Crosstalk between catecholamines and erythropoiesis
Fakhredin Saba, Najmaldin Saki, Elahe Khodadi, Masoud Soleimani
Crosstalk between catecholamines and erythropoiesis
BACKGROUND: Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.
OBJECTIVE: This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.
METHODS: Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”
RESULTS: Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.
CONCLUSION: Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
erythropoiesis / cytokines / catecholamines / chronic social stress / nervous system
[1] |
An X, Mohandas N (2011). Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol, 93(2): 139–143
CrossRef
Pubmed
Google scholar
|
[2] |
Antonijević N , Nesović M , Trbojević B , Milosević R (1999). Anemia in hypothyroidism. Med Pregl, 52(3-5): 136–140
Pubmed
|
[3] |
Arranz L, Méndez-Ferrer S(2013). Network anatomy and in vivo physiology of mesenchymal stem and stromal cells. Inflamm Regen, 33:038-04
|
[4] |
Artico M, Bosco S, Cavallotti C , Agostinelli E , Giuliani-Piccari G , Sciorio S , Cocco L , Vitale M (2002). Noradrenergic and cholinergic innervation of the bone marrow. Int J Mol Med, 10(1): 77–80
Pubmed
|
[5] |
Baron M H, Vacaru A, Nieves J (2013). Erythroid development in the mammalian embryo. Blood Cells Mol Dis, 51(4): 213–219
CrossRef
Pubmed
Google scholar
|
[6] |
Bauer A, Tronche F, Wessely O , Kellendonk C , Reichardt H M , Steinlein P , Schütz G , Beug H (1999). The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev, 13(22): 2996–3002
CrossRef
Pubmed
Google scholar
|
[7] |
Beguin Y, Jaspers A (2014). Iron sucrose- characteristics, efficacy and regulatory aspects of an established treatment of iron deficiency and iron-deficiency anemia in a broad range of therapeutic areas. Expert Opin Pharmacother, 15(14): 2087–2103
CrossRef
Pubmed
Google scholar
|
[8] |
Boer A K, Drayer A L, Rui H, Vellenga E (2002). Prostaglandin-E2 enhances EPO-mediated STAT5 transcriptional activity by serine phosphorylation of CREB. Blood, 100(2): 467–473
CrossRef
Pubmed
Google scholar
|
[9] |
Boer A K, Drayer A L, Vellenga E (2003). cAMP/PKA-mediated regulation of erythropoiesis. Leuk Lymphoma, 44(11): 1893–1901
CrossRef
Pubmed
Google scholar
|
[10] |
Böhmer R M (2004). IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta. Stem Cells, 22(2): 216–224
CrossRef
Pubmed
Google scholar
|
[11] |
Brown S W, Meyers R T, Brennan K M, Rumble J M, Narasimhachari N, Perozzi E F , Ryan J J , Stewart J K , Fischer-Stenger K (2003). Catecholamines in a macrophage cell line. J Neuroimmunol, 135(1-2): 47–55
CrossRef
Pubmed
Google scholar
|
[12] |
Burdach S E, Levitt L J (1987). Receptor-specific inhibition of bone marrow erythropoiesis by recombinant DNA-derived interleukin-2. Blood, 69(5): 1368–1375
Pubmed
|
[13] |
Chasis J A, Mohandas N (2008). Erythroblastic islands: niches for erythropoiesis. Blood, 112(3): 470–478
CrossRef
Pubmed
Google scholar
|
[14] |
Chen D, Zhang G (2001). Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol, 29(8): 971–980
CrossRef
Pubmed
Google scholar
|
[15] |
Cheung J Y, Miller B A (2001). Molecular mechanisms of erythropoietin signaling. Nephron, 87(3): 215–222
CrossRef
Pubmed
Google scholar
|
[16] |
Choobineh H, Dehghani S, Alizadeh S , Dana V G , Saiepour N , Meshkani R , Einollahi N (2009). Evaluation of Leptin Levels in Major beta-Thalassemic Patients. Int J Hematol Oncol Stem Cell Res, 3(4): 1–4
|
[17] |
Chuang T T, Sallese M, Ambrosini G , Parruti G , De Blasi A (1992). High expression of beta-adrenergic receptor kinase in human peripheral blood leukocytes. Isoproterenol and platelet activating factor can induce kinase translocation. J Biol Chem, 267(10): 6886–6892
Pubmed
|
[18] |
Claycombe K, King L E, Fraker P J (2008). A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci U S A, 105(6): 2017–2021
CrossRef
Pubmed
Google scholar
|
[19] |
Cole S W, Sood A K (2012). Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res, 18(5): 1201–1206
CrossRef
Pubmed
Google scholar
|
[20] |
Cosentino M, Bombelli R, Ferrari M , Marino F , Rasini E , Maestroni G J M , Conti A , Boveri M , Lecchini S , Frigo G (2000). HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci, 68(3): 283–295
CrossRef
Pubmed
Google scholar
|
[21] |
Cremaschi G A , Gorelik G , Klecha A J , Lysionek A E , Genaro A M (2000). Chronic stress influences the immune system through the thyroid axis. Life Sci, 67(26): 3171–3179
CrossRef
Pubmed
Google scholar
|
[22] |
Dart A M, Du X J, Kingwell, B A (2002). Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res, 53(3):678–687
|
[23] |
Donahue R E, Yang Y C, Clark S C (1990). Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation. Blood, 75(12): 2271–2275
Pubmed
|
[24] |
Elenkov I J, Chrousos G P (1999). Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab, 10(9): 359–368
CrossRef
Pubmed
Google scholar
|
[25] |
Elenkov I J, Chrousos G P (2002). Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci, 966(1): 290–303
CrossRef
Pubmed
Google scholar
|
[26] |
Elhassan I O, Hannoush E J, Sifri Z C, Jones E, Alzate W D , Rameshwar P , Livingston D H , Mohr A M (2011). Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock. Surg Infect (Larchmt), 12(4): 273–278
CrossRef
Pubmed
Google scholar
|
[27] |
Farmer P, Pugin J (2000). b-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol, 279(4): L675–L682
Pubmed
|
[28] |
Fink G D, Paulo L G, Fisher J W (1975). Effects of beta adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia. J Pharmacol Exp Ther, 193(1): 176–181
Pubmed
|
[29] |
Fitch S R, Kimber G M, Wilson N K, Parker A, Mirshekar-Syahkal B, Göttgens B , Medvinsky A , Dzierzak E , Ottersbach K (2012). Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell, 11(4): 554–566
CrossRef
Pubmed
Google scholar
|
[30] |
Flierl M A, Rittirsch D, Nadeau B A , Sarma J V , Day D E , Lentsch A B , Huber-Lang M S , Ward P A (2009). Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One, 4(2): e4414
CrossRef
Pubmed
Google scholar
|
[31] |
Fonseca R B, Mohr A M, Wang L, Sifri Z C , Rameshwar P , Livingston D H (2005). The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. J Trauma, 59(4): 884–889, discussion 889–890
CrossRef
Pubmed
Google scholar
|
[32] |
Francis K T (1981). The relationship between high and low trait psychological stress, serum testosterone, and serum cortisol. Experientia, 37(12): 1296–1297
CrossRef
Pubmed
Google scholar
|
[33] |
Freudenthaler S M , Schenck T , Lucht I , Gleiter C H (1999). Fenoterol stimulates human erythropoietin production via activation of the renin angiotensin system. Br J Clin Pharmacol, 48(4): 631–634
CrossRef
Pubmed
Google scholar
|
[34] |
Furmanski P, Johnson C S (1990). Macrophage control of normal and leukemic erythropoiesis: identification of the macrophage-derived erythroid suppressing activity as interleukin-1 and the mediator of its in vivo action as tumor necrosis factor. Blood, 75(12): 2328–2334
Pubmed
|
[35] |
Ge X H, Zhu G J, Geng D Q, Zhang Z J, Liu C F (2012). Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis via glycogen synthase kinase 3b-mediated mitochondrial translocation of Bax in PC12 cells. Neurol Sci, 33(6): 1249–1256
CrossRef
Pubmed
Google scholar
|
[36] |
Gebhard C, Petroktistis F, Zhang H , Kammerer D , Köhle C , Klingel K , Albinus M , Gleiter C H , Osswald H , Grenz A (2006). Role of renal nerves and salt intake on erythropoietin secretion in rats following carbon monoxide exposure. J Pharmacol Exp Ther, 319(1): 111–116
CrossRef
Pubmed
Google scholar
|
[37] |
Glass N E, Kaltenbach L A, Fleming S B, Arbogast P G, Cotton B A (2012). The impact of beta-blocker therapy on anemia after traumatic brain injury. Transfusion, 52(10): 2155–2160
CrossRef
Pubmed
Google scholar
|
[38] |
Guo W, Bachman E, Li M , Roy C N , Blusztajn J , Wong S, Chan S Y, Serra C, Jasuja R , Travison T G , Muckenthaler M U , Nemeth E , Bhasin S (2013). Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell, 12(2): 280–291
CrossRef
Pubmed
Google scholar
|
[39] |
Hajifathali A, Saba F, Atashi A , Soleimani M , Mortaz E , Rasekhi M (2014). The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res, 358(3): 651–665
Pubmed
|
[40] |
Hamill R W, Schroeder B (1990). Hormonal regulation of adult sympathetic neurons: the effects of castration on neuropeptide Y, norepinephrine, and tyrosine hydroxylase activity. J Neurobiol, 21(5): 731–742
CrossRef
Pubmed
Google scholar
|
[41] |
Hattangadi S M , Wong P, Zhang L, Flygare J , Lodish H F (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118(24):6258–6268
|
[42] |
Hetier E, Ayala J 1, Bousseau A , Prochiantz A 1 (1991). Modulation of interleukin-1 and tumor necrosis factor expression by b-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res, 86(2): 407–413
CrossRef
Pubmed
Google scholar
|
[43] |
Huntgeburth M, Tiemann K, Shahverdyan R , Schlüter K D , Schreckenberg R , Gross M L , Mödersheim S , Caglayan E , Müller-Ehmsen J , Ghanem A , Vantler M , Zimmermann W H , Böhm M , Rosenkranz S (2011). Transforming growth factor b1 oppositely regulates the hypertrophic and contractile response to b-adrenergic stimulation in the heart. PLoS One, 6(11): e26628
CrossRef
Pubmed
Google scholar
|
[44] |
Ikuyama S (2005). Effects of thyroid hormone on hematopoiesis. Nihon Rinsho, 63(Suppl 10): 84–87
Pubmed
|
[45] |
Isern J, Méndez-Ferrer S (2011). Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep, 9(4): 210–218
CrossRef
Pubmed
Google scholar
|
[46] |
Jewell M, Breyer R M, Currie K P (2012). Bidirectional regulation of adrenal catecholamine release by prostaglandin E2. FASEB J, 26(1): 879.876
|
[47] |
Kahn B B, Minokoshi Y (2013). Leptin, GABA, and glucose control. Cell Metab, 18(3): 304–306
CrossRef
Pubmed
Google scholar
|
[48] |
Kalinkovich A, Spiegel A, Shivtiel S , Kollet O , Jordaney N , Piacibello W , Lapidot T (2009). Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun, 23(8): 1059–1065
CrossRef
Pubmed
Google scholar
|
[49] |
Kaneko K, Furuyama K, Aburatani H , Shibahara S (2009). Hypoxia induces erythroid-specific 5-aminolevulinate synthase expression in human erythroid cells through transforming growth factor-b signaling. FEBS J, 276(5): 1370–1382
CrossRef
Pubmed
Google scholar
|
[50] |
Katayama Y, Battista M, Kao W M , Hidalgo A , Peired A J , Thomas S A , Frenette P S (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2): 407–421
|
[51] |
Kefaloyianni E, Gaitanaki C, Beis I (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal, 18(12): 2238–2251
CrossRef
Pubmed
Google scholar
|
[52] |
Kelesidis T, Kelesidis I, Chou S , Mantzoros C S (2010). Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med, 152(2): 93–100
CrossRef
Pubmed
Google scholar
|
[53] |
Kilroy G E, Foster S J, Wu X, Ruiz J , Sherwood S , Heifetz A , Ludlow J W , Stricker D M , Potiny S , Green P , Halvorsen Y D C , Cheatham B , Storms R W , Gimble J M (2007). Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol, 212(3): 702–709
CrossRef
Pubmed
Google scholar
|
[54] |
Kim Y J, Hur E M, Park T J, Kim K T (2000). Nongenomic inhibition of catecholamine secretion by 17beta-estradiol in PC12 cells. J Neurochem, 74(6): 2490–2496
CrossRef
Pubmed
Google scholar
|
[55] |
Knutson K L, Spiegel K, Penev P , Van Cauter E (2007). The metabolic consequences of sleep deprivation. Sleep Med Rev, 11(3): 163–178
CrossRef
Pubmed
Google scholar
|
[56] |
Kuçi Z, Seitz G, Kuçi S , Kreyenberg H , Schumm M , Lang P, Niethammer D, Handgretinger R , Bruchelt G (2006). Pitfalls in detection of contaminating neuroblastoma cells by tyrosine hydroxylase RT-PCR due to catecholamine-producing hematopoietic cells. Anticancer Res, 26(3A): 2075–2080
Pubmed
|
[57] |
Laharrague P, Larrouy D, Fontanilles A M , Truel N , Campfield A , Tenenbaum R , Galitzky J , Corberand J X , Pénicaud L , Casteilla L (1998). High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J, 12(9): 747–752
Pubmed
|
[58] |
Lambert L A, Perri H, Halbrooks P J , Mason A B (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol, 142(2): 129–141
CrossRef
Pubmed
Google scholar
|
[59] |
Leng H M J , Kidson S H , Keraan M M , Randall G W , Folb P I (1996). Cytokine-mediated inhibition of erythropoietin synthesis by dexamethasone. J Pharm Pharmacol, 48(9): 971–974
CrossRef
Pubmed
Google scholar
|
[60] |
Leung P, Gidari A S, and the LEUNG (1981). Glucocorticoids inhibit erythroid colony formation by murine fetal liver erythroid progenitor cells in vitro. Endocrinology, 108(5): 1787–1794
CrossRef
Pubmed
Google scholar
|
[61] |
Maestroni G J , Cosentino M , Marino F , Togni M , Conti A , Lecchini S , Frigo G (1998). Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp Hematol, 26(12): 1172–1177
Pubmed
|
[62] |
Magiakou M A, Smyrnaki P, Chrousos G P (2006). Hypertension in Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab, 20(3): 467–482
CrossRef
Pubmed
Google scholar
|
[63] |
Masuda S, Nagao M, Takahata K , Konishi Y , Gallyas F Jr, Tabira T , Sasaki R (1993). Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem, 268(15): 11208–11216
Pubmed
|
[64] |
McCranor B J, Kim M J, Cruz N M, Xue Q L, Berger A E, Walston J D, Civin C I, Roy C N (2014). Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis, 52(2-3): 126–133
CrossRef
Pubmed
Google scholar
|
[65] |
Mei Y, Yin N, Jin X , He J, Yin Z (2013). The regulatory role of the adrenergic agonists phenylephrine and isoproterenol on fetal hemoglobin expression and erythroid differentiation. Endocrinology, 154(12): 4640–4649
CrossRef
Pubmed
Google scholar
|
[66] |
Méndez-Ferrer S , Battista M , Frenette P S (2010). Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci, 1192(1): 139–144
CrossRef
Pubmed
Google scholar
|
[67] |
Méndez-Ferrer S , Michurina T V , Ferraro F , Mazloom A R , Macarthur B D , Lira S A , Scadden D T , Ma’ayan A , Enikolopov G N , Frenette P S (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308): 829–834
CrossRef
Pubmed
Google scholar
|
[68] |
Mikhail A A, Beck E X, Shafer A, Barut B , Smith Gbur J , Zupancic T J , Snodgrass H R (1997). Leptin stimulates fetal and adult erythroid and myeloid development. Blood, 89(5):1507–1512
|
[69] |
Miller A H, Maletic V, Raison C L (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 65(9): 732–741
CrossRef
Pubmed
Google scholar
|
[70] |
Mladenovic J, Adamson J W (1984). Adrenergic modulation of erythropoiesis: in vitro studies of colony-forming cells in normal and polycythaemic man. Br J Haematol, 56(2): 323–332
CrossRef
Pubmed
Google scholar
|
[71] |
Moura I C, Hermine O, Lacombe C , Mayeux P (2015). Erythropoiesis and transferrin receptors. Curr Opin Hematol, 22(3): 193–198
CrossRef
Pubmed
Google scholar
|
[72] |
Muta K, Krantz S, Bondurant M , Dai C (1995). Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood, 86(2):572–580
|
[73] |
Nardelli J, Thiesson D, Fujiwara Y , Tsai F Y , Orkin S H (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol, 210(2): 305–321
CrossRef
Pubmed
Google scholar
|
[74] |
Nemeth E, Valore E V, Territo M, Schiller G , Lichtenstein A , Ganz T (2003). Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood, 101(7): 2461–2463
CrossRef
Pubmed
Google scholar
|
[75] |
Nezu M, Souma T, Yamamoto M (2014). Renal erythropoietin-producing cells and kidney disease. Nihon Rinsho, 72(9): 1691–1700 (Renal erythropoietin-producing cells and kidney disease)
Pubmed
|
[76] |
Obayashi K, Ando Y, Terazaki H , Yamashita T , Nakamura M , Suga M, Uchino M, Ando M (2000). Mechanism of anemia associated with autonomic dysfunction in rats. Auton Neurosci, 82(3): 123–129
CrossRef
Pubmed
Google scholar
|
[77] |
Oddo M, Levine J M, Kumar M, Iglesias K , Frangos S , Maloney-Wilensky E , Le Roux P D (2012). Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med, 38(9): 1497–1504
CrossRef
Pubmed
Google scholar
|
[78] |
Oehler L, Kollars M, Bohle B , Berer A , Reiter E , Lechner K , Geissler K (1999). Interleukin-10 inhibits burst-forming unit-erythroid growth by suppression of endogenous granulocyte-macrophage colony-stimulating factor production from T cells. Exp Hematol, 27(2): 217–223
CrossRef
Pubmed
Google scholar
|
[79] |
Otero M, Lago R, Lago F , Casanueva F F , Dieguez C , Gómez-Reino J J , Gualillo O (2005). Leptin, from fat to inflammation: old questions and new insights. FEBS Lett, 579(2): 295–301
CrossRef
Pubmed
Google scholar
|
[80] |
Pandolfi P P, Roth M E, Karis A, Leonard M W , Dzierzak E , Grosveld F G , Engel J D , Lindenbaum M H (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet, 11(1): 40–44
CrossRef
Pubmed
Google scholar
|
[81] |
Pasupuleti L V , Cook K M , Sifri Z C , Alzate W D , Livingston D H , Mohr A M (2014). Do all b-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock? J Trauma Acute Care Surg, 76(4): 970–975
CrossRef
Pubmed
Google scholar
|
[82] |
Peeling P, Dawson B, Goodman C , Landers G , Trinder D (2008). Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol, 103(4): 381–391
CrossRef
Pubmed
Google scholar
|
[83] |
Penn A, Mohr A M, Shah S G, Sifri Z C, Kaiser V L, Rameshwar P, Livingston D H (2010). Dose-response relationship between norepinephrine and erythropoiesis: evidence for a critical threshold. J Surg Res, 163(2): e85–e90
CrossRef
Pubmed
Google scholar
|
[84] |
Peruzzo D C, Benatti B B, Antunes I B, Andersen M L, Sallum E A, Casati M Z, Nociti F H Jr, Nogueira-Filho G R (2008). Chronic stress may modulate periodontal disease: a study in rats. J Periodontol, 79(4): 697–704
CrossRef
Pubmed
Google scholar
|
[85] |
Popovic W J, Brown J E, Adamson J W (1977). The influence of thyroid hormones on in vitro erythropoiesis. Mediation by a receptor with beta adrenergic properties. J Clin Invest, 60(4): 907–913
CrossRef
Pubmed
Google scholar
|
[86] |
Provalova N V , Skurikhin E G , Pershina O V , Minakova M Y , Suslov N I , Dygai A M (2003). Possible mechanisms underlying the effect of natural preparations on erythropoiesis under conditions of conflict situation. Bull Exp Biol Med, 136(2): 165–169
CrossRef
Pubmed
Google scholar
|
[87] |
Provalova N V , Skurikhin E G , Pershina O V , Suslov N I , Minakova M Y , Dygai A M , Gol’dberg E D (2002). Mechanisms underling the effects of adaptogens on erythropoiesis during paradoxical sleep deprivation. Bull Exp Biol Med, 133(5): 428–432
CrossRef
Pubmed
Google scholar
|
[88] |
Quesniaux V F , Clark S C , Turner K , Fagg B (1992). Interleukin-11 stimulates multiple phases of erythropoiesis in vitro. Blood, 80(5): 1218–1223
Pubmed
|
[89] |
Ricci M R, Lee M J, Russell C D, Wang Y, Sullivan S , Schneider S H , Fried S K (2005). Isoproterenol decreases leptin release from rat and human adipose tissue through posttranscriptional mechanisms. Am J Physiol Endocrinol Metab. 288(4): E798–804
|
[90] |
Rivier C, Vale W, Brown M (1989). In the rat, interleukin-1 a and-b stimulate adrenocorticotropin and catecholamine release. Endocrinology, 125(6): 3096–3102
CrossRef
Pubmed
Google scholar
|
[91] |
Rosenbaum D M , Rasmussen S G , Kobilka B K (2009). The structure and function of G-protein-coupled receptors. Nature, 459(7245): 356–363
CrossRef
Pubmed
Google scholar
|
[92] |
Rubio-Perez J M , Morillas-Ruiz J M (2012). A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal, 2012: 756357
Pubmed
|
[93] |
Rusten L S, Jacobsen S E (1995). Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood, 85(4): 989–996
Pubmed
|
[94] |
Saba F, Soleimani M, Atashi A , Mortaz E , Shahjahani M , Roshandel E , Jaseb K , Saki N (2013). The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol, 19(3): 8–16
CrossRef
Pubmed
Google scholar
|
[95] |
Sánchez-Aguilera A , Arranz L , Martín-Pérez D , García-García A , Stavropoulou V , Kubovcakova L , Isern J , Martín-Salamanca S , Langa X , Skoda R C , Schwaller J , Méndez-Ferrer S (2014). Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell, 15(6): 791–804
CrossRef
Pubmed
Google scholar
|
[96] |
Sandrini S M, Shergill R, Woodward J , Muralikuttan R , Haigh R D , Lyte M, Freestone P P (2010). Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol, 192(2): 587–594
CrossRef
Pubmed
Google scholar
|
[97] |
Schneider H, Chaovapong W, Matthews DJ , Karkaria C , Cass R T , Zhan H, Boyle M, Lorenzini T , Elliott S G , Giebel L B .(1997). Homodimerization of erythropoietin receptor by a bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood, 89(2):473–482
|
[98] |
Scholz H, Schurek H J, Eckardt K U, Kurtz A, Bauer C (1991). Oxygen-dependent erythropoietin production by the isolated perfused rat kidney. Pflugers Arch, 418(3): 228–233
CrossRef
Pubmed
Google scholar
|
[99] |
Schraml E, Fuchs R, Kotzbeck P , Grillari J , Schauenstein K (2009). Acute adrenergic stress inhibits proliferation of murine hematopoietic progenitor cells via p38/MAPK signaling. Stem Cells Dev, 18(2): 215–227
CrossRef
Pubmed
Google scholar
|
[100] |
Schulte H M, Bamberger C M, Elsen H, Herrmann G , Bamberger A M , Barth J (1994). Systemic interleukin-1 a and interleukin-2 secretion in response to acute stress and to corticotropin-releasing hormone in humans. Eur J Clin Invest, 24(11): 773–777
CrossRef
Pubmed
Google scholar
|
[101] |
Silva J E, Bianco S D (2008). Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid, 18(2): 157–165
CrossRef
Pubmed
Google scholar
|
[102] |
Silverboard H, Aisiku I, Martin G S , Adams M , Rozycki G , Moss M (2005). The role of acute blood transfusion in the development of acute respiratory distress syndrome in patients with severe trauma. J Trauma, 59(3): 717–723
Pubmed
|
[103] |
Skurikhin E G , Dygai A M , Provalova N V , Minakova M Y , Suslov N I (2005). Mechanisms of regulation of erythropoiesis during experimental neuroses. Bull Exp Biol Med, 139(5): 543–549
CrossRef
Pubmed
Google scholar
|
[104] |
Skurikhin E G , Pershina O V , Minakova M Y , Ermakova N N , Firsova T V , Dygai A M , Gol’dberg E D (2008). Adrenergic regulation of erythropoiesis during cytostatic-induced myelosuppressions. Bull Exp Biol Med, 146(4): 405–410
CrossRef
Pubmed
Google scholar
|
[105] |
Spiegel A, Shivtiel S, Kalinkovich A , Ludin A , Netzer N , Goichberg P , Azaria Y , Resnick I , Hardan I , Ben-Hur H , Nagler A , Rubinstein M , Lapidot T (2007). Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol, 8(10): 1123–1131
CrossRef
Pubmed
Google scholar
|
[106] |
Stark J L, Avitsur R, Padgett D A , Campbell K A , Beck F M , Sheridan J F (2001). Social stress induces glucocorticoid resistance in macrophages. Am J Physiol Regul Integr Comp Physiol, 280(6): R1799–R1805
Pubmed
|
[107] |
Stellacci E, Di Noia A, Di Baldassarre A, Migliaccio G , Battistini A , Migliaccio A R (2009). Interaction between the glucocorticoid and erythropoietin receptors in human erythroid cells. Exp Hematol, 37(5): 559–572nbsp;PMID:19375647
CrossRef
Google scholar
|
[108] |
Tan K S, Nackley A G, Satterfield K, Maixner W , Diatchenko L , Flood P M (2007). b2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal, 19(2): 251–260
CrossRef
Pubmed
Google scholar
|
[109] |
Togo M, Tsukamoto K, Satoh H , Hara M, Futamura A, Nakarai H , Nakahara K , Hashimoto Y (1999). Relationship between levels of leptin and hemoglobin in Japanese men. Blood, 93(12): 4444–4445
|
[110] |
Tsarovina K, Pattyn A, Stubbusch J , Müller F , van der Wees J , Schneider C , Brunet J F , Rohrer H (2004). Essential role of Gata transcription factors in sympathetic neuron development. Development, 131(19): 4775–4786
CrossRef
Pubmed
Google scholar
|
[111] |
Tsiftsoglou A S , Gusella J F , Volloch V , Housman D E (1979). Inhibition by dexamethasone of commitment to erythroid differentiation in murine erythroleukemia cells. Cancer Res, 39(10): 3849–3855
Pubmed
|
[112] |
Tsigos C, Chrousos G P (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res, 53(4): 865–871
CrossRef
Pubmed
Google scholar
|
[113] |
Unlap T, Jope R S (1995). Inhibition of NFkB DNA binding activity by glucocorticoids in rat brain. Neurosci Lett, 198(1): 41–44
CrossRef
Pubmed
Google scholar
|
[114] |
Vanasse G J, Jeong J Y, Tate J, Bathulapalli H , Anderson D , Steen H , Fleming M , Mattocks K , Telenti A , Fellay J , Justice A C , Berliner N (2011). A polymorphism in the leptin gene promoter is associated with anemia in patients with HIV disease. Blood, 118(20): 5401–5408
|
[115] |
Villanueva E C , Myers M G Jr (2008). Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond), 32(Suppl 7): S8–S12
CrossRef
Pubmed
Google scholar
|
[116] |
von Lindern M , Zauner W , Mellitzer G , Steinlein P , Fritsch G , Huber K , Löwenberg B , Beug H(1999). The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood, 94(2):550–559
|
[117] |
von Wussow U, Klaus J, Pagel H (2005). Is the renal production of erythropoietin controlled by the brain stem? Am J Physiol Endocrinol Metab, 289(1): E82–E86
CrossRef
Pubmed
Google scholar
|
[118] |
Voorhees J L, Powell N D, Moldovan L, Mo X , Eubank T D , Marsh C B (2013). Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation. PLoS One, 8(10): e77935
CrossRef
Pubmed
Google scholar
|
[119] |
Walters M R, Sharma R (2003). Cross-talk between beta-adrenergic stimulation and estrogen receptors: isoproterenol inhibits 17beta-estradiol-induced gene transcription in A7r5 cells. J Cardiovasc Pharmacol, 42(2): 266–274
CrossRef
Pubmed
Google scholar
|
[120] |
Wei C, Zhou J, Huang X , Li M (2008). Effects of psychological stress on serum iron and erythropoiesis. Int J Hematol, 88(1): 52–56
CrossRef
Pubmed
Google scholar
|
[121] |
White L D, Lawson E E (1997). Effects of chronic prenatal hypoxia on tyrosine hydroxylase and phenylethanolamine N-methyltransferase messenger RNA and protein levels in medulla oblongata of postnatal rat. Pediatr Res, 42(4): 455–462
CrossRef
Pubmed
Google scholar
|
[122] |
Wohleb E S, Hanke M L, Corona A W, Powell N D, Stiner L M, Bailey M T, Nelson R J, Godbout J P, Sheridan J F (2011). b-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci, 31(17): 6277–6288
CrossRef
Pubmed
Google scholar
|
[123] |
Woiciechowsky C, Schöning B, Lanksch W R , Volk H D , Döcke W D (1999). Catecholamine-induced interleukin-10 release: a key mechanism in systemic immunodepression after brain injury. Crit Care, 3(6): R107
CrossRef
Google scholar
|
[124] |
Yanagihara N, Toyohira Y, Ueno S , Tsutsui M , Utsunomiya K , Liu M, Tanaka K (2005). Stimulation of catecholamine synthesis by environmental estrogenic pollutants. Endocrinology, 146(1): 265–272
CrossRef
Pubmed
Google scholar
|
[125] |
Yang Q, Jian J, Katz S , Abramson S B , Huang X (2012). 17b-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology, 153(7): 3170–3178
CrossRef
Pubmed
Google scholar
|
[126] |
Yasuda Y, Masuda S, Chikuma M , Inoue K , Nagao M , Sasaki R (1998). Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem, 273(39): 25381–25387
CrossRef
Pubmed
Google scholar
|
[127] |
Yokoyama T, Etoh T, Kitagawa H , Tsukahara S , Kannan Y (2003). Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci, 65(4): 449–452
CrossRef
Pubmed
Google scholar
|
[128] |
Zhao M, Chen J, Wang W , Wang L, Ma L, Shen H , Li M (2008). Psychological stress induces hypoferremia through the IL-6-hepcidin axis in rats. Biochem Biophys Res Commun, 373(1): 90–93
CrossRef
Pubmed
Google scholar
|
[129] |
Zouhal H, Lemoine-Morel S, Mathieu M E , Casazza G A , Jabbour G (2013). Catecholamines and obesity: effects of exercise and training. Sports Med, 43(7): 591–600
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |