Inhibition and attenuation of pathogenicity of Porphyromonas gingivalis by leupeptin: A review
Hansa Jain
Inhibition and attenuation of pathogenicity of Porphyromonas gingivalis by leupeptin: A review
BACKGROUND: Porphyromonas gingivalis is a periodontal pathogen, which is considered to be a keystone pathogen for periodontitis. A diverse conglomerate of P. gingivalis virulence factors including lipopolysaccharide, fimbriae, capsular polysaccharide, haemagglutinin and cysteine proteases (Arg-gingipains and Lys-gingipain) are considered to be involved in the pathogenesis of periodontitis. Leupeptin is a cysteine protease inhibitor which is specific for Arg gingipains. The present review focuses on action of leupeptin on Arg gingipains.
METHOD: A search was carried out systematically from the start till September, 2016. The search was made in Medline database via PubMed. The keywords enlisted were “leupeptin”; “gingipains”; “periodontitis” using Boolean operator “and.”
RESULTS: The result was selection of 58 articles which linked leupeptin to periodontitis and gingipains; pathogenesis of periodontitis, pathogenicity of gingipains and role of leupeptin.
CONCLUSION: It was concluded that leupeptin inhibits and attenuates a number of destructive activities of Arg gingipains including inhibition of platelet aggregation; inhibit degradation of LL-37, which is an antimicrobial peptide; blocking inhibition of monocyte chemoattractant protein; restoring level of interleukin-2; inhibiting degradation of collagen type I and IV to name a few.
Porphyromonas gingivalis / gingipains / leupeptin / cysteine protease inhibitor / periodontitis
[1] |
Alugupalli K R , Kalfas S (1996). Degradation of lactoferrin by periodontitis-associated bacteria. FEMS Microbiol Lett, 145(2): 209–214
CrossRef
Google scholar
|
[2] |
Andrian E, Grenier D, Rouabhia M (2004). In vitro models of tissue penetration and destruction by Porphyromonas gingivalis. Infect Immun, 72(8): 4689–4698
CrossRef
Google scholar
|
[3] |
Aoyagi T, Miyata S, Nanbo M , Kojima F , Matsuzaki M , Ishizuka M , Takeuchi T , Umezawa H (1969a). Biological activities of leupeptins. J Antibiot (Tokyo), 22(11): 558–568
CrossRef
Google scholar
|
[4] |
Aoyagi T, Takeuchi T, Matsuzaki A , Kawamura K , Kondo S , Hamada M , Maeda K , Umezawa H (1969b). Leupeptins, new protease inhibitors from Actinomycetes. J Antibiot (Tokyo), 22(6): 283–286
CrossRef
Google scholar
|
[5] |
Baek K J, Ji S, Kim Y C , Choi Y (2015). Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis. Virulence, 6(3): 274–281
CrossRef
Google scholar
|
[6] |
Baker P J, Dixon M, Evans R T , Dufour L , Johnson E , Roopenian D C (1999). CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun, 67: 2804–2809
|
[7] |
Bedi G S, Williams T (1994). Purification and characterization of a collagen-degrading protease from Porphyromonas gingivalis. J Biol Chem, 269: 599–606
|
[8] |
Brochu V, Grenier D, Nakayama K , Mayrand D (2001). Acquisition of iron from human transferrin by Porphyromonas gingivalis: a role for Arg- and Lys-gingipain activities. Oral Microbiol Immunol, 16(2): 79–87
CrossRef
Google scholar
|
[9] |
Choi E K, Kim S Y, Kim S H, Paek Y W, Kang I C (2014). Proteolytic activity of Porphyromonas gingivalis attenuates MCP-1 mRNA expression in LPS-stimulated THP-1 cells. Microb Pathog, 73: 13–18
CrossRef
Google scholar
|
[10] |
Curtis M A, Aduse Opoku J, Rangarajan M , Gallagher A , Sterne J A , Reid C R , Evans H E , Samuelsson B (2002). Attenuation of the virulence of Porphyromonas gingivalis by using a specific synthetic Kgp protease inhibitor. Infect Immun, 70(12): 6968–6975
CrossRef
Google scholar
|
[11] |
de Diego I, Veillard F, Sztukowska M N , Guevara T , Potempa B , Pomowski A , Huntington J A , Potempa J , Gomis-Ruth F X (2014). Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem, 289(46): 32291–32302
CrossRef
Google scholar
|
[12] |
Duncan L, Yoshioka M, Chandad F , Grenier D (2004). Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog, 36(6): 319–325
CrossRef
Google scholar
|
[13] |
Everts V, Beertsen W, Tigchelaar-Gutter W (1985). The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64. Coll Relat Res, 5(4): 315–336
CrossRef
Google scholar
|
[14] |
Freeman S J, Lloyd J B (1983). Inhibition of proteolysis in rat yolk sac as a cause of teratogenesis. Effects of leupeptin in vitro and in vivo. J Embryol Exp Morphol, 78: 183–193
|
[15] |
Gamboa F, Acosta A, Garcia D A , Velosa J , Araya N , Ledergerber R (2014). Occurrence of porphyromonas gingivalis and its antibacterial susceptibility to metronidazole and tetracycline in patients with chronic periodontitis. Acta Odontol Latinoam, 27: 137–144
|
[16] |
Grenier D, Gauthier P, Plamondon P , Nakayama K , Mayrand D (2001). Studies on the aminopeptidase activities of Porphyromonas gingivalis. Oral Microbiol Immunol, 16(4): 212–217
CrossRef
Google scholar
|
[17] |
Grenier D, Imbeault S, Plamondon P , Grenier G , Nakayama K , Mayrand D (2001). Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun, 69(8): 5166–5172
CrossRef
Google scholar
|
[18] |
Grenier D, Roy S, Chandad F , Plamondon P , Yoshioka M , Nakayama K , Mayrand D (2003). Effect of inactivation of the Arg- and/or Lys-gingipain gene on selected virulence and physiological properties of Porphyromonas gingivalis. Infect Immun, 71(8): 4742–4748
CrossRef
Google scholar
|
[19] |
Hajishengallis G, Lamont R J (2012). Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol, 27(6): 409–419
CrossRef
Google scholar
|
[20] |
Holt S C, Ebersole J L (2005). Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototypepoly bacterial pathogenic consortium in periodontitis. Periodontol 2000, 38(1): 72–122
CrossRef
Google scholar
|
[21] |
Houle M A, Grenier D, Plamondon P , Nakayama K (2003). The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain. FEMS Microbiol Lett, 221(2): 181–185
CrossRef
Google scholar
|
[22] |
Imamura T, Potempa J, Pike R N , Moore J N , Barton M H , Travis J (1995). Effect of free and vesicle-bound cysteine proteinases of Porphyromonas gingivalis on plasma clot formation: implications for bleeding tendency at periodontitis sites. Infect Immun, 63: 4877–4882
|
[23] |
Islam S A, Seo M, Lee Y S , Moon S S (2015). Association of periodontitis with insulin resistance, β-cell function, and impaired fasting glucose before onset of diabetes. Endocr J, 2015(62): 981–989
CrossRef
Google scholar
|
[24] |
Kanakdande V, Patil K P, Nayyar A S (2015). Comparative evaluation of clinical hematological and systemic inflammatory markers in smokers and non-smokers with chronic periodontitis. Contemp Clin Dent, 6(3): 348–357
CrossRef
Google scholar
|
[25] |
Katz J, Yang Q B, Zhang P, Potempa J , Travis J , Michalek S M , Balkovetz D F (2002). Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun, 70(5): 2512–2518
CrossRef
Google scholar
|
[26] |
Kesavalu L, Chandrasekar B, Ebersole J L (2002). In vivo induction of proinflammatory cytokines in mouse tissue by Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol, 17(3): 177–180
CrossRef
Google scholar
|
[27] |
Khalaf H, Bengtsson T (2012). Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis. PLoS One, 7(9): e45192
CrossRef
Google scholar
|
[28] |
Kieran D, Greensmith L (2004). Inhibition of calpains, by treatment with leupeptin, improves motoneuron survival and muscle function in models of motoneuron degeneration. Neuroscience, 125(2): 427–439
CrossRef
Google scholar
|
[29] |
Kitano S, Irimura K, Sasaki T , Abe N, Baba A, Miyake Y , Katunuma N , Yamamoto K (2001). Suppression of gingival inflammation induced by Porphyromonas gingivalis in rats by leupeptin. Jpn J Pharmacol, 85(1): 84–91
CrossRef
Google scholar
|
[30] |
Kondo S I, Kawamura K, Iwanaga J , Hamada M , Aoyagi T , Maeda K , Takeuchi T , Umezawa H (1969). Isolation and characterization of leupeptins produced by Actinomycetes. Chem Pharm Bull (Tokyo), 17(9): 1896–1901
CrossRef
Google scholar
|
[31] |
Kontani M, Ono H, Shibata H , Okamura Y , Tanaka T , Fujiwara T , Kimura S , Hamada S (1996). Cysteine protease of Porphyromonas gingivalis 381 enhances binding of fimbriae to cultured human fibroblasts and matrix proteins. Infect Immun, 64: 756–762
|
[32] |
Kuramochi H, Nakata H, Ishii S (1979). Mechanism of association of a specific aldehyde inhibitor, leupeptin, with bovine trypsin. J Biochem, 86: 1403–1410
|
[33] |
Kuula H, Salo T, Pirila E , Tuomainen A M , Jauhiainen M , Uitto V J , Tjaderhane L , Pussinen P J , Sorsa T (2009). Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect Immun, 77(2): 850–859
CrossRef
Google scholar
|
[34] |
Libby P, Goldberg A L (1978). Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science, 199(4328): 534–536
CrossRef
Google scholar
|
[35] |
Lv J, Zhu Y X, Liu Y Q, Xue X (2015). Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis. Mol Biol Rep, 42(2): 441–449
CrossRef
Google scholar
|
[36] |
Maeda K, Kawamura K, Kondo S I , Aoyagi T , Takeuchi T , Umezawa H (1971). The structure and activity of leupeptins and related analogs. J Antibiot (Tokyo), 24(6): 402–404
CrossRef
Google scholar
|
[37] |
Marsh P D (2005). Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol, 32(s6 Suppl 6): 7–15
CrossRef
Google scholar
|
[38] |
McConnell R M , York J L , Frizzell D , Ezell C (1993). Inhibition studies of some serine and thiol proteinases by new leupeptin analogues. J Med Chem, 36(8): 1084–1089
CrossRef
Google scholar
|
[39] |
McCrudden M T , Orr D F , Yu Y, Coulter W A, Manning G, Irwin C R , Lundy F T (2013). LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol, 40(10): 933–941
CrossRef
Google scholar
|
[40] |
Miyakawa H, Honma K, Qi M , Kuramitsu H K (2004). Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J Periodontal Res, 39(1): 1–9
CrossRef
Google scholar
|
[41] |
Nadkarni M A, Chhour K L, Chapple C C, Nguyen K A, Hunter N (2014). The profile of Porphyromonas gingivalis kgp biotype and fimA genotype mosaic in subgingival plaque samples. FEMS Microbiol Lett, 361(2): 190–194
CrossRef
Google scholar
|
[42] |
Nakayama M, Inoue T, Naito M , Nakayama K , Ohara N (2015). Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp. J Biol Chem, 290(8): 5190–5202
CrossRef
Google scholar
|
[43] |
Nylander M, Lindahl T L, Bengtsson T, Grenegard M (2008). The periodontal pathogen Porphyromonas gingivalis sensitises human blood platelets to epinephrine. Platelets, 19(5): 352–358
CrossRef
Google scholar
|
[44] |
Otto H H, Schirmeister T (1997). Cysteine Proteases and Their Inhibitors. Chem Rev, 97(1): 133–172
CrossRef
Google scholar
|
[45] |
Reynolds M A (2014). Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 2000, 64(1): 7–19
CrossRef
Google scholar
|
[46] |
Rubinstein I, Potempa J, Travis J , Gao X P (2001). Mechanisms mediating Porphyromonas gingivalis gingipain RgpA-induced oral mucosa inflammation in vivo. Infect Immun, 69(2): 1199–1201
CrossRef
Google scholar
|
[47] |
Santos M M, Moreira R (2007). Michael acceptors as cysteine protease inhibitors. Mini Rev Med Chem, 7(10): 1040–1050
CrossRef
Google scholar
|
[48] |
Scheres N, Laine M L, de Vries T J, Everts V, van Winkelhoff A J (2010). Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res, 45(2): 262–270
CrossRef
Google scholar
|
[49] |
Sheets S M, Potempa J, Travis J , Fletcher H M , Casiano C A (2006). Gingipains from Porphyromonas gingivalis W83 synergistically disrupt endothelial cell adhesion and can induce caspase-independent apoptosis. Infect Immun, 74(10): 5667–5678
CrossRef
Google scholar
|
[50] |
Sher J H, Stracher A, Shafiq S A , Hardy-Stashin J (1981). Successful treatment of murine muscular dystrophy with the proteinase inhibitor leupeptin. Proc Natl Acad Sci USA, 78(12): 7742–7744
CrossRef
Google scholar
|
[51] |
Smalley J W, Birss A J, Szmigielski B, Potempa J (2007). Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the haem-containing pigment from oxyhaemoglobin. Arch Biochem Biophys, 465(1): 44–49
CrossRef
Google scholar
|
[52] |
Socransky S S , Haffajee A D , Smith C , Duff G W (2000). Microbiological parameters associated with IL-1 gene polymorphisms in periodontitis patients. J Clin Periodontol, 27(11): 810–818
CrossRef
Google scholar
|
[53] |
Suido H, Nakamura M, Mashimo P A , Zambon J J , Genco R J (1986). Arylaminopeptidase activities of oral bacteria. J Dent Res, 65(11): 1335–1340
CrossRef
Google scholar
|
[54] |
Waddington R J , Moseley R , Embery G (2000). Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis, 6(3): 138–151
CrossRef
Google scholar
|
[55] |
Ximenez-Fyvie L A , Haffajee A D , Socransky S S (2000). Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol, 27(10): 722–732
CrossRef
Google scholar
|
[56] |
Yoshimura F, Nishikata M, Suzuki T , Hoover C I , Newbrun E (1984). Characterization of a trypsin-like protease from the bacterium Bacteroides gingivalis isolated from human dental plaque. Arch Oral Biol, 29(7): 559–564
CrossRef
Google scholar
|
[57] |
Yun P L, DeCarlo A A, Hunter N (1999). Modulation of major histocompatibility complex protein expression by human gamma interferon mediated by cysteine proteinase-adhesin polyproteins of Porphyromonas gingivalis. Infect Immun, 67: 2986–2995
|
[58] |
Zhou J, Zhang J, Chao J (2012). Porphyromonas gingivalis promotes monocyte migration by activating MMP-9. J Periodontal Res, 47(2): 236–242
CrossRef
Google scholar
|
/
〈 | 〉 |