Cationic antimicrobial peptide: LL-37 and its role in periodontitis
Hansa Jain
Cationic antimicrobial peptide: LL-37 and its role in periodontitis
BACKGROUND: Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.
OBJECTIVE: In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.
METHODS: A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”
RESULTS: The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.
CONCLUSION: The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
LL-37 / antimicrobial peptides / cathelicidin / periodontitis
[1] |
Al Aboud K, Al Aboud D (2011). Salim Haim and the syndrome that bears his name. Dermatol Online J, 17: 15
|
[2] |
Aswath N, Swamikannu B, Ramakrishnan S N , Shanmugam R , Thomas J , Ramanathan A (2014). Heterozygous Ile453Val codon mutation in exon 7, homozygous single nucleotide polymorphisms in intron 2 and 5 of cathepsin C are associated with Haim-Munk syndrome. Eur J Dent, 8(1): 79–84
CrossRef
Google scholar
|
[3] |
Bals R, Wang X, Zasloff M , Wilson J M (1998). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broadantimicrobial activity at the airway surface. Proc Natl Acad Sci USA, 95(16): 9541–9546
CrossRef
Google scholar
|
[4] |
Band V I, Weiss D S (2015). Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics (Basel), 4(1): 18–41
CrossRef
Google scholar
|
[5] |
Bedran T B, Mayer M P, Spolidorio D P, Grenier D (2014). Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One, 9(9): e106766
CrossRef
Google scholar
|
[6] |
Bevec D, Cavalli F, Cavalli V , Bacher G (2008). Use of peptide ll-37 as a therapeutic agent. U.S. Patent Application 12/677,802, filed September 9
|
[7] |
Carlsson G, Andersson M, Putsep K , Garwicz D , Nordenskjold M , Henter J I , Palmblad J , Fadeel B (2006). Kostmann syndrome or infantile genetic agranulocytosis, part one: celebrating 50 years of clinical and basic research on severe congenital neutropenia. Acta Paediatr, 95(12): 1526–1532
CrossRef
Google scholar
|
[8] |
Chapple I L (2009). Periodontal diagnosis and treatment–where does the future lie? Periodontol 2000, 51(1): 9–24
CrossRef
Google scholar
|
[9] |
Chung W O, Dommisch H, Yin L , Dale B A (2007). Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des, 13(30): 3073–3083
CrossRef
Google scholar
|
[10] |
Dahiya P, Kamal R, Gupta R , Bhardwaj R , Chaudhary K , Kaur S (2013). Reactive oxygen species in periodontitis. J Indian Soc Periodontol, 17(4): 411–416
CrossRef
Google scholar
|
[11] |
Dale B A (2003). Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000, 30(1): 70–78
CrossRef
Google scholar
|
[12] |
Dale B A, Kimball J R, Krisanaprakornkit S, Roberts F , Robinovitch M , O’Neal R , Valore E V , Ganz T, Anderson G M, Weinberg A (2001). Localized antimicrobial peptide expression in human gingiva. J Periodontal Res, 36(5): 285–294
CrossRef
Google scholar
|
[13] |
Davidopoulou S, Diza E, Menexes G , Kalfas S (2012). Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol, 57(7): 865–869
CrossRef
Google scholar
|
[14] |
De Yang C Q , Chen Q, Schmidt A P, Anderson G M, Wang J M, Wooters J, Oppenheim J J , Chertov O (2000). LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1(FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med, 192(7): 1069–1074
CrossRef
Google scholar
|
[15] |
Eick S, Puklo M, Adamowicz K , Kantyka T , Hiemstra P , Stennicke H , Guentsch A , Schacher B , Eickholz P , Potempa J (2014). Lack of cathelicidin processing in Papillon-Lefèvre syndrome patients reveals essential role of LL-37 inperiodontal homeostasis. Orphanet J Rare Dis, 9(1): 148
CrossRef
Google scholar
|
[16] |
Frohm M, Agerberth B, Ahangari G , Stahle-Backdahl M , Liden S , Wigzell H , Gudmundsson G H (1997). The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes duringinflammatory disorders. J Biol Chem, 272(24): 15258–15263
CrossRef
Google scholar
|
[17] |
Godaly G, Ambite I, Svanborg C (2015). Innate immunity and genetic determinants of urinary tract infection susceptibility. See comment in PubMed Commons below. Curr Opin Infect Dis, 28: 88–96
|
[18] |
Gorr S U (2012). Antimicrobial peptides in periodontal innate defense. Front Oral Biol, 15: 84–98
CrossRef
Google scholar
|
[19] |
Gorr S U, Abdolhosseini M (2011). Antimicrobial peptides and periodontal disease. J Clin Periodontol, 38(Suppl. 11): 126–141
CrossRef
Google scholar
|
[20] |
Greer A, Zenobia C, Darveau R P (2013). Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000, 63(1): 67–79
CrossRef
Google scholar
|
[21] |
Gronberg A, Mahlapuu M, Stahle M , Whately-Smith C , Rollman O (2014). Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen, 22(5): 613–621
CrossRef
Google scholar
|
[22] |
Gutner M, Chaushu S, Balter D , Bachrach G (2009). Saliva enables the antimicrobial activity of LL-37 in the presence of proteases of Porphyromonas gingivalis. Infect Immun, 77(12): 5558–5563
CrossRef
Google scholar
|
[23] |
Guzman-Rodriguez J J , Ochoa-Zarzosa A , Lopez-Gomez R , Lopez-Meza J E (2015). Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int, 735087
CrossRef
Google scholar
|
[24] |
Guzman-Rodriguez J J , Ochoa-Zarzosa A , Lopez-Gomez R , Lopez-Meza J E (2015). Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int, 735087
CrossRef
Google scholar
|
[25] |
Hancock R E, Diamond G (2000). The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol, 8(9): 402–410
CrossRef
Google scholar
|
[26] |
Hatipoglu M, Saglam M, Koseoglu S , Koksal E , Keleş A , Esen H H (2015). The effectiveness of Crataegus orientalis M Bieber. (Hawthorn) extract administration in preventing alveolar bone loss in rats with experimental periodontitis. PLoS One, 10(6): e0128134
CrossRef
Google scholar
|
[27] |
Henzler Wildman K A , Lee D K , Ramamoorthy A (2003). Mechanism of lipid bilayer disruption by human antimicrobial peptide, LL-37. Biochemistry, 42(21): 6545–6558
CrossRef
Google scholar
|
[28] |
Inomata M, Into T, Murakami Y (2010). Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci, 118(6): 574–581
CrossRef
Google scholar
|
[29] |
Into T, Inomata M, Shibata K , Murakami Y (2010). Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4-triggered expression of IL-6, IL-8 andCXCL10 in human gingival fibroblasts. Cell Immunol, 264(1): 104–109
CrossRef
Google scholar
|
[30] |
Jenssen H, Hamill P, Hancock R E (2006). Peptide antimicrobial agents. Clin Microbiol Rev, 19(3): 491–511
CrossRef
Google scholar
|
[31] |
Khan F Y, Jan S M, Mushtaq M (2012). Papillon-Lefèvre syndrome: Case report and review of the literature. J Indian Soc Periodontol, 16(2): 261–265
CrossRef
Google scholar
|
[32] |
Koczulla R, von Degenfeld G, Kupatt C , Krotz F , Zahler S , Gloe T, Issbrucker K, Unterberger P , Zaiou M , Lebherz C , Karl A, Raake P, Pfosser A , Boekstegers P , Welsch U , Hiemstra P S , Vogelmeier C , Gallo R L , Clauss M , Bals R (2003). An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest, 111(11): 1665–1672
CrossRef
Google scholar
|
[33] |
Koziel J, Karim A Y, Przybyszewska K, Ksiazek M , Rapala-Kozik M , Nguyen K A , Potempa J (2010). Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia. J Innate Immun, 2(3): 288–293
CrossRef
Google scholar
|
[34] |
Leszczynska K, Namiot A, Janmey P A , Bucki R (2010). Modulation of exogenous antibiotic activity by host cathelicidin LL-37. APMIS, 118(11): 830–836
CrossRef
Google scholar
|
[35] |
Leszczynska K, Namiot D, Byfield F J , Cruz K, Zendzian-Piotrowska M, Fein D E , Savage P B , Diamond S , McCulloch C A , Janmey P A , Bucki R (2013). Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemother, 68(3): 610–618
CrossRef
Google scholar
|
[36] |
Lombardo Bedran T B , Palomari Spolidorio D , Grenier D (2015). Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy withcathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model ofgingival epithelial cells and fibroblasts. Arch Oral Biol, 60(6): 845–853
CrossRef
Google scholar
|
[37] |
Lopez-Meza J E , Ochoa-Zarzosa A , Barboza-Corona J E , Bideshi D K (2015). Antimicrobial peptides: current and potential applications in biomedical therapies. BioMed Res Int, 367243 doi:10.1155/2015/367243
|
[38] |
Mahanonda R, Pichyangkul S (2007). Toll-like receptors and their role in periodontal health and disease. Periodontol 2000, 43(1): 41–55
CrossRef
Google scholar
|
[39] |
Makeudom A, Kulpawaropas S, Montreekachon P , Khongkhunthian S , Sastraruji T , Pothacharoen P , Kongtawelert P , Krisanaprakornkit S (2014). Positive correlations between hCAP18/LL-37 and chondroitin sulphate levels in chronic periodontitis. J Clin Periodontol, 41(3): 252–261
CrossRef
Google scholar
|
[40] |
McCrudden M T , Orr D F , Yu Y, Coulter W A, Manning G, Irwin C R , Lundy F T (2013). LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol, 40(10): 933–941
CrossRef
Google scholar
|
[41] |
Mysak J, Podzimek S, Sommerova P , Lyuya-Mi Y , Bartova J , Janatova T , Prochazkova J , Duskova J (2014). Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res, 476068
CrossRef
Google scholar
|
[42] |
Nakamichi Y, Horibe K, Takahashi N , Udagawa N (2014). Roles of cathelicidins in inflammation and bone loss. Odontology, 102(2): 137–146
CrossRef
Google scholar
|
[43] |
Oh D Y, Koh S J (2015). Cross-regulation of innate and adaptive immunity: a new perspective for the pathogenesis of inflammatory bowel disease. Gut Liver, 9(3): 263–264
CrossRef
Google scholar
|
[44] |
Oudhoff M J, Blaauboer M E, Nazmi K, Scheres N , Bolscher J G , Veerman E C (2010). The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem, 391(5): 541–548
CrossRef
Google scholar
|
[45] |
Oyinloye B E, Adenowo A F, Kappo A P (2015). Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel), 8(2): 151–175
CrossRef
Google scholar
|
[46] |
Oyinloye B E, Adenowo A F, Kappo A P (2015). Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel), 8(2): 151–175
CrossRef
Google scholar
|
[47] |
Pahwa P, Lamba A K, Faraz F, Tandon S (2010). Haim-Munk syndrome. J Indian Soc Periodontol, 14(3): 201–203
CrossRef
Google scholar
|
[48] |
Panteleev P V , Bolosov I A , Balandin S V , Ovchinnikova T V (2015). Structure and biological functions of β-hairpin antimicrobial Peptides. Acta Naturae, 7: 37–47
|
[49] |
Peschel A, Sahl H G (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 4(7): 529–536
CrossRef
Google scholar
|
[50] |
Puklo M, Guentsch A, Hiemstra P S , Eick S, Potempa J (2008). Analysis of neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL-37 in the innate immune response against periodontogenic bacteria. Oral Microbiol Immunol, 23(4): 328–335
CrossRef
Google scholar
|
[51] |
Putsep K, Carlsson G, Boman H G , Andersson M (2002). Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet, 360(9340): 1144–1149
CrossRef
Google scholar
|
[52] |
Roberts H M, Ling M R, Insall R, Kalna G , Spengler J , Grant M M , Chapple I L (2015). Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol, 42(1): 1–11
CrossRef
Google scholar
|
[53] |
Scott M G, Davidson D J, Gold M R, Bowdish D, Hancock R E (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol, 169(7): 3883–3891
CrossRef
Google scholar
|
[54] |
Shah A F, Tangade P, Agarwal S (2014). Papillon-Lefevre syndrome: Reporting consanguinity as a risk factor. Saudi Dent J, 26(3): 126–131
CrossRef
Google scholar
|
[55] |
Silva N, Abusleme L, Bravo D , Dutzan N , Garcia-Sesnich J , Vernal R , Hernandez M , Gamonal J (2015). Host response mechanisms in periodontal diseases. J Appl Oral Sci, 23(3): 329–355
CrossRef
Google scholar
|
[56] |
Sorensen O E, Clemmensen S N, Dahl S L, Ostergaard O, Heegaard N H , Glenthoj A , Nielsen F C , Borregaard N (2014). Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest, 124(10): 4539–4548
CrossRef
Google scholar
|
[57] |
Takeuchi Y, Nagasawa T, Katagiri S , Kitagawara S , Kobayashi H , Koyanagi T , Izumi Y (2012). Salivary levels of antibacterial peptide (LL-37/hCAP-18) and cotinine in patients with chronic periodontitis. J Periodontol, 83(6): 766–772
CrossRef
Google scholar
|
[58] |
Tao R, Jurevic R J, Coulton K K, Tsutsui M T, Roberts M C, Kimball J R, Wells N, Berndt J , Dale B A (2005). Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother, 49(9): 3883–3888
CrossRef
Google scholar
|
[59] |
Turkoglu O, Berdeli A, Emingil G , Atilla G (2011). A novel p.S34N mutation of CAMP gene in patients with periodontal disease. Arch Oral Biol, 56(6): 573–579
CrossRef
Google scholar
|
[60] |
Turkoglu O, Emingil G, Kutukçuler N, Atilla G (2009). Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol, 80(6): 969–976
CrossRef
Google scholar
|
[61] |
Turkoglu O, Gurkan A, Emingil G , Afacan B , Toz H, Kutukçuler N, Atilla G (2015). Are antimicrobial peptides related to cyclosporine A-induced gingival overgrowth? Arch Oral Biol, 60(3): 508–515
CrossRef
Google scholar
|
[62] |
Turkoglu O, Kandiloglu G, Berdeli A , Emingil G , Atilla G (2011). Antimicrobial peptide hCAP-18/LL-37 protein and mRNA expressions in different periodontal diseases. Oral Dis, 17(1): 60–67
CrossRef
Google scholar
|
[63] |
Turner J, Cho Y, Dinh N N , Waring A J , Lehrer R I (1998). Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother, 42: 2206–2214
|
[64] |
Usher A K, Stockley R A (2013). The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Med, 11(1): 241
CrossRef
Google scholar
|
[65] |
Ximenez-Fyvie L A , Haffajee A D , Socransky S S (2000). Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol, 27(10): 722–732
CrossRef
Google scholar
|
[66] |
Yılmaz D, Guncu GN, Kononen E , Barış E , Çaglayan F , Gursoy UK (2015). Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in gingiva of diabetics with periodontitis. Immunobiology, pii: S0171–2985: 30010–3
|
[67] |
Zetterstrom R (2002). Kostmann disease-infantile genetic agranulocytosis: historical views and new aspects. Acta Paediatr, 91(12): 1279–1281
CrossRef
Google scholar
|
/
〈 | 〉 |