Comparative analysis of metabolic network of pathogens

Kumar Gaurav, Yasha Hasija

PDF(2372 KB)
PDF(2372 KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (2) : 139-150. DOI: 10.1007/s11515-017-1440-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparative analysis of metabolic network of pathogens

Author information +
History +

Abstract

BACKGROUND: Metabolic networks are complex and system of highly connected chemical reactions and hence it needs a system level computational approach to identify the genotype- phenotype relationship. The study of essential genes and reactions and synthetic lethality of genes and reactions plays a crucial role in explaining functional links between genes and gene function predictions.

METHODS: Flux balance analysis (FBA) has been developed as a powerful method for the in silico analyses of metabolic networks. In this study, we present the comparative analysis of the genomic scale metabolic networks of the four microorganisms i.e.Salmonella typhimurium, Mycobacterium tuberculosis, Staphylococcus aureus,andHelicobacter pylori. The fluxes of all reaction were obtained and the growth rate of the organism was calculated by setting the biomass reaction as the objective function.

RESULTS & CONCLUSIONS:The average lethality fraction of all the four organisms studied ranged from 0.2 to 0.6. It was also observed that there are very few metabolites which are highly connected. Those metabolites that are highly connected are supposed to be the ‘global players’ similar to the hub protein in the protein – protein interaction network.

Keywords

essential genes / synthetic lethal genes / metabolite connectivity / robustness analysis

Cite this article

Download citation ▾
Kumar Gaurav, Yasha Hasija. Comparative analysis of metabolic network of pathogens. Front. Biol., 2017, 12(2): 139‒150 https://doi.org/10.1007/s11515-017-1440-8

References

[1]
Feist and Palsson (2008). The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnol, 226(6):659–667
[2]
Alper H, Jin  Y S, Moxley  J F, Stephanopoulos  G (2005). Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng, 7(3): 155–164nbsp;
CrossRef Pubmed Google scholar
[3]
Plaimas K, Eils  R, König R . Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC systems biology. 2010 May 3;4(1):1
[4]
Chowdhury R, Chowdhury  A, Maranas C D  (2015). Using gene essentiality and synthetic lethality information to correct yeast and CHO cell genome-scale models. Metabolites, 5(4): 536–570nbsp;
CrossRef Pubmed Google scholar
[5]
Becker S A, Palsson  B Ø (2005). Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation.   BMC Microbiol, 5(1): 8
[6]
Schilling C H ,  Covert M W ,  Famili I ,  Church G M ,  Edwards J S ,  Palsson B O  (2002). Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol, 184(16):4582–4593
[7]
Deutscher D, Meilijson  I, Kupiec M ,  Ruppin E  (2006). Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet, 38(9): 993–998nbsp;
CrossRef Pubmed Google scholar
[8]
Edwards J S, Ramakrishna  R, Palsson B O  (2001). Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng, 77(1):27–36 
Pubmed
[9]
Hamilton J J, Reed  J L (2012). Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS One, 7(4): e34670nbsp; 
CrossRef Pubmed Google scholar
[10]
Heinemann M, Kummel  A, Ruinatscha R ,  Panke S  (2005). In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng, 92(7):850–64
[11]
Jamshidi N, Palsson  B Ø (2007). Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol, 1(1): 26nbsp;
CrossRef Pubmed Google scholar
[12]
Schellenberger J, Que  R, Fleming R M ,  Thiele I ,  Orth J D ,  Feist A M ,  Zielinski D C ,  Bordbar A ,  Lewis N E ,  Rahmanian S ,  Kang J, Hyduke  D R, Palsson  B Ø (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc, 6(9):1290–1307
[13]
Keating S M (2006). SBMLToolbox: an SBML toolbox for MATLAB users.   Bioinformatics, 22(10):1275–1277
[14]
Masel J, Siegal  M L (2010). Robustness: mechanisms and consequences. Trends Genet, 25(9):395–403
[15]
Raman K, Chandra  N (2009). Flux balance analysis of biological systems: applications and challenges. Brief Bioinform, 10(4):435–449
[16]
Kauffman K J, Prakash  P, Edwards J S (2003). Advances in flux balance analysis. Curr Opin Biotechnol, 14(5): 491–496nbsp; 
CrossRef Pubmed Google scholar
[17]
McClelland M, Sanderson  K E, Spieth  J, Clifton S W ,  Latreille P ,  Courtney L ,  Porwollik S ,  Ali J, Dante  M, Du F ,  Hou S, Layman  D, Leonard S ,  Nguyen C ,  Scott K ,  Holmes A ,  Grewal N ,  Mulvaney E ,  Ryan E, Sun  H, Florea L ,  Miller W ,  Stoneking T ,  Nhan M, Waterston  R, Wilson R K  (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413(6858):852–856
[18]
Nijman S M B  (2011). Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett, 585(1): 1–6nbsp; 
CrossRef Pubmed Google scholar
[19]
Pratapa A, Balachandran  S, Raman K  (2015). Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics, 31(20): 3299–3305
CrossRef Pubmed Google scholar
[20]
Raghunathan A, Reed  J, Shin S ,  Palsson B ,  Daefler S  (2009). Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol, 3(1): 38 nbsp; 
CrossRef Pubmed Google scholar
[21]
Raman K, Rajagopalan  P, Chandra N  (2005). Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput Biol, 1(5): e46
CrossRef Pubmed Google scholar
[22]
Suthers P F, Zomorrodi  A, Maranas C D  (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol, 5: 301
CrossRef Pubmed Google scholar
[23]
Thiele I, Hyduke  D R, Steeb  B, Fankam G ,  Allen D K ,  Bazzani S ,  Charusanti P ,  Chen F C ,  Fleming R M ,  Hsiung C A ,  De Keersmaecker S C ,  Liao Y C ,  Marchal K ,  Mo M L ,  Özdemir E ,  Raghunathan A ,  Reed J L ,  Shin S I ,  Sigurbjörnsdóttir S ,  Steinmann J ,  Sudarsan S ,  Swainston N ,  Thijs I M ,  Zengler K ,  Palsson B O ,  Adkins J N ,  Bumann D  (2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol, 5: 8
[24]
Thiele I, Vo  TD, Price ND ,  Palsson B Ø  (2005). Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol, 187(16):5818–5830

Compliance with ethics guidelines

Kumar Gaurav and Yasha Hasija declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(2372 KB)

Accesses

Citations

Detail

Sections
Recommended

/