Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.
Madhuchhanda Das, Harischandra Sripathy Prakash, Monnanda Somaiah Nalini
Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.
BACKGROUND: The microbes living in planta termed ‘endophytes’ is bestowed with the potential to produce bioactive substances. The aim of this investigation was focused on the isolation and molecular identification of the fungal endophytes fromZingiber nimmonii (J. Graham) Dalzell., an endemic medicinal plant species of the ‘Western ghats’, a hotspot location in southern India and characterization of the secondary metabolites responsible for the antioxidant and DNA protective capacity using chromatography and mass spectrometry techniques.
METHODS: Endophytic fungi were isolated and identified by sequencing the Internal Transcribed Spacer (ITS). The secondary metabolites were extracted with ethyl acetate and evaluated for the total phenolic, flavonoid and antioxidant capacities. The isolates with potential antioxidative property were further analyzed for the DNA protection ability and the presence of bioactive phenolic compounds by High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectroscopy/Mass Spectroscopy (ESI-MS/MS) techniques.
RESULTS: Endophytic fungi belonging to 11 different taxa were identified. The total phenolic content of the extracts ranged from 10.8±0.7 to 81.6±6.0 mg gallic acid equivalent/g dry extract. Flavonoid was present in eight extracts in the range of 5.2±0.5 to 24.3±0.9 mg catechin equivalents/g dry extract.Bipolaris specifera, Alternaria tenuissima, Aspergillus terreus, Nectria haematococca and Fusarium chlamydosporum extracts exhibited a potentially high antioxidant capacity. Characterization of the extracts revealed an array of phenolic acids and flavonoids.N. haematococcaand F. chlamydosporum extracts contained quercetin and showed DNA protection ability.
CONCLUSION: This study is the first comprehensive report on the fungal endophytes from Z. nimmonii, as potential sources of antioxidative and DNA protective compounds. The study indicates that Z. nimmonii endophytes are potential sources of antioxidants over the plant itself.
endophytic fungi / Zingiber / Western Ghats / phenolic acids / flavonoid / DNA protection
[1] |
Ausubel F M, Brent R, Kingston R E , Moore D D , Seidman J G , Smith J A , Struhl K (1994). Current protocols in molecular biology.Wiley, New York
|
[2] |
Barros L, Ferreira M J, Queirós B, Ferreira C F R , Baptista P (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem, 103(2): 413–419
CrossRef
Google scholar
|
[3] |
Bussaban B, Lumyong S, Lumyong P , Mckenzie E H C , Hyde K D (2001). Endophytic fungi from Amomum siamense. Can J Microbiol, 47(10): 943–948
CrossRef
Google scholar
|
[4] |
Çelik H, Arinç E (2010). Evaluation of the protective effects of quercetin, rutin, resveratrol, naringenin and trolox against idarubicin-induced DNA damage. J Pharm Pharm Sci, 13(2): 231–241
CrossRef
Google scholar
|
[5] |
Cheng M J, Wu M D, Chen J J, Cheng Y C, Hsieh M T, Hsieh S Y, Yuan G F, Su Y S (2014). Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chem Nat Compd, 50(2): 237–241
CrossRef
Google scholar
|
[6] |
Das A K, Singh V (2016). Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem, 201: 298–306
CrossRef
Google scholar
|
[7] |
Deng C M, Liu S X, Huang C H, Pang J Y, Lin Y C (2013). Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No.GX7–3B) from the South China Sea. Mar Drugs, 11(7): 2616–2624
CrossRef
Google scholar
|
[8] |
Duthie S J, Collins A R, Duthie G G, Dobson V L (1997). Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage strand breaks and oxidised pyrimidines in human lymphocytes. Mutat Res, 393(3): 223–231
CrossRef
Google scholar
|
[9] |
Finose A, Gopalakrishnan V K (2014). Antioxidant potential of Zingiber nimmonii (J. Graham) Dalzell. Int J Pharm PharmSci, 6(6): 50–52
|
[10] |
Gamble J S (1928). Flora of the Presidency of Madras. Vol.III, Bishen Singh Mahenra Pal Singh, Dehra Dun, India, pp. 1487–1489
|
[11] |
Huang W Y, Cai Y Z, Hyde K D, Corke H, Sun M (2007b). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol, 23(9): 1253–1263
CrossRef
Google scholar
|
[12] |
Huang W Y, Cai Y Z, Xing J, Corke H , Sun M (2007a). A Potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot, 61(1): 14–30
CrossRef
Google scholar
|
[13] |
Jasim B, Anisha C, Rohini S , Kurian J M , Jyothis M , Radhakrishnan E K (2014). Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol, 30(5): 1649–1654
CrossRef
Google scholar
|
[14] |
Jing P, Zhao S J, Jian W J, Qian B J, Dong Y, Pang J (2012). Quantitative studies on structure- DPPH• scavenging activity relationships of food phenolic acids. Molecules, 17(12): 12910–12924
CrossRef
Google scholar
|
[15] |
Karamac M, Kosiñska A, Pegg R B (2005). Comparison of radical-scavenging activities for selected phenolic acids. Pol J Food NutrSci, 14/55(2): 165–170
|
[16] |
Kavitha P G, Kiran A G, Dinesh Raj R, Sabu M , Thomas G (2010). Amplified fragment length polymorphism analyses unravel a striking difference in the intraspecific genetic diversity of four species of four species of genus Zingiber Boehm. from the Western Ghats, South India. Curr Sci, 98(2): 242–246
|
[17] |
Lee J C, Kim H R, Kim J, Jang Y S (2002). Antioxidant activity of ethanol extract of the stem of Opuntiaficus-indica var. saboten. J Agric Food Chem, 50(22): 6490–6496
CrossRef
Google scholar
|
[18] |
Liu X, Dong M, Chen X , Jiang M , Lv X, Yan G (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem, 105(2): 548–554
CrossRef
Google scholar
|
[19] |
Maldonado P D , Rivero-Cruz I , Mata R, Pedraza-Chaverrí J (2005). Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem, 53(6): 1996–2001
CrossRef
Google scholar
|
[20] |
Nalini MS, Sunayana N, Prakash HS (2014). Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int J Biodiv, doi:org/10.1155/2014/494213.
|
[21] |
Nongalleima K, Dey A, Lokesh D , Singh C B , Thongam B , Sunitibala D H , Indira D S (2013). Endophytic fungus isolated from Zingiber zerumbet (L.) Sm. inhibits free radicals and cyclooxygenase activity. Int J Pharm Tech Res, 5(2): 301–307
|
[22] |
Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2): 351–358
CrossRef
Google scholar
|
[23] |
Onyema O O, Farombi E O, Emerole G O, Ukoha A I, Onyeze G O (2006). Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J Biochem Biophys, 43(1): 20–24
|
[24] |
Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. J Nutr, 44: 307–315
|
[25] |
Pérez-Magariño S , Revilla I , González-SanJosé M L, Beltrán S (1999). Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds. J Chromatogr A, 847(1-2): 75–81
CrossRef
Google scholar
|
[26] |
Pizarro J G, Folch J, De La Torre A V, Verdaguer E , Junyent F , Jordan J , Pallas M , Camins A (2009). Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic Res, 43(10): 985–994
CrossRef
Google scholar
|
[27] |
Re R, Pellegrini N, Proteggente A , Pannala A , Yang M, Evans C R (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9-10): 1231–1237
CrossRef
Google scholar
|
[28] |
Sabulal B, Dan M, John J A , Kurup R , Pradeep N S , Valsamma R K , George V (2006). Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry, 67(22): 2469–2473
CrossRef
Google scholar
|
[29] |
Samaga P V, Rai V R (2016). Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. Ann Microbiol, 66(1): 229–244
CrossRef
Google scholar
|
[30] |
Schulz B, Guske S, Dammann U , Boyle C (1998). Endophyte host interactions II. Defining symbiosis of the endophyte host interaction. Symbiosis, 25: 213–227
|
[31] |
Strobel G, Daisy B (2003). Bio prospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev, 67(4): 491–502
CrossRef
Google scholar
|
[32] |
Strobel G, Yang X, Sears J , Kramer R , Sidhu R S , Hess W M (1996). Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 142(2): 435–440
CrossRef
Google scholar
|
[33] |
Sun J, Liang F, Bin Y , Li P, Duan C (2007). Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules, 12(3): 679–693
CrossRef
Google scholar
|
[34] |
Tan R X, Zou W X (2001). Endophytes: a rich source of functional metabolites. Nat Prod Rep, 18(4): 448–459
CrossRef
Google scholar
|
[35] |
Tejesvi M V, Mahesh B, Nalini M S , Prakash H S , Kini K R , Subbiah V , Shetty H S (2005). Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World J Microbiol Biotechnol, 21(8-9): 1535–1540
CrossRef
Google scholar
|
[36] |
Thannickal V J , Fanburg B L (2000). Reactive oxygen species in cell signalling. Am J Physiol Lung Cell Mol Physiol, 279: L1005–L1028
|
[37] |
Tiwari S, Singh S, Pandey P , Saikia S K , Negi A S , Gupta S K , Pandey R , Banerjee S (2014). Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma, 251(5): 1089–1098
CrossRef
Google scholar
|
[38] |
Tuma D J, Casey C A (2003). Dangerous byproducts of alcohol breakdown—focus on adducts. Alcohol Res Health, 27: 285–290
|
[39] |
Wilson D (1995). Fungal endophytes: out of sight but should not be out of mind. Oikos, 68(2): 379–384
CrossRef
Google scholar
|
[40] |
Yashavantha Rao H C , Rakshith D , Satish S (2015). Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Front Biol, 10(6): 528–536
CrossRef
Google scholar
|
/
〈 | 〉 |