be generated from different organs or specific sites of the gut, including the small intestine and colon (Sato et al., 2011a, 2011b; Yui et al., 2012). Organoids represent more closely the intestinal epithelium than often-used colon cancer cell lines (e.g., CaCo2 or HCT116). Thirdly, studies in organoids allow researchers to have findings that would be more difficult to make in an animal model. Small biopsy specimens taken from adult donors can be expanded without any apparent limit or genetic harm, the technology may serve to generate transplantable epithelium for regenerative purposes (Sato et al., 2011b). Schwank and colleagues have demonstrated the possibility to use the CRISPR/Cas9 system to edit the genome with and correct the mutation on the CFTR gene causing a cystic fibrosis (Schwank et al., 2013). Overall, intestinal organoids in host-microbe interactions allow us to address questions of cell and developmental biology, microbiology, immunology, and pharmacology in unprecedented ways.

Ideally, the cell-cell interactions are needed in host-microbial interactions. However, the intestinal organoids still have their disadvantages/limits. First, organoids lack several components of the intestinein vivo, such as the enteric nervous system and the vascular, lymphatic and immune systems. Organoids cocultured with immune cells are needed for more comprehensive studies. Second, studying tissue patterning and organ morphogenesis has still been hindered by the lack of optimal culture condition for laboratory usage. Last, organoids relied on animal-derived matrices, which can be highly variable and are poorly defined, a problem that also makes them unsuitable for clinical application. A recent study has reported now designed modular synthetic hydrogen networks to support the formation of intestinal organoids from mouse and human intestinal stem cells (Gjorevski et al., 2016). A highly accurate, reproducible culture model could help to overcome current limitations that hinder the technology’s transition from bench to bedside.

Conclusion and future direction

Organoids are one of the most accessible and physiologically relevant models to study the dynamics of host-microbial interaction in a controlled environment. The progress in generating organoids that recapitulate the humanin vivo tissue composition has extended organoid applications from being just a basic research tool to a translational platform with a wide range of uses. In combination with genetic, transcriptome and proteomic profiling, both murine- and human-derived organoids have revealed crucial aspects of development, homeostasis and diseases. The commercial development of more standardized, validated organoid culture media, and affordable materials will be valuable in ensuring that the organoid system becomes accessible to a wide range of academic and clinical researchers, to further maximize its potential. Specifically, human organoids from susceptible host will be used to test their responses to pathogens, probiotics, and drugs. The physiological relevance of the system makes organoids one of the most exciting and promising technologies for studying human development, infectious disease, microbiome, and therapy.

References

[1]

Aoki-Yoshida ASaito  SFukiya S Aoki RTakayama  YSuzuki C Sonoyama K  (2016). Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benef Microbes7(3): 421–429

[2]

Arnold J WRoach  JAzcarate-Peril M A  (2016). Emerging technologies for gut microbiome research. Trends Microbiol24(11): 887–901

[3]

Barrandon YGreen  H (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA84(8): 2302–2306

[4]

Bartfeld SBayram  Tvan de Wetering  MHuch M Begthel H Kujala P Vries R Peters P J Clevers H  (2015). In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology148(1): 126–136.e6

[5]

Bartfeld SClevers  H (2015). Organoids as model for infectious diseases: Culture of human and murine stomach organoids and microinjection of Helicobacter pyloriJ Vis Exp43(105):816–818

[6]

Bertaux-Skeirik NFeng  RSchumacher M A Li JMahe  M MEngevik  A CJavier  J EPeek  R M Jr, Ottemann  KOrian-Rousseau V Boivin G P Helmrath M A Zavros Y  (2015). CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog11(2): e1004663

[7]

Crosnier CStamataki  DLewis J  (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet7(5): 349–359

[8]

D’Aiuto LDi Maio  RHeath B Raimondi G Milosevic J Watson A M Bamne M Parks W T Yang LLin  BMiki T Mich-Basso J D Arav-Boger R Sibille E Sabunciyan S Yolken R Nimgaonkar V  (2012). Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells. PLoS One7(11): e49700

[9]

Dedhia P HBertaux-Skeirik  NZavros Y Spence J R  (2016). Organoid models of human gastrointestinal development and disease. Gastroenterology150(5): 1098–1112nbsp;PMID:26774180

[10]

Dingli DNowak  M A (2006). Cancer biology: infectious tumour cells. Nature443(7107): 35–36

[11]

Engevik M AAihara  EMontrose M H Shull G E Hassett D J Worrell R T  (2013). Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol305(10): G697–G711

[12]

Ettayebi KCrawford  S EMurakami  KBroughman J R Karandikar U Tenge V R Neill F H Blutt S E Zeng X L Qu LKou  BOpekun A R Burrin D Graham D Y Ramani S Atmar R L Estes M K  (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science353(6306): 1387–1393

[13]

Fang S BSchüller S, Phillips A D (2013). Human intestinal in vitro organ culture as a model for investigation of Bacteriae-host interactions. J Exp Clin Med5(2): 43–50

[14]

Fatehullah ATan  S HBarker  N (2016). Organoids as an in vitro model of human development and disease. Nat Cell Biol18(3): 246–254

[15]

Finkbeiner S R Zeng X L Utama B Atmar R L Shroyer N F Estes M K  (2012). Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio3(4): e00159–e12

[16]

Forbester J L Goulding D  (2014). Intestinal organoids are a novel system to study Salmonella enterica Serovar Typhimurium interaction with the intestinal epithelial barrier. Immunology143: 111–112

[17]

Forbester J L Goulding D Vallier L Hannan N Hale CPickard  DMukhopadhyay S Dougan G  (2015). Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun83(7): 2926–2934

[18]

Foulke-Abel JIn  JKovbasnjuk O Zachos N C Ettayebi K Blutt S E Hyser J M Zeng X L Crawford S E Broughman J R Estes M K Donowitz M  (2014). Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood)239(9): 1124–1134

[19]

Garcez P PLoiola  E CMadeiro da Costa  RHiga L M Trindade P Delvecchio R Nascimento J M Brindeiro R Tanuri A Rehen S K  (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science352(6287): 816–818

[20]

Gjorevski NSachs  NManfrin A Giger S Bragina M E Ordóñez-Morán PClevers H Lutolf M P  (2016). Designer matrices for intestinal stem cell and organoid culture. Nature539(7630): 560–564

[21]

Harrison R G (1907). Observations on the living developing fiber. Proc Soc Exp Biol Med4(1): 140–143

[22]

Heuberger JKosel  FQi J Grossmann K S Rajewsky K Birchmeier W  (2014). Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine. Proc Natl Acad Sci USA111(9): 3472–3477

[23]

Hilleman M R (1990). History, precedent, and progress in the development of mammalian cell culture systems for preparing vaccines: safety considerations revisited. J Med Virol31(1): 5–12

[24]

Huang GYe  SZhou X Liu DYing  Q L (2015a). Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci72(9): 1741–1757

[25]

Huang J YSweeney  E GSigal  MZhang H C Remington S J Cantrell M A Kuo C J Guillemin K Amieva M R  (2015b). Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe18(2): 147–156

[26]

Huch MKoo  B K (2015). Modeling mouse and human development using organoid cultures. Development142(18): 3113–3125

[27]

In J GFoulke-Abel  JEstes M K Zachos N C Kovbasnjuk O Donowitz M  (2016). Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol13(11): 633–642

[28]

Jung PSato  TMerlos-Suárez ABarriga F M Iglesias M Rossell D Auer HGallardo  MBlasco M A Sancho E Clevers H Batlle E  (2011). Isolation and in vitro expansion of human colonic stem cells. Nat Med17(10): 1225–1227

[29]

Klotz CAebischer  TSeeber F  (2012). Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host-parasite interaction. Int J Med Microbiol302(4-5): 203–209

[30]

Kristin WWeitz  J (2016). Organoids as model systems for gastrointestinal diseases: tissue engineering meets. Curr Pathobiol Rep4(1): 1–9

[31]

Leslie J LHuang  SOpp J S Nagy M S Kobayashi M Young V B Spence J R  (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun83(1): 138–145

[32]

Mahe M MAihara  ESchumacher M A Zavros Y Montrose M H Helmrath M A Sato TShroyer  N F (2013). Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol3(4): 217–240

[33]

Mahe M MSundaram  NWatson C L Shroyer N F Helmrath M A  (2015). Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J Vis Exp, (97): e52483-e52483 

[34]

McCracken K W Catá E M Crawford C M Sinagoga K L Schumacher M Rockich B E Tsai Y H Mayhew C N Spence J R Zavros Y Wells J M  (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature516(7531): 400–404

[35]

Miyoshi HStappenbeck  T S (2013). In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc8(12): 2471–2482

[36]

Ng SSchwartz  R EMarch  SGalstian A Gural N Shan JPrabhu  MMota M M Bhatia S N  (2015). Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep4(3): 348–359

[37]

Ootani ALi  XSangiorgi E Ho Q T Ueno HToda  SSugihara H Fujimoto K Weissman I L Capecchi M R Kuo C J  (2009). Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med15(6): 701–706

[38]

Penkert R RKalejta  R F (2013). Human embryonic stem cell lines model experimental human cytomegalovirus latency. MBio4(3): e00298–e13

[39]

Roelandt PObeid  SPaeshuyse J Vanhove J Van Lommel A Nahmias Y Nevens F Neyts J Verfaillie C M  (2012). Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol57(2): 246–251

[40]

Salama N RHartung  M LMüller  A (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol11(6): 385–399

[41]

Sato TStange  D EFerrante  MVries R G Van Es J H Van den Brink S Van Houdt W J Pronk A Van Gorp J Siersema P D Clevers H  (2011a). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology141(5): 1762–1772

[42]

Sato Tvan Es  J HSnippert  H JStange  D EVries  R Gvan den Born  MBarker N Shroyer N F van de Wetering M Clevers H  (2011b). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469(7330): 415–418

[43]

Sato TVries  R GSnippert  H Jvan de Wetering  MBarker N Stange D E van Es J H Abo AKujala  PPeters P J Clevers H  (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature459(7244): 262–265

[44]

Saxena KBlutt  S EEttayebi  KZeng X L Broughman J R Crawford S E Karandikar U C Sastri N P Conner M E Opekun A R Graham D Y Qureshi W Sherman V Foulke-Abel J In JKovbasnjuk  OZachos N C Donowitz M Estes M K  (2015). Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol90(1): 43–56

[45]

Schlaermann PToelle  BBerger H Schmidt S C Glanemann M Ordemann J Bartfeld S Mollenkopf H J Meyer T F  (2016). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut65(2): 202–213

[46]

Schumacher M A Feng RAihara  EEngevik A C Montrose M H Ottemann K M Zavros Y  (2015). Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NFkB pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter20(1): 19–28

[47]

Schwank GKoo  B KSasselli  VDekkers J F Heo IDemircan  TSasaki N Boymans S Cuppen E van der Ent C K Nieuwenhuis E E Beekman J M Clevers H  (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell13(6): 653–658

[48]

Schwartz R ETrehan  KAndrus L Sheahan T P Ploss A Duncan S A Rice C M Bhatia S N  (2012). Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA109(7): 2544–2548

[49]

Shlomai ASchwartz  R ERamanan  VBhatta A de Jong Y P Bhatia S N Rice C M  (2014). Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA111(33): 12193–12198

[50]

Sigal MRothenberg  M ELogan  C YLee  J YHonaker  R WCooper  R LPassarelli  BCamorlinga M Bouley D M Alvarez G Nusse R Torres J Amieva M R  (2015). Helicobacter pylori activates and expands Lgr5(+) stem cells through direct colonization of the gastric glands. Gastroenterology148(7): 1392–404.e21

[51]

Spence J RMayhew  C NRankin  S AKuhar  M FVallance  J ETolle  KHoskins E E Kalinichenko V V Wells S I Zorn A M Shroyer N F Wells J M  (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature470(7332): 105–109

[52]

Unsworth B RLelkes  P I (1998). Growing tissues in microgravity. Nat Med4(8): 901–907

[53]

VanDussen K L Marinshaw J M Shaikh N Miyoshi H Moon CTarr  P ICiorba  M AStappenbeck  T S (2015). Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut64(6): 911–920

[54]

Wang XYamamoto  YWilson L H Zhang T Howitt B E Farrow M A Kern FNing  GHong Y Khor C C Chevalier B Bertrand D Wu LNagarajan  NSylvester F A Hyams J S Devers T Bronson R Lacy D B Ho K Y Crum C P McKeon F Xian W (2015). Cloning and variation of ground state intestinal stem cells. Nature522(7555): 173–178

[55]

Wilson S STocchi  AHolly M K Parks W C Smith J G  (2015). A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol8(2): 352–361

[56]

Wroblewski L E Peek R M  Jr,  Wilson K T  (2010). Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev23(4): 713–739

[57]

Wu XRobotham  J MLee  EDalton S Kneteman N M Gilbert D M Tang H (2012). Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog8(4): e1002617

[58]

Yin YBijvelds  MDang W Xu Lvan der Eijk  A AKnipping  KTuysuz N Dekkers J F Wang Yde Jonge  JSprengers D van der Laan L J Beekman J M Ten Berge D Metselaar H J de Jonge H Koopmans M P Peppelenbosch M P Pan Q (2015). Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res123: 120–131

[59]

Yoshida TTakayama  KKondoh M Sakurai F Tani HSakamoto  NMatsuura Y Mizuguchi H Yagi K (2011). Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun416(1-2): 119–124

[60]

Yui SNakamura  TSato T Nemoto Y Mizutani T Zheng X Ichinose S Nagaishi T Okamoto R Tsuchiya K Clevers H Watanabe M  (2012). Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med18(4): 618–623

[61]

Zhang Y GWu  SXia Y Sun J (2014). Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep2(9): e12147

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1859KB)

1019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/