Neuronal activity controls the development of interneurons in the somatosensory cortex
Rachel Babij, Natalia De Marco Garcia
Neuronal activity controls the development of interneurons in the somatosensory cortex
BACKGROUND: Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions.
OBJECTIVE: In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns.
METHODS: We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab.
RESULTS: We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016.
CONCLUSIONS: Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.
interneuron / neurodevelopment / neuroplasticity / thalamocortical / NMDA receptors / neuronal maturation
[1] |
Adelsberger H, Garaschuk O, Konnerth A (2005). Cortical calcium waves in resting newborn mice. Nat Neurosci, 8(8): 988–990
CrossRef
Pubmed
Google scholar
|
[2] |
Agmon A, Connors B W (1992). Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci, 12(1): 319–329
Pubmed
|
[3] |
Agmon A, O’Dowd D K (1992). NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J Neurophysiol, 68(1): 345–349
Pubmed
|
[4] |
Allène C, Cattani A, Ackman J B, Bonifazi P, Aniksztejn L, Ben-Ari Y, Cossart R (2008). Sequential generation of two distinct synapse-driven network patterns in developing neocortex. J Neurosci, 28(48): 12851–12863
CrossRef
Pubmed
Google scholar
|
[5] |
Allene C, Cossart R (2010). Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol, 588(Pt 1): 83–91
CrossRef
Pubmed
Google scholar
|
[6] |
An S, Kilb W, Luhmann H J (2014). Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex. J Neurosci, 34(33): 10870–10883
CrossRef
Pubmed
Google scholar
|
[7] |
Anastasiades P G, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, Miesenböck G, Butt S J (2016). GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun, 7: 10584
CrossRef
Pubmed
Google scholar
|
[8] |
Arroyo D A, Feller M B (2016). Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits, 10: 54
CrossRef
Pubmed
Google scholar
|
[9] |
Ascoli G A, Alonso-Nanclares L, Anderson S A, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund T F, Gardner D, Gardner E P, Goldberg J H, Helmstaedter M, Hestrin S, Karube F, Kisvárday Z F, Lambolez B, Lewis D A, Marin O, Markram H, Muñoz A, Packer A, Petersen C C, Rockland K S, Rossier J, Rudy B, Somogyi P, Staiger J F, Tamas G, Thomson A M, Toledo-Rodriguez M, Wang Y, West D C, Yuste R, Yuste R, and the Petilla Interneuron Nomenclature Group (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci, 9(7): 557–568
CrossRef
Pubmed
Google scholar
|
[10] |
Avila A, Vidal P M, Dear T N, Harvey R J, Rigo J M, Nguyen L (2013). Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Reports, 4(4): 738–750
CrossRef
Pubmed
Google scholar
|
[11] |
Baho E, Di Cristo G (2012). Neural activity and neurotransmission regulate the maturation of the innervation field of cortical GABAergic interneurons in an age-dependent manner. J Neurosci, 32(3): 911–918
CrossRef
Pubmed
Google scholar
|
[12] |
Bando Y, Irie K, Shimomura T, Umeshima H, Kushida Y, Kengaku M, Fujiyoshi Y, Hirano T, Tagawa Y (2016). Control of spontaneous Ca2+ transients is critical for neuronal maturation in the developing neocortex. Cereb Cortex, 26(1): 106–117
CrossRef
Pubmed
Google scholar
|
[13] |
Batista-Brito R, Fishell G (2009). The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol, 87: 81–118
CrossRef
Pubmed
Google scholar
|
[14] |
Batista-Brito R, Machold R, Klein C, Fishell G (2008). Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex, 18(10): 2306–2317
CrossRef
Pubmed
Google scholar
|
[15] |
Behar T N, Schaffner A E, Scott C A, Greene C L, Barker J L (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex, 10(9): 899–909
CrossRef
Pubmed
Google scholar
|
[16] |
Behar T N, Scott C A, Greene C L, Wen X, Smith S V, Maric D, Liu Q Y, Colton C A, Barker J L (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci, 19(11): 4449–4461
Pubmed
|
[17] |
Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013). Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun, 4: 1800
CrossRef
Pubmed
Google scholar
|
[18] |
Bortone D, Polleux F (2009). KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron, 62(1): 53–71
CrossRef
Pubmed
Google scholar
|
[19] |
Butt S J, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin J G, Fishell G (2005). The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron, 48(4): 591–604
CrossRef
Pubmed
Google scholar
|
[20] |
Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013). Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron, 77(4): 712–722
CrossRef
Pubmed
Google scholar
|
[21] |
Chaudhury S, Sharma V, Kumar V, Nag T C, Wadhwa S (2016). Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev, 38(4): 355–363
CrossRef
Pubmed
Google scholar
|
[22] |
Chu J, Anderson S A (2015). Development of cortical interneurons. Neuropsychopharmacology, 40(1): 16–23
CrossRef
Pubmed
Google scholar
|
[23] |
Close J, Xu H, De Marco García N, Batista-Brito R, Rossignol E, Rudy B, Fishell G (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J Neurosci, 32(49): 17690–17705
CrossRef
Pubmed
Google scholar
|
[24] |
Cohen-Kashi Malina K, Mohar B, Rappaport A N, Lampl I (2016). Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities. Nat Commun, 7: 12740
CrossRef
Pubmed
Google scholar
|
[25] |
Colonnese M T, Kaminska A, Minlebaev M, Milh M, Bloem B, Lescure S, Moriette G, Chiron C, Ben-Ari Y, Khazipov R (2010). A conserved switch in sensory processing prepares developing neocortex for vision. Neuron, 67(3): 480–498
CrossRef
Pubmed
Google scholar
|
[26] |
Conhaim J, Easton C R, Becker M I, Barahimi M, Cedarbaum E R, Moore J G, Mather L F, Dabagh S, Minter D J, Moen S P, Moody W J (2011). Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex. J Physiol, 589(Pt 10): 2529–2541
CrossRef
Pubmed
Google scholar
|
[27] |
Corlew R, Bosma M M, Moody W J (2004). Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J Physiol, 560(Pt 2): 377–390
CrossRef
Pubmed
Google scholar
|
[28] |
Cossart R, Ikegaya Y, Yuste R (2005). Calcium imaging of cortical networks dynamics. Cell Calcium, 37(5): 451–457
CrossRef
Pubmed
Google scholar
|
[29] |
Coulter D A (2001). Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol, 45: 237–252
CrossRef
Pubmed
Google scholar
|
[30] |
Crair M C, Malenka R C (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375(6529): 325–328
CrossRef
Pubmed
Google scholar
|
[31] |
Cruikshank S J, Urabe H, Nurmikko A V, Connors B W (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2): 230–245
CrossRef
Pubmed
Google scholar
|
[32] |
Cuzon V C, Yeh P W, Cheng Q, Yeh H H (2006). Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex, 16(10): 1377–1388
CrossRef
Pubmed
Google scholar
|
[33] |
Cuzon Carlson V C, Yeh H H (2011). GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex, 21(8): 1792–1802
CrossRef
Pubmed
Google scholar
|
[34] |
Daw M I, Scott H L, Isaac J T (2007). Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci, 34(4): 493–502
CrossRef
Pubmed
Google scholar
|
[35] |
de Lima A D, Gieseler A, Voigt T (2009). Relationship between GABAergic interneurons migration and early neocortical network activity. Dev Neurobiol, 69(2-3): 105–123
CrossRef
Pubmed
Google scholar
|
[36] |
De Marco García N V, Karayannis T, Fishell G (2011). Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature, 472(7343): 351–355
CrossRef
Pubmed
Google scholar
|
[37] |
De Marco García N V, Priya R, Tuncdemir S N, Fishell G, Karayannis T (2015). Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat Neurosci, 18(3): 393–401
CrossRef
Pubmed
Google scholar
|
[38] |
DeDiego I, Smith-Fernández A, Fairén A (1994). Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci, 6(6): 983–997
CrossRef
Pubmed
Google scholar
|
[39] |
Dehorter N, Ciceri G, Bartolini G, Lim L, del Pino I, Marín O (2015). Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science, 349(6253): 1216–1220
CrossRef
Pubmed
Google scholar
|
[40] |
Denaxa M, Kalaitzidou M, Garefalaki A, Achimastou A, Lasrado R, Maes T, Pachnis V (2012). Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Reports, 2(5): 1351–1362
CrossRef
Pubmed
Google scholar
|
[41] |
Dupont E, Hanganu I L, Kilb W, Hirsch S, Luhmann H J (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 439(7072): 79–83
CrossRef
Pubmed
Google scholar
|
[42] |
Easton C R, Weir K, Scott A, Moen S P, Barger Z, Folch A, Hevner R F, Moody W J (2014). Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex. J Neurosci, 34(11): 3854–3863
CrossRef
Pubmed
Google scholar
|
[43] |
Erzurumlu R S, Gaspar P (2012). Development and critical period plasticity of the barrel cortex. Eur J Neurosci, 35(10): 1540–1553
CrossRef
Pubmed
Google scholar
|
[44] |
Espinosa J S, Stryker M P (2012). Development and plasticity of the primary visual cortex. Neuron, 75(2): 230–249
CrossRef
Pubmed
Google scholar
|
[45] |
Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron, 62(2): 205–217
CrossRef
Pubmed
Google scholar
|
[46] |
Feldmeyer D (2012). Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat, 6: 24
CrossRef
Pubmed
Google scholar
|
[47] |
Feldmeyer D, Brecht M, Helmchen F, Petersen C C, Poulet J F, Staiger J F, Luhmann H J, Schwarz C (2013). Barrel cortex function. Prog Neurobiol, 103: 3–27
CrossRef
Pubmed
Google scholar
|
[48] |
Fishell G, Rudy B (2011). Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu Rev Neurosci, 34(1): 535–567
CrossRef
Pubmed
Google scholar
|
[49] |
Flint A C, Maisch U S, Weishaupt J H, Kriegstein A R, Monyer H (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci, 17(7): 2469–2476
Pubmed
|
[50] |
Frazer S, Otomo K, Dayer A (2015). Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry, 5(9): e644
CrossRef
Pubmed
Google scholar
|
[51] |
Garaschuk O, Linn J, Eilers J, Konnerth A (2000). Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci, 3(5): 452–459
CrossRef
Pubmed
Google scholar
|
[52] |
Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M (2001). Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex, 11(9): 806–815
CrossRef
Pubmed
Google scholar
|
[53] |
Golshani P, Gonçalves J T, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C (2009). Internally mediated developmental desynchronization of neocortical network activity. J Neurosci, 29(35): 10890–10899
CrossRef
Pubmed
Google scholar
|
[54] |
Hanganu I L, Kilb W, Luhmann H J (2002). Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci, 22(16): 7165–7176
Pubmed
|
[55] |
Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann H J (2007). GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex, 17(1): 138–148
CrossRef
Pubmed
Google scholar
|
[56] |
Higashi S, Hioki K, Kurotani T, Kasim N, Molnár Z (2005). Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci, 25(6): 1395–1406
CrossRef
Pubmed
Google scholar
|
[57] |
Huang Z J, Di Cristo G, Ango F (2007). Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci, 8(9): 673–686
CrossRef
Pubmed
Google scholar
|
[58] |
Inada H, Watanabe M, Uchida T, Ishibashi H, Wake H, Nemoto T, Yanagawa Y, Fukuda A, Nabekura J (2011). GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS ONE, 6(12): e27048
CrossRef
Pubmed
Google scholar
|
[59] |
Iwasato T, Datwani A, Wolf A M, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu R S, Itohara S (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731
CrossRef
Pubmed
Google scholar
|
[60] |
Ji X Y, Zingg B, Mesik L, Xiao Z, Zhang L I, Tao H W (2016). Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex, 26(6): 2612–2625
CrossRef
Pubmed
Google scholar
|
[61] |
Jiao Y, Zhang C, Yanagawa Y, Sun Q Q (2006). Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci, 26(34): 8691–8701
CrossRef
Pubmed
Google scholar
|
[62] |
Kanold P O (2004). Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport, 15(14): 2149–2153
CrossRef
Pubmed
Google scholar
|
[63] |
Kanold P O, Kara P, Reid R C, Shatz C J (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632): 521–525
CrossRef
Pubmed
Google scholar
|
[64] |
Kanold P O, Luhmann H J (2010). The subplate and early cortical circuits. Annu Rev Neurosci, 33(1): 23–48
CrossRef
Pubmed
Google scholar
|
[65] |
Karayannis T, De Marco García N V, Fishell G J (2012). Functional adaptation of cortical interneurons to attenuated activity is subtype-specific. Front Neural Circuits, 6: 66
CrossRef
Pubmed
Google scholar
|
[66] |
Karnani M M, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider W G, Yuste R (2016). Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex. Neuron, 90(1): 86–100
CrossRef
Pubmed
Google scholar
|
[67] |
Kepecs A, Fishell G (2014). Interneuron cell types are fit to function. Nature, 505(7483): 318–326
CrossRef
Pubmed
Google scholar
|
[68] |
Khazipov R, Luhmann H J (2006). Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci, 29(7): 414–418
CrossRef
Pubmed
Google scholar
|
[69] |
Khazipov R, Sirota A, Leinekugel X, Holmes G L, Ben-Ari Y, Buzsáki G (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432(7018): 758–761
CrossRef
Pubmed
Google scholar
|
[70] |
Kihara M, Yoshioka H, Hirai K, Hasegawa K, Kizaki Z, Sawada T (2002). Stimulation of N-methyl-D-aspartate (NMDA) receptors inhibits neuronal migration in embryonic cerebral cortex: a tissue culture study. Brain Res Dev Brain Res, 138(2): 195–198
CrossRef
Pubmed
Google scholar
|
[71] |
Kilb W, Kirischuk S, Luhmann H J (2011). Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci, 34(10): 1677–1686
CrossRef
Pubmed
Google scholar
|
[72] |
Kilb W, Kirischuk S, Luhmann H J (2013). Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits, 7: 139
CrossRef
Pubmed
Google scholar
|
[73] |
Killackey H P (1973). Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res, 51: 326–331
CrossRef
Pubmed
Google scholar
|
[74] |
Kirmse K, Kummer M, Kovalchuk Y, Witte O W, Garaschuk O, Holthoff K (2015). GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun, 6: 7750
CrossRef
Pubmed
Google scholar
|
[75] |
Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, De Vos M, Van Huffel S, Vanhatalo S (2016). Early development of synchrony in cortical activations in the human. Neuroscience, 322: 298–307
CrossRef
Pubmed
Google scholar
|
[76] |
Kral A (2013). Auditory critical periods: a review from system’s perspective. Neuroscience, 247: 117–133
CrossRef
Pubmed
Google scholar
|
[77] |
Laaris N, Carlson G C, Keller A (2000). Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci, 20(4): 1529–1537
Pubmed
|
[78] |
Lee L J, Iwasato T, Itohara S, Erzurumlu R S (2005). Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol, 485(4): 280–292
CrossRef
Pubmed
Google scholar
|
[79] |
Lewis D A (2014). Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol, 26: 22–26
CrossRef
Pubmed
Google scholar
|
[80] |
Li H, Fertuzinhos S, Mohns E, Hnasko T S, Verhage M, Edwards R, Sestan N, Crair M C (2013). Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron, 79(5): 970–986
CrossRef
Pubmed
Google scholar
|
[81] |
Liang F, Isackson P J, Jones E G (1996). Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/calmodulin-dependent protein kinase II gene expression in rat cerebral cortex. Exp Brain Res, 110(2): 163–174
CrossRef
Pubmed
Google scholar
|
[82] |
Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007). Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci, 27(12): 3078–3089
CrossRef
Pubmed
Google scholar
|
[83] |
Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010). Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci, 30(12): 4197–4209
CrossRef
Pubmed
Google scholar
|
[84] |
Liu X, Hashimoto-Torii K, Torii M, Haydar T F, Rakic P (2008). The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA, 105(33): 11802–11807
CrossRef
Pubmed
Google scholar
|
[85] |
Liu X B, Murray K D, Jones E G (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci, 24(40): 8885–8895
CrossRef
Pubmed
Google scholar
|
[86] |
Lorente de No R (1922). La Corteza Cerebral del Raton (Primera Contribucion- La Corteza Acustica). Trabajos del Laboratorio de Investigaciones Biologicas, 20: 41–78
|
[87] |
LoTurco J J, Blanton M G, Kriegstein A R (1991). Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci, 11(3): 792–799
Pubmed
|
[88] |
Luhmann H J, Fukuda A, Kilb W (2015). Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci, 9: 4
CrossRef
Pubmed
Google scholar
|
[89] |
Luhmann H J, Hanganu I, Kilb W (2003). Cellular physiology of the neonatal rat cerebral cortex. Brain Res Bull, 60(4): 345–353
CrossRef
Pubmed
Google scholar
|
[90] |
Luhmann H J, Kirischuk S, Sinning A, Kilb W (2014). Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol, 26: 72–78
CrossRef
Pubmed
Google scholar
|
[91] |
Manent J B, Jorquera I, Ben-Ari Y, Aniksztejn L, Represa A (2006). Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci, 26(22): 5901–5909
CrossRef
Pubmed
Google scholar
|
[92] |
Marín O (2012). Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci, 13(2): 107–120
Pubmed
|
[93] |
Marques-Smith A, Lyngholm D, Kaufmann A K, Stacey J A, Hoerder-Suabedissen A, Becker E B, Wilson M C, Molnár Z, Butt S J (2016). A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron, 89(3): 536–549
CrossRef
Pubmed
Google scholar
|
[94] |
Matta J A, Pelkey K A, Craig M T, Chittajallu R, Jeffries B W, McBain C J (2013). Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci, 16(8): 1032–1041
CrossRef
Pubmed
Google scholar
|
[95] |
McCabe A K, Chisholm S L, Picken-Bahrey H L, Moody W J (2006). The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones. J Physiol, 577(Pt 1): 155–167
CrossRef
Pubmed
Google scholar
|
[96] |
Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex, 17(7): 1582–1594
CrossRef
Pubmed
Google scholar
|
[97] |
Minlebaev M, Ben-Ari Y, Khazipov R (2007). Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol, 97(1): 692–700
CrossRef
Pubmed
Google scholar
|
[98] |
Minlebaev M, Ben-Ari Y, Khazipov R (2009). NMDA receptors pattern early activity in the developing barrel cortex in vivo. Cereb Cortex, 19(3): 688–696
CrossRef
Pubmed
Google scholar
|
[99] |
Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R (2011). Early g oscillations synchronize developing thalamus and cortex. Science, 334(6053): 226–229
CrossRef
Pubmed
Google scholar
|
[100] |
Mix A, Hoppenrath K, Funke K (2015). Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev Neurobiol, 75(1): 1–11
CrossRef
Pubmed
Google scholar
|
[101] |
Miyashita-Lin E M, Hevner R, Wassarman K M, Martinez S, Rubenstein J L (1999). Early neocortical regionalization in the absence of thalamic innervation. Science, 285(5429): 906–909
CrossRef
Pubmed
Google scholar
|
[102] |
Miyoshi G, Butt S J, Takebayashi H, Fishell G (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci, 27(29): 7786–7798
CrossRef
Pubmed
Google scholar
|
[103] |
Miyoshi G, Fishell G (2011). GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cereb Cortex, 21(4): 845–852
CrossRef
Pubmed
Google scholar
|
[104] |
Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci, 30(5): 1582–1594
CrossRef
Pubmed
Google scholar
|
[105] |
Mizuno H, Luo W, Tarusawa E, Saito Y M, Sato T, Yoshimura Y, Itohara S, Iwasato T (2014). NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron, 82(2): 365–379
CrossRef
Pubmed
Google scholar
|
[106] |
Molnár Z, Adams R, Blakemore C (1998). Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci, 18(15): 5723–5745
Pubmed
|
[107] |
Murthy S, Niquille M, Hurni N, Limoni G, Frazer S, Chameau P, van Hooft J A, Vitalis T, Dayer A (2014). Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun, 5: 5524
CrossRef
Pubmed
Google scholar
|
[108] |
Narboux-Nême N, Evrard A, Ferezou I, Erzurumlu R S, Kaeser P S, Lainé J, Rossier J, Ropert N, Südhof T C, Gaspar P (2012). Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J Neurosci, 32(18): 6183–6196
CrossRef
Pubmed
Google scholar
|
[109] |
Oh W C, Lutzu S, Castillo P E, Kwon H B (2016). De novo synaptogenesis induced by GABA in the developing mouse cortex. Science, 353(6303): 1037–1040
CrossRef
Pubmed
Google scholar
|
[110] |
Okaty B W, Miller M N, Sugino K, Hempel C M, Nelson S B (2009). Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci, 29(21): 7040–7052
CrossRef
Pubmed
Google scholar
|
[111] |
Paoletti P, Bellone C, Zhou Q (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci, 14(6): 383–400
CrossRef
Pubmed
Google scholar
|
[112] |
Petersen C C (2007). The functional organization of the barrel cortex. Neuron, 56(2): 339–355
CrossRef
Pubmed
Google scholar
|
[113] |
Porter J T, Johnson C K, Agmon A (2001). Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci, 21(8): 2699–2710
Pubmed
|
[114] |
Reiprich P, Kilb W, Luhmann H J (2005). Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cereb Cortex, 15(3): 349–358
CrossRef
Pubmed
Google scholar
|
[115] |
Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes G L, Ben-Ari Y, Zilberter Y (2008). Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol, 100(2): 609–619
CrossRef
Pubmed
Google scholar
|
[116] |
Riccio O, Potter G, Walzer C, Vallet P, Szabó G, Vutskits L, Kiss J Z, Dayer A G (2009). Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol Psychiatry, 14(3): 280–290
CrossRef
Pubmed
Google scholar
|
[117] |
Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol, 71(1): 45–61
CrossRef
Pubmed
Google scholar
|
[118] |
Rutherford L C, DeWan A, Lauer H M, Turrigiano G G (1997). Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci, 17(12): 4527–4535
Pubmed
|
[119] |
Sanes D H, Kotak V C (2011). Developmental plasticity of auditory cortical inhibitory synapses. Hear Res, 279(1-2): 140–148
CrossRef
Pubmed
Google scholar
|
[120] |
Schwartz T H, Rabinowitz D, Unni V, Kumar V S, Smetters D K, Tsiola A, Yuste R (1998). Networks of coactive neurons in developing layer 1. Neuron, 20(3): 541–552
CrossRef
Pubmed
Google scholar
|
[121] |
Siegel F, Heimel J A, Peters J, Lohmann C (2012). Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol, 22(3): 253–258
CrossRef
Pubmed
Google scholar
|
[122] |
Sippy T, Yuste R (2013). Decorrelating action of inhibition in neocortical networks. J Neurosci, 33(23): 9813–9830
CrossRef
Pubmed
Google scholar
|
[123] |
Soria J M, Valdeolmillos M (2002). Receptor-activated calcium signals in tangentially migrating cortical cells. Cereb Cortex, 12(8): 831–839
CrossRef
Pubmed
Google scholar
|
[124] |
Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003). In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA, 100(12): 7319–7324
CrossRef
Pubmed
Google scholar
|
[125] |
Sultan K T, Brown K N, Shi S H (2013). Production and organization of neocortical interneurons. Front Cell Neurosci, 7: 221
CrossRef
Pubmed
Google scholar
|
[126] |
Sun J J, Luhmann H J (2007). Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Eur J Neurosci, 26(7): 1995–2004
CrossRef
Pubmed
Google scholar
|
[127] |
Sun Q Q, Huguenard J R, Prince D A (2006). Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci, 26(4): 1219–1230
CrossRef
Pubmed
Google scholar
|
[128] |
Sur M, Leamey C A (2001). Development and plasticity of cortical areas and networks. Nat Rev Neurosci, 2(4): 251–262
CrossRef
Pubmed
Google scholar
|
[129] |
Takano T (2015). Interneuron Dysfunction in Syndromic Autism: Recent Advances. Dev Neurosci, 37(6): 467–475
CrossRef
Pubmed
Google scholar
|
[130] |
Tasic B, Menon V, Nguyen T N, Kim T K, Jarsky T, Yao Z, Levi B, Gray L T, Sorensen S A, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin S M, Hawrylycz M, Koch C, Zeng H (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci, 19(2): 335–346
CrossRef
Pubmed
Google scholar
|
[131] |
Tolner E A, Sheikh A, Yukin A Y, Kaila K, Kanold P O (2012). Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci, 32(2): 692–702
CrossRef
Pubmed
Google scholar
|
[132] |
Tolonen M, Palva J M, Andersson S, Vanhatalo S (2007). Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies. Neuroscience, 145(3): 997–1006
CrossRef
Pubmed
Google scholar
|
[133] |
Trevelyan A J, Muldoon S F, Merricks E M, Racca C, Staley K J (2015). The role of inhibition in epileptic networks. J Clin Neurophysiol, 32(3): 227–234
CrossRef
Pubmed
Google scholar
|
[134] |
Tuncdemir S N, Wamsley B, Stam F J, Osakada F, Goulding M, Callaway E M, Rudy B, Fishell G (2016). Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 89(3): 521–535
CrossRef
Pubmed
Google scholar
|
[135] |
Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S (2015). Calcium signaling in neocortical development. Dev Neurobiol, 75(4): 360–368
CrossRef
Pubmed
Google scholar
|
[136] |
Van der Loos H, Woolsey T A (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science, 179(4071): 395–398
CrossRef
Pubmed
Google scholar
|
[137] |
Van Eden C G, Mrzljak L, Voorn P, Uylings H B (1989). Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol, 289(2): 213–227
CrossRef
Pubmed
Google scholar
|
[138] |
Vitalis T, Ansorge M S, Dayer A G (2013). Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci, 7: 93
CrossRef
Pubmed
Google scholar
|
[139] |
Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas J G (2007). Embryonic depletion of serotonin affects cortical development. Eur J Neurosci, 26(2): 331–344
CrossRef
Pubmed
Google scholar
|
[140] |
Voigt T, Opitz T, de Lima A D (2001). Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons. J Neurosci, 21(22): 8895–8905
Pubmed
|
[141] |
Welker C (1971). Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res, 26(2): 259–275
Pubmed
|
[142] |
Welker C (1976). Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol, 166(2): 173–189
CrossRef
Pubmed
Google scholar
|
[143] |
White L E, Fitzpatrick D (2007). Vision and cortical map development. Neuron, 56(2): 327–338
CrossRef
Pubmed
Google scholar
|
[144] |
Wichterle H, Garcia-Verdugo J M, Herrera D G, Alvarez-Buylla A (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci, 2(5): 461–466
CrossRef
Pubmed
Google scholar
|
[145] |
Wichterle H, Turnbull D H, Nery S, Fishell G, Alvarez-Buylla A (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development, 128(19): 3759–3771
Pubmed
|
[146] |
Woolsey T A, Van der Loos H (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res, 17(2): 205–242
CrossRef
Pubmed
Google scholar
|
[147] |
Wu X, Fu Y, Knott G, Lu J, Di Cristo G, Huang Z J (2012). GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons. J Neurosci, 32(1): 331–343
CrossRef
Pubmed
Google scholar
|
[148] |
Yang J W, Hanganu-Opatz I L, Sun J J, Luhmann H J (2009). Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci, 29(28): 9011–9025
CrossRef
Pubmed
Google scholar
|
[149] |
Yang J W, Reyes-Puerta V, Kilb W, Luhmann H J (2016). Spindle Bursts in Neonatal Rat Cerebral Cortex. Neural Plast, 2016: 3467832
CrossRef
Pubmed
Google scholar
|
[150] |
Yozu M, Tabata H, Konig N, Nakajima K (2008). Migratory behavior of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic mouse neocortex. Dev Neurosci, 30(1-3): 105–116
CrossRef
Pubmed
Google scholar
|
[151] |
Zeisel A, Muñoz-Manchado A B, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347(6226): 1138–1142
CrossRef
Pubmed
Google scholar
|
[152] |
Zhang Z, Sun Q Q (2011). Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev Neurobiol, 71(3): 221–245
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |