New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins
Jian Li, Chun Guo, Nickolas Steinauer, Jinsong Zhang
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins
BACKGROUND: Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein–protein interactions in elucidating the mechanisms of leukemia fusion proteins.
OBJECTIVE: In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies.
METHODS: A total of 218 publications were reviewed in this article, a majority of which were published after 2004. We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures.
RESULTS: By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein–protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1.
CONCLUSION: While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein–protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
AML1-ETO / E2A-Pbx1 / E-proteins / chromosomal translocation / transcription / leukemia
[1] |
Ahn E Y, DeKelver R C, Lo M C, Nguyen T A, Matsuura S, Boyapati A, Pandit S, Fu X D, Zhang D E (2011). SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell, 42(2): 185–198
CrossRef
Pubmed
Google scholar
|
[2] |
Ahn E Y, Yan M, Malakhova O A, Lo M C, Boyapati A, Ommen H B, Hines R, Hokland P, Zhang D E (2008). Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis. Proc Natl Acad Sci USA, 105(44): 17103–17108
CrossRef
Pubmed
Google scholar
|
[3] |
Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C, Sciurpi M T, Mariano A R, Minardi S P, Luzi L, Muller H, Di Fiore P P, Frosina G, Pelicci P G (2003). Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest, 112(11): 1751–1761
CrossRef
Pubmed
Google scholar
|
[4] |
Amann J M, Nip J, Strom D K, Lutterbach B, Harada H, Lenny N, Downing J R, Meyers S, Hiebert S W (2001). ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol, 21(19): 6470–6483
CrossRef
Pubmed
Google scholar
|
[5] |
Anantharaman A, Lin I J, Barrow J, Liang S Y, Masannat J, Strouboulis J, Huang S, Bungert J (2011). Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol, 31(7): 1332–1343
CrossRef
Pubmed
Google scholar
|
[6] |
Arkin M R, Tang Y, Wells J A (2014). Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol, 21(9): 1102–1114
CrossRef
Pubmed
Google scholar
|
[7] |
Aspland S E, Bendall H H, Murre C (2001). The role of E2A-PBX1 in leukemogenesis. Oncogene, 20(40): 5708–5717
CrossRef
Pubmed
Google scholar
|
[8] |
Azzarito V, Long K, Murphy N S, Wilson A J (2013). Inhibition of a-helix-mediated protein-protein interactions using designed molecules. Nat Chem, 5(3): 161–173
CrossRef
Pubmed
Google scholar
|
[9] |
Bain G, Engel I, Robanus Maandag E C, te Riele H P, Voland J R, Sharp L L, Chun J, Huey B, Pinkel D, Murre C (1997). E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol, 17(8): 4782–4791
CrossRef
Pubmed
Google scholar
|
[10] |
Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G, Mascagni P, Lübbert M, Dello Sbarba P, Santini V (2008). Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene, 27(12): 1767–1778
CrossRef
Pubmed
Google scholar
|
[11] |
Bartfeld D, Shimon L, Couture G C, Rabinovich D, Frolow F, Levanon D, Groner Y, Shakked Z (2002). DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure, 10(10): 1395–1407
CrossRef
Pubmed
Google scholar
|
[12] |
Bayly R, Chuen L, Currie R A, Hyndman B D, Casselman R, Blobel G A, LeBrun D P (2004). E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J Biol Chem, 279(53): 55362–55371
CrossRef
Pubmed
Google scholar
|
[13] |
Bayly R, Murase T, Hyndman B D, Savage R, Nurmohamed S, Munro K, Casselman R, Smith S P, LeBrun D P (2006). Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol Cell Biol, 26(17): 6442–6452
CrossRef
Pubmed
Google scholar
|
[14] |
Berardi M J, Sun C, Zehr M, Abildgaard F, Peng J, Speck N A, Bushweller J H (1999). The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure, 7(10): 1247–1256
CrossRef
Pubmed
Google scholar
|
[15] |
Bravo J, Li Z, Speck N A, Warren A J (2001). The leukemia-associated AML1 (Runx1)—CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol, 8(4): 371–378
CrossRef
Pubmed
Google scholar
|
[16] |
Breig O, Bras S, Martinez Soria N, Osman D, Heidenreich O, Haenlin M, Waltzer L (2014). Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia, 28(6): 1271–1279
CrossRef
Pubmed
Google scholar
|
[17] |
Burel S A, Harakawa N, Zhou L, Pabst T, Tenen D G, Zhang D E (2001). Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol Cell Biol, 21(16): 5577–5590
CrossRef
Pubmed
Google scholar
|
[18] |
Calabi F, Cilli V (1998). CBFA2T1, a gene rearranged in human leukemia, is a member of a multigene family. Genomics, 52(3): 332–341
CrossRef
Pubmed
Google scholar
|
[19] |
Calabi F, Pannell R, Pavloska G (2001). Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol, 21(16): 5658–5666
CrossRef
Pubmed
Google scholar
|
[20] |
Chang K S, Fan Y H, Stass S A, Estey E H, Wang G, Trujillo J M, Erickson P, Drabkin H (1993). Expression of AML1-ETO fusion transcripts and detection of minimal residual disease in t(8;21)-positive acute myeloid leukemia. Oncogene, 8(4): 983–988
Pubmed
|
[21] |
Chen F E, Huang D B, Chen Y Q, Ghosh G (1998). Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature, 391(6665): 410–413
CrossRef
Pubmed
Google scholar
|
[22] |
Chen J, Odenike O, Rowley J D (2010). Leukaemogenesis: more than mutant genes. Nat Rev Cancer, 10(1): 23–36
CrossRef
Pubmed
Google scholar
|
[23] |
Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, Shi Y, Armstrong S A, Roeder R G (2015). JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev, 29(20): 2123–2139
CrossRef
Pubmed
Google scholar
|
[24] |
Chevallier N, Corcoran C M, Lennon C, Hyjek E, Chadburn A, Bardwell V J, Licht J D, Melnick A (2004). ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood, 103(4): 1454–1463
CrossRef
Pubmed
Google scholar
|
[25] |
Cho Y, Gorina S, Jeffrey P D, Pavletich N P (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265(5170): 346–355
CrossRef
Pubmed
Google scholar
|
[26] |
Chou F S, Griesinger A, Wunderlich M, Lin S, Link K A, Shrestha M, Goyama S, Mizukawa B, Shen S, Marcucci G, Mulloy J C (2012). The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood, 120(4): 709–719
CrossRef
Pubmed
Google scholar
|
[27] |
Chou F S, Wunderlich M, Griesinger A, Mulloy J C (2011). N-Ras(G12D) induces features of stepwise transformation in preleukemic human umbilical cord blood cultures expressing the AML1-ETO fusion gene. Blood, 117(7): 2237–2240
CrossRef
Pubmed
Google scholar
|
[28] |
Chyla B J, Moreno-Miralles I, Steapleton M A, Thompson M A, Bhaskara S, Engel M, Hiebert S W (2008). Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol, 28(20): 6234–6247
CrossRef
Pubmed
Google scholar
|
[29] |
Cisse B, Caton M L, Lehner M, Maeda T, Scheu S, Locksley R, Holmberg D, Zweier C, den Hollander N S, Kant S G, Holter W, Rauch A, Zhuang Y, Reizis B (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell, 135(1): 37–48
CrossRef
Pubmed
Google scholar
|
[30] |
Corpora T, Roudaia L, Oo Z M, Chen W, Manuylova E, Cai X, Chen M J, Cierpicki T, Speck N A, Bushweller J H (2010). Structure of the AML1-ETO NHR3-PKA(RIIa) complex and its contribution to AML1-ETO activity. J Mol Biol, 402(3): 560–577
CrossRef
Pubmed
Google scholar
|
[31] |
D’Alonzo R C, Selvamurugan N, Karsenty G, Partridge N C (2002). Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 277(1): 816–822
CrossRef
Pubmed
Google scholar
|
[32] |
Davis J N, Williams B J, Herron J T, Galiano F J, Meyers S (1999). ETO-2, a new member of the ETO-family of nuclear proteins. Oncogene, 18(6): 1375–1383
CrossRef
Pubmed
Google scholar
|
[33] |
de Bruijn M F, Speck N A (2004). Core-binding factors in hematopoiesis and immune function. Oncogene, 23(24): 4238–4248
CrossRef
Pubmed
Google scholar
|
[34] |
de Guzman C G, Warren A J, Zhang Z, Gartland L, Erickson P, Drabkin H, Hiebert S W, Klug C A (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol, 22(15): 5506–5517
CrossRef
Pubmed
Google scholar
|
[35] |
de Pooter R F, Kee B L (2010). E proteins and the regulation of early lymphocyte development. Immunol Rev, 238(1): 93–109
CrossRef
Pubmed
Google scholar
|
[36] |
Denis C M, Langelaan D N, Kirlin A C, Chitayat S, Munro K, Spencer H L, LeBrun D P, Smith S P (2014). Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300. Nucleic Acids Res, 42(11): 7370–7382
CrossRef
Pubmed
Google scholar
|
[37] |
Downing J R (1999). The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 106(2): 296–308
CrossRef
Pubmed
Google scholar
|
[38] |
El Omari K, Hoosdally S J, Tuladhar K, Karia D, Hall-Ponselé E, Platonova O, Vyas P, Patient R, Porcher C, Mancini E J (2013). Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Reports, 4(1): 135–147
CrossRef
Pubmed
Google scholar
|
[39] |
Elagib K E, Racke F K, Mogass M, Khetawat R, Delehanty L L, Goldfarb A N (2003). RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood, 101(11): 4333–4341
CrossRef
Pubmed
Google scholar
|
[40] |
Engel I, Murre C (1999). Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc Natl Acad Sci USA, 96(3): 996–1001
CrossRef
Pubmed
Google scholar
|
[41] |
Erickson P, Gao J, Chang K S, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80(7): 1825–1831
Pubmed
|
[42] |
Erickson P F, Dessev G, Lasher R S, Philips G, Robinson M, Drabkin H A (1996). ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood, 88(5): 1813–1823
Pubmed
|
[43] |
Erickson P F, Robinson M, Owens G, Drabkin H A (1994). The ETO portion of acute myeloid leukemia t(8;21) fusion transcript encodes a highly evolutionarily conserved, putative transcription factor. Cancer Res, 54(7): 1782–1786
Pubmed
|
[44] |
Fazi F, Racanicchi S, Zardo G, Starnes L M, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12(5): 457–466
CrossRef
Pubmed
Google scholar
|
[45] |
Feinstein P G, Kornfeld K, Hogness D S, Mann R S (1995). Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics, 140(2): 573–586
Pubmed
|
[46] |
Fenske T S, Pengue G, Mathews V, Hanson P T, Hamm S E, Riaz N, Graubert T A (2004). Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA, 101(42): 15184–15189
CrossRef
Pubmed
Google scholar
|
[47] |
Figueroa M E, Abdel-Wahab O, Lu C, Ward P S, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez H F, Tallman M S, Sun Z, Wolniak K, Peeters J K, Liu W, Choe S E, Fantin V R, Paietta E, Löwenberg B, Licht J D, Godley L A, Delwel R, Valk P J, Thompson C B, Levine R L, Melnick A (2010). Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 18(6): 553–567
CrossRef
Pubmed
Google scholar
|
[48] |
Fischer M A, Moreno-Miralles I, Hunt A, Chyla B J, Hiebert S W (2012). Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J, 31(6): 1494–1505
CrossRef
Pubmed
Google scholar
|
[49] |
Fracchiolla N S, Colombo G, Finelli P, Maiolo A T, Neri A (1998). EHT, a new member of the MTG8/ETO gene family, maps on 20q11 region and is deleted in acute myeloid leukemias. Blood, 92(9): 3481–3484
Pubmed
|
[50] |
Frank R, Zhang J, Uchida H, Meyers S, Hiebert S W, Nimer S D (1995). The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene, 11(12): 2667–2674
Pubmed
|
[51] |
Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, Kozu T (2001). MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene, 20(43): 6225–6232
CrossRef
Pubmed
Google scholar
|
[52] |
Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, Nagase T, Yokoyama Y, Ohki M (1998). The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood, 91(11): 4028–4037
Pubmed
|
[53] |
Gamsjaeger R, Liew C K, Loughlin F E, Crossley M, Mackay J P (2007). Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci, 32(2): 63–70
CrossRef
Pubmed
Google scholar
|
[54] |
Gao X N, Yan F, Lin J, Gao L, Lu X L, Wei S C, Shen N, Pang J X, Ning Q Y, Komeno Y, Deng A L, Xu Y H, Shi J L, Li Y H, Zhang D E, Nervi C, Liu S J, Yu L (2015). AML1/ETO cooperates with HIF1a to promote leukemogenesis through DNMT3a transactivation. Leukemia, 29(8): 1730–1740
CrossRef
Pubmed
Google scholar
|
[55] |
Gardini A, Cesaroni M, Luzi L, Okumura A J, Biggs J R, Minardi S P, Venturini E, Zhang D E, Pelicci P G, Alcalay M (2008). AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet, 4(11): e1000275
CrossRef
Pubmed
Google scholar
|
[56] |
Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci P G, Lazar M A (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol, 18(12): 7185–7191
CrossRef
Pubmed
Google scholar
|
[57] |
Geng H, Brennan S, Milne T A, Chen W Y, Li Y, Hurtz C, Kweon S M, Zickl L, Shojaee S, Neuberg D, Huang C, Biswas D, Xin Y, Racevskis J, Ketterling R P, Luger S M, Lazarus H, Tallman M S, Rowe J M, Litzow M R, Guzman M L, Allis C D, Roeder R G, Müschen M, Paietta E, Elemento O, Melnick A M (2012). Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov, 2(11): 1004–1023
CrossRef
Pubmed
Google scholar
|
[58] |
Goardon N, Lambert J A, Rodriguez P, Nissaire P, Herblot S, Thibault P, Dumenil D, Strouboulis J, Romeo P H, Hoang T (2006). ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J, 25(2): 357–366
CrossRef
Pubmed
Google scholar
|
[59] |
Goemans B F, Zwaan C M, Miller M, Zimmermann M, Harlow A, Meshinchi S, Loonen A H, Hählen K, Reinhardt D, Creutzig U, Kaspers G J, Heinrich M C (2005). Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia, 19(9): 1536–1542
CrossRef
Pubmed
Google scholar
|
[60] |
Gow C H, Guo C, Wang D, Hu Q, Zhang J (2014). Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res, 42(1): 137–152
CrossRef
Pubmed
Google scholar
|
[61] |
Grisolano J L, O’Neal J, Cain J, Tomasson M H (2003). An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA, 100(16): 9506–9511
CrossRef
Pubmed
Google scholar
|
[62] |
Gross C T, McGinnis W (1996). DEAF-1, a novel protein that binds an essential region in a Deformed response element. EMBO J, 15(8): 1961–1970
Pubmed
|
[63] |
Gu W, Roeder R G (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90(4): 595–606
CrossRef
Pubmed
Google scholar
|
[64] |
Guenther M G, Lane W S, Fischle W, Verdin E, Lazar M A, Shiekhattar R (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev, 14(9): 1048–1057
Pubmed
|
[65] |
Guo C, Hu Q, Yan C, Zhang J (2009). Multivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery. Mol Cell Biol, 29(10): 2644–2657
CrossRef
Pubmed
Google scholar
|
[66] |
Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P (2008). Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood, 112(7): 2738–2749
CrossRef
Pubmed
Google scholar
|
[67] |
Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, Leubolt G, Metzeler K H, Herold T, Bamopoulos S A, Bräundl K, Zellmeier E, Ksienzyk B, Konstandin N P, Schneider S, Hopfner K P, Graf A, Krebs S, Blum H, Middeke J M, Stölzel F, Thiede C, Wolf S, Bohlander S K, Preiss C, Chen-Wichmann L, Wichmann C, Sauerland M C, Büchner T, Berdel W E, Wörmann B J, Braess J, Hiddemann W, Spiekermann K, Greif P A (2016). ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun, 7: 11733
CrossRef
Pubmed
Google scholar
|
[68] |
Hassig C A, Fleischer T C, Billin A N, Schreiber S L, Ayer D E (1997). Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell, 89(3): 341–347
CrossRef
Pubmed
Google scholar
|
[69] |
Hatlen M A, Arora K, Vacic V, Grabowska E A, Liao W, Riley-Gillis B, Oschwald D M, Wang L, Joergens J E, Shih A H, Rapaport F, Gu S, Voza F, Asai T, Neel B G, Kharas M G, Gonen M, Levine R L, Nimer S D (2016). Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. J Exp Med, 213(1): 25–34
CrossRef
Pubmed
Google scholar
|
[70] |
Heery D M, Kalkhoven E, Hoare S, Parker M G (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387(6634): 733–736
CrossRef
Pubmed
Google scholar
|
[71] |
Heinzel T, Lavinsky R M, Mullen T M, Söderstrom M, Laherty C D, Torchia J, Yang W M, Brard G, Ngo S D, Davie J R, Seto E, Eisenman R N, Rose D W, Glass C K, Rosenfeld M G (1997). A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature, 387(6628): 43–48
CrossRef
Pubmed
Google scholar
|
[72] |
Hess J L, Hug B A (2004). Fusion-protein truncation provides new insights into leukemogenesis. Proc Natl Acad Sci USA, 101(49): 16985–16986
CrossRef
Pubmed
Google scholar
|
[73] |
Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh E J, Downing J R (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 1(1): 63–74
CrossRef
Pubmed
Google scholar
|
[74] |
Higueruelo A P, Jubb H, Blundell T L (2013). Protein-protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol, 13(5): 791–796
CrossRef
Pubmed
Google scholar
|
[75] |
Hildebrand D, Tiefenbach J, Heinzel T, Grez M, Maurer A B (2001). Multiple regions of ETO cooperate in transcriptional repression. J Biol Chem, 276(13): 9889–9895
CrossRef
Pubmed
Google scholar
|
[76] |
Huang X, Peng J W, Speck N A, Bushweller J H (1999). Solution structure of core binding factor beta and map of the CBF alpha binding site. Nat Struct Biol, 6(7): 624–627
CrossRef
Pubmed
Google scholar
|
[77] |
Hug B A, Lee S Y, Kinsler E L, Zhang J, Lazar M A (2002). Cooperative function of Aml1-ETO corepressor recruitment domains in the expansion of primary bone marrow cells. Cancer Res, 62(10): 2906–2912
Pubmed
|
[78] |
Hunt A, Fischer M, Engel M E, Hiebert S W (2011). Mtg16/Eto2 contributes to murine T-cell development. Mol Cell Biol, 31(13): 2544–2551
CrossRef
Pubmed
Google scholar
|
[79] |
Inaba T, Roberts W M, Shapiro L H, Jolly K W, Raimondi S C, Smith S D, Look A T (1992). Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science, 257(5069): 531–534
CrossRef
Pubmed
Google scholar
|
[80] |
Ito Y (2004). Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene, 23(24): 4198–4208
CrossRef
Pubmed
Google scholar
|
[81] |
Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J, Nimer S D (2000). Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem, 275(51): 40282–40287
CrossRef
Pubmed
Google scholar
|
[82] |
Jankovic V, Ciarrocchi A, Boccuni P, DeBlasio T, Benezra R, Nimer S D (2007). Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci USA, 104(4): 1260–1265
CrossRef
Pubmed
Google scholar
|
[83] |
Jiao B, Wu C F, Liang Y, Chen H M, Xiong S M, Chen B, Shi J Y, Wang Y Y, Wang J H, Chen Y, Li J M, Gu L J, Tang J Y, Shen Z X, Gu B W, Zhao W L, Chen Z, Chen S J (2009). AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2. Leukemia, 23(9): 1598–1604
CrossRef
Pubmed
Google scholar
|
[84] |
Jin W, Wu K, Li Y Z, Yang W T, Zou B, Zhang F, Zhang J, Wang K K (2013). AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene, 32(15): 1978–1987
CrossRef
Pubmed
Google scholar
|
[85] |
Kamps M P, Baltimore D (1993). E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol, 13(1): 351–357
CrossRef
Pubmed
Google scholar
|
[86] |
Kamps M P, Murre C, Sun X H, Baltimore D (1990). A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell, 60(4): 547–555
CrossRef
Pubmed
Google scholar
|
[87] |
Kee B L (2009). E and ID proteins branch out. Nat Rev Immunol, 9(3): 175–184
CrossRef
Pubmed
Google scholar
|
[88] |
Kim W Y, Sieweke M, Ogawa E, Wee H J, Englmeier U, Graf T, Ito Y (1999). Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J, 18(6): 1609–1620
CrossRef
Pubmed
Google scholar
|
[89] |
Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, Nomura N, Hayashi Y, Ohki M (1998). The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol, 18(2): 846–858
CrossRef
Pubmed
Google scholar
|
[90] |
Klampfer L, Zhang J, Zelenetz A O, Uchida H, Nimer S D (1996). The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA, 93(24): 14059–14064
CrossRef
Pubmed
Google scholar
|
[91] |
Klisovic M I, Maghraby E A, Parthun M R, Guimond M, Sklenar A R, Whitman S P, Chan K K, Murphy T, Anon J, Archer K J, Rush L J, Plass C, Grever M R, Byrd J C, Marcucci G (2003). Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia, 17(2): 350–358
CrossRef
Pubmed
Google scholar
|
[92] |
Komori A, Sueoka E, Fujiki H, Ishii M, Kozu T (1999). Association of MTG8 (ETO/CDR), a leukemia-related protein, with serine/threonine protein kinases and heat shock protein HSP90 in human hematopoietic cell lines. Jpn J Cancer Res, 90(1): 60–68
CrossRef
Pubmed
Google scholar
|
[93] |
Krauth M T, Eder C, Alpermann T, Bacher U, Nadarajah N, Kern W, Haferlach C, Haferlach T, Schnittger S (2014). High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia, 28(7): 1449–1458
CrossRef
Pubmed
Google scholar
|
[94] |
Kwok C, Zeisig B B, Dong S, So C W (2010). The role of CBFbeta in AML1-ETO’s activity. Blood, 115(15): 3176–3177
CrossRef
Pubmed
Google scholar
|
[95] |
Kwok C, Zeisig B B, Qiu J, Dong S, So C W (2009). Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci USA, 106(8): 2853–2858
CrossRef
Pubmed
Google scholar
|
[96] |
Laherty C D, Yang W M, Sun J M, Davie J R, Seto E, Eisenman R N (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89(3): 349–356
CrossRef
Pubmed
Google scholar
|
[97] |
Laraia L, McKenzie G, Spring D R, Venkitaraman A R, Huggins D J (2015). Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem Biol, 22(6): 689–703
CrossRef
Pubmed
Google scholar
|
[98] |
Lenny N, Meyers S, Hiebert S W (1995). Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene, 11(9): 1761–1769
Pubmed
|
[99] |
Li F Q, Person R E, Takemaru K, Williams K, Meade-White K, Ozsahin A H, Güngör T, Moon R T, Horwitz M (2004). Lymphoid enhancer factor-1 links two hereditary leukemia syndromes through core-binding factor alpha regulation of ELA2. J Biol Chem, 279(4): 2873–2884
CrossRef
Pubmed
Google scholar
|
[100] |
Li J, Wang J, Wang J, Nawaz Z, Liu J M, Qin J, Wong J (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J, 19(16): 4342–4350
CrossRef
Pubmed
Google scholar
|
[101] |
Li L M, Chen Z X, Cen J N, Shen H J, Yao L, Wang Y Y, Qi X F (2012). Monitoring the expression ratio of AML1-ETO9a isoform in t(8;21) acute myeloid leukemia and its significance. Zhonghua Xue Ye Xue Za Zhi, 33(1): 1–5
Pubmed
|
[102] |
Li Q L, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi X Z, Lee K Y, Nomura S, Lee C W, Han S B, Kim H M, Kim W J, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae S C, Ito Y (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1): 113–124
CrossRef
Pubmed
Google scholar
|
[103] |
Li Y, Gao L, Luo X, Wang L, Gao X, Wang W, Sun J, Dou L, Li J, Xu C, Wang L, Zhou M, Jiang M, Zhou J, Caligiuri M A, Nervi C, Bloomfield C D, Marcucci G, Yu L (2013). Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood, 121(3): 499–509
CrossRef
Pubmed
Google scholar
|
[104] |
Li Y, Wang H, Wang X, Jin W, Tan Y, Fang H, Chen S, Chen Z, Wang K (2015a). Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood, 127(2):233–242
|
[105] |
Li Z, Chen P, Su R, Li Y, Hu C, Wang Y, Arnovitz S, He M, Gurbuxani S, Zuo Z, Elkahloun A G, Li S, Weng H, Huang H, Neilly M B, Wang S, Olson E N, Larson R A, Le Beau M M, Zhang J, Jiang X, Wei M, Jin J, Liu P P, Chen J (2015b). Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 126(17): 2005–2015
CrossRef
Pubmed
Google scholar
|
[106] |
Li Z, Lu J, Sun M, Mi S, Zhang H, Luo R T, Chen P, Wang Y, Yan M, Qian Z, Neilly M B, Jin J, Zhang Y, Bohlander S K, Zhang D E, Larson R A, Le Beau M M, Thirman M J, Golub T R, Rowley J D, Chen J (2008). Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA, 105(40): 15535–15540
CrossRef
Pubmed
Google scholar
|
[107] |
Libermann T A, Pan Z, Akbarali Y, Hetherington C J, Boltax J, Yergeau D A, Zhang D E (1999). AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. J Biol Chem, 274(35): 24671–24676
CrossRef
Pubmed
Google scholar
|
[108] |
Licciulli S, Cambiaghi V, Scafetta G, Gruszka A M, Alcalay M (2010). Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation. Leukemia, 24(2): 429–437
CrossRef
Pubmed
Google scholar
|
[109] |
Linggi B, Müller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel W E, van der Reijden B, Quelle D E, Rowley J D, Cleveland J, Jansen J H, Pandolfi P P, Hiebert S W (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med, 8(7): 743–750
CrossRef
Pubmed
Google scholar
|
[110] |
Liu S, Shen T, Huynh L, Klisovic M I, Rush L J, Ford J L, Yu J, Becknell B, Li Y, Liu C, Vukosavljevic T, Whitman S P, Chang K S, Byrd J C, Perrotti D, Plass C, Marcucci G (2005). Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res, 65(4): 1277–1284
CrossRef
Pubmed
Google scholar
|
[111] |
Liu Y, Chen W, Gaudet J, Cheney M D, Roudaia L, Cierpicki T, Klet R C, Hartman K, Laue T M, Speck N A, Bushweller J H (2007). Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell, 11(6): 483–497
CrossRef
Pubmed
Google scholar
|
[112] |
Liu Y, Cheney M D, Gaudet J J, Chruszcz M, Lukasik S M, Sugiyama D, Lary J, Cole J, Dauter Z, Minor W, Speck N A, Bushweller J H (2006). The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell, 9(4): 249–260
CrossRef
Pubmed
Google scholar
|
[113] |
Lo M C, Peterson L F, Yan M, Cong X, Jin F, Shia W J, Matsuura S, Ahn E Y, Komeno Y, Ly M, Ommen H B, Chen I M, Hokland P, Willman C L, Ren B, Zhang D E (2012). Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood, 120(7): 1473–1484
CrossRef
Pubmed
Google scholar
|
[114] |
Lotem J, Levanon D, Negreanu V, Bauer O, Hantisteanu S, Dicken J, Groner Y (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochim Biophys Acta, 1855(2): 131–143
Pubmed
|
[115] |
Lu Q, Knoepfler P S, Scheele J, Wright D D, Kamps M P (1995). Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol Cell Biol, 15(7): 3786–3795
CrossRef
Pubmed
Google scholar
|
[116] |
Lu Q, Wright D D, Kamps M P (1994). Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol, 14(6): 3938–3948
CrossRef
Pubmed
Google scholar
|
[117] |
Lutterbach B, Sun D, Schuetz J, Hiebert S W (1998a). The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol, 18(6): 3604–3611
CrossRef
Pubmed
Google scholar
|
[118] |
Lutterbach B, Westendorf J J, Linggi B, Patten A, Moniwa M, Davie J R, Huynh K D, Bardwell V J, Lavinsky R M, Rosenfeld M G, Glass C, Seto E, Hiebert S W (1998b). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol, 18(12): 7176–7184
CrossRef
Pubmed
Google scholar
|
[119] |
Mao S, Frank R C, Zhang J, Miyazaki Y, Nimer S D (1999). Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol, 19(5): 3635–3644
CrossRef
Pubmed
Google scholar
|
[120] |
Martens J H, Mandoli A, Simmer F, Wierenga B J, Saeed S, Singh A A, Altucci L, Vellenga E, Stunnenberg H G (2012). ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood, 120(19): 4038–4048
CrossRef
Pubmed
Google scholar
|
[121] |
Massari M E, Murre C (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol, 20(2): 429–440
CrossRef
Pubmed
Google scholar
|
[122] |
Matheny C J, Speck M E, Cushing P R, Zhou Y, Corpora T, Regan M, Newman M, Roudaia L, Speck C L, Gu T L, Griffey S M, Bushweller J H, Speck N A (2007). Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. EMBO J, 26(4): 1163–1175
CrossRef
Pubmed
Google scholar
|
[123] |
McGhee L, Bryan J, Elliott L, Grimes H L, Kazanjian A, Davis J N, Meyers S (2003). Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem, 89(5): 1005–1018
CrossRef
Pubmed
Google scholar
|
[124] |
Meier N, Krpic S, Rodriguez P, Strouboulis J, Monti M, Krijgsveld J, Gering M, Patient R, Hostert A, Grosveld F (2006). Novel binding partners of Ldb1 are required for haematopoietic development. Development, 133(24): 4913–4923
CrossRef
Pubmed
Google scholar
|
[125] |
Mellentin J D, Murre C, Donlon T A, McCaw P S, Smith S D, Carroll A J, McDonald M E, Baltimore D, Cleary M L (1989). The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science, 246(4928): 379–382
CrossRef
Pubmed
Google scholar
|
[126] |
Melnick A M, Westendorf J J, Polinger A, Carlile G W, Arai S, Ball H J, Lutterbach B, Hiebert S W, Licht J D (2000). The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol, 20(6): 2075–2086
CrossRef
Pubmed
Google scholar
|
[127] |
Meyers S, Downing J R, Hiebert S W (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol, 13(10): 6336–6345
CrossRef
Pubmed
Google scholar
|
[128] |
Meyers S, Lenny N, Hiebert S W (1995). The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol, 15(4): 1974–1982
CrossRef
Pubmed
Google scholar
|
[129] |
Micol J B, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O, Lacombe C, Lapillonne H, Etancelin P, Figeac M, Renneville A, Castaigne S, Leverger G, Ifrah N, Dombret H, Preudhomme C, Abdel-Wahab O, Jourdan E (2014). Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood, 124(9): 1445–1449
CrossRef
Pubmed
Google scholar
|
[130] |
Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar M A, Landsberger N, Nervi C, Pelicci P G (2000). Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell, 5(5): 811–820
CrossRef
Pubmed
Google scholar
|
[131] |
Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M (1993). The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J, 12(7): 2715–2721
Pubmed
|
[132] |
Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M (1995). Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res, 23(14): 2762–2769
CrossRef
Pubmed
Google scholar
|
[133] |
Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA, 88(23): 10431–10434
CrossRef
Pubmed
Google scholar
|
[134] |
Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, Sargin B, Köhler G, Stelljes M, Puccetti E, Ruthardt M, deVos S, Hiebert S W, Koeffler H P, Berdel W E, Serve H (2004). Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol, 24(7): 2890–2904
CrossRef
Pubmed
Google scholar
|
[135] |
Mulloy J C, Cammenga J, Berguido F J, Wu K, Zhou P, Comenzo R L, Jhanwar S, Moore M A, Nimer S D (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood, 102(13): 4369–4376
CrossRef
Pubmed
Google scholar
|
[136] |
Mulloy J C, Cammenga J, MacKenzie K L, Berguido F J, Moore M A, Nimer S D (2002). The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood, 99(1): 15–23
CrossRef
Pubmed
Google scholar
|
[137] |
Mulloy J C, Jankovic V, Wunderlich M, Delwel R, Cammenga J, Krejci O, Zhao H, Valk P J, Lowenberg B, Nimer S D (2005). AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proc Natl Acad Sci USA, 102(11): 4016–4021
CrossRef
Pubmed
Google scholar
|
[138] |
Nagata T, Gupta V, Sorce D, Kim W Y, Sali A, Chait B T, Shigesada K, Ito Y, Werner M H (1999). Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol, 6(7): 615–619
CrossRef
Pubmed
Google scholar
|
[139] |
Nagy L, Kao H Y, Chakravarti D, Lin R J, Hassig C A, Ayer D E, Schreiber S L, Evans R M (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89(3): 373–380
CrossRef
Pubmed
Google scholar
|
[140] |
Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S, Hoshida Y, Nakazawa T, Harada Y, Tatsumi N, Tsuboi A, Kawakami M, Oka Y, Oji Y, Aozasa K, Kawase I, Sugiyama H (2006). AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood, 107(8): 3303–3312
CrossRef
Pubmed
Google scholar
|
[141] |
Nourse J, Mellentin J D, Galili N, Wilkinson J, Stanbridge E, Smith S D, Cleary M L (1990). Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell, 60(4): 535–545
CrossRef
Pubmed
Google scholar
|
[142] |
Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K (1993). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology, 194(1): 314–331
CrossRef
Pubmed
Google scholar
|
[143] |
Okuda T, Cai Z, Yang S, Lenny N, Lyu C J, van Deursen J M, Harada H, Downing J R (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 91(9): 3134–3143
Pubmed
|
[144] |
Okuda T, van Deursen J, Hiebert S W, Grosveld G, Downing J R (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2): 321–330
CrossRef
Pubmed
Google scholar
|
[145] |
Okumura A J, Peterson L F, Okumura F, Boyapati A, Zhang D E (2008). t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood, 112(4): 1392–1401
CrossRef
Pubmed
Google scholar
|
[146] |
Pabst T, Mueller B U, Harakawa N, Schoch C, Haferlach T, Behre G, Hiddemann W, Zhang D E, Tenen D G (2001). AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med, 7(4): 444–451
CrossRef
Pubmed
Google scholar
|
[147] |
Park S, Chen W, Cierpicki T, Tonelli M, Cai X, Speck N A, Bushweller J H (2009a). Structure of the AML1-ETO eTAFH domain-HEB peptide complex and its contribution to AML1-ETO activity. Blood, 113(15): 3558–3567
CrossRef
Pubmed
Google scholar
|
[148] |
Park S, Speck N A, Bushweller J H (2009b). The role of CBFbeta in AML1-ETO’s activity. Blood, 114(13): 2849–2850
CrossRef
Pubmed
Google scholar
|
[149] |
Park S T, Nolan G P, Sun X H (1999). Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J Exp Med, 189(3): 501–508
CrossRef
Pubmed
Google scholar
|
[150] |
Peterson L F, Yan M, Zhang D E (2007). The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood, 109(10): 4392–4398
CrossRef
Pubmed
Google scholar
|
[151] |
Peterson L F, Zhang D E (2004). The 8;21 translocation in leukemogenesis. Oncogene, 23(24): 4255–4262
CrossRef
Pubmed
Google scholar
|
[152] |
Petrovick M S, Hiebert S W, Friedman A D, Hetherington C J, Tenen D G, Zhang D E (1998). Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol Cell Biol, 18(7): 3915–3925
CrossRef
Pubmed
Google scholar
|
[153] |
Plevin M J, Zhang J, Guo C, Roeder R G, Ikura M (2006). The acute myeloid leukemia fusion protein AML1-ETO targets E proteins via a paired amphipathic helix-like TBP-associated factor homology domain. Proc Natl Acad Sci USA, 103(27): 10242–10247
CrossRef
Pubmed
Google scholar
|
[154] |
Ptasinska A, Assi S A, Mannari D, James S R, Williamson D, Dunne J, Hoogenkamp M, Wu M, Care M, McNeill H, Cauchy P, Cullen M, Tooze R M, Tenen D G, Young B D, Cockerill P N, Westhead D R, Heidenreich O, Bonifer C (2012). Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia, 26(8): 1829–1841
CrossRef
Pubmed
Google scholar
|
[155] |
Ptasinska A, Assi S A, Martinez-Soria N, Imperato M R, Piper J, Cauchy P, Pickin A, James S R, Hoogenkamp M, Williamson D, Wu M, Tenen D G, Ott S, Westhead D R, Cockerill P N, Heidenreich O, Bonifer C (2014). Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Reports, 8(6): 1974–1988
CrossRef
Pubmed
Google scholar
|
[156] |
Quong M W, Romanow W J, Murre C (2002). E protein function in lymphocyte development. Annu Rev Immunol, 20(1): 301–322
CrossRef
Pubmed
Google scholar
|
[157] |
Rampal R, Alkalin A, Madzo J, Vasanthakumar A, Pronier E, Patel J, Li Y, Ahn J, Abdel-Wahab O, Shih A, Lu C, Ward P S, Tsai J J, Hricik T, Tosello V, Tallman J E, Zhao X, Daniels D, Dai Q, Ciminio L, Aifantis I, He C, Fuks F, Tallman M S, Ferrando A, Nimer S, Paietta E, Thompson C B, Licht J D, Mason C E, Godley L A, Melnick A, Figueroa M E, Levine R L (2014). DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Reports, 9(5): 1841–1855
CrossRef
Pubmed
Google scholar
|
[158] |
Rasmussen K D, Jia G, Johansen J V, Pedersen M T, Rapin N, Bagger F O, Porse B T, Bernard O A, Christensen J, Helin K (2015). Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev, 29(9): 910–922
CrossRef
Pubmed
Google scholar
|
[159] |
Reikvam H, Hatfield K J, Kittang A O, Hovland R, Bruserud Ø (2011). Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J Biomed Biotechnol, 2011: 104631
CrossRef
Pubmed
Google scholar
|
[160] |
Rhoades K L, Hetherington C J, Harakawa N, Yergeau D A, Zhou L, Liu L Q, Little M T, Tenen D G, Zhang D E (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood, 96(6): 2108–2115
Pubmed
|
[161] |
Rhoades K L, Hetherington C J, Rowley J D, Hiebert S W, Nucifora G, Tenen D G, Zhang D E (1996). Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA, 93(21): 11895–11900
CrossRef
Pubmed
Google scholar
|
[162] |
Rolland T, Taşan M, Charloteaux B, Pevzner S J, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, Kamburov A, Ghiassian S D, Yang X, Ghamsari L, Balcha D, Begg B E, Braun P, Brehme M, Broly M P, Carvunis A R, Convery-Zupan D, Corominas R, Coulombe-Huntington J, Dann E, Dreze M, Dricot A, Fan C, Franzosa E, Gebreab F, Gutierrez B J, Hardy M F, Jin M, Kang S, Kiros R, Lin G N, Luck K, MacWilliams A, Menche J, Murray R R, Palagi A, Poulin M M, Rambout X, Rasla J, Reichert P, Romero V, Ruyssinck E, Sahalie J M, Scholz A, Shah A A, Sharma A, Shen Y, Spirohn K, Tam S, Tejeda A O, Trigg S A, Twizere J C, Vega K, Walsh J, Cusick M E, Xia Y, Barabási A L, Iakoucheva L M, Aloy P, De Las Rivas J, Tavernier J, Calderwood M A, Hill D E, Hao T, Roth F P, Vidal M (2014). A proteome-scale map of the human interactome network. Cell, 159(5): 1212–1226
CrossRef
Pubmed
Google scholar
|
[163] |
Ross M E, Mahfouz R, Onciu M, Liu H C, Zhou X, Song G, Shurtleff S A, Pounds S, Cheng C, Ma J, Ribeiro R C, Rubnitz J E, Girtman K, Williams W K, Raimondi S C, Liang D C, Shih L Y, Pui C H, Downing J R (2004). Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 104(12): 3679–3687
CrossRef
Pubmed
Google scholar
|
[164] |
Roudaia L, Cheney M D, Manuylova E, Chen W, Morrow M, Park S, Lee C T, Kaur P, Williams O, Bushweller J H, Speck N A (2009). CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood, 113(13): 3070–3079
CrossRef
Pubmed
Google scholar
|
[165] |
Rowley J D (1973). Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet, 16(2): 109–112
Pubmed
|
[166] |
Rowley J D (1999). The role of chromosome translocations in leukemogenesis. Semin Hematol, 36(4 Suppl 7): 59–72
Pubmed
|
[167] |
Rual J F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G F, Gibbons F D, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg D S, Zhang L V, Wong S L, Franklin G, Li S, Albala J S, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski R S, Vandenhaute J, Zoghbi H Y, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick M E, Hill D E, Roth F P, Vidal M (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437(7062): 1173–1178
CrossRef
Pubmed
Google scholar
|
[168] |
Salat D, Liefke R, Wiedenmann J, Borggrefe T, Oswald F (2008). ETO, but not leukemogenic fusion protein AML1/ETO, augments RBP-Jkappa/SHARP-mediated repression of notch target genes. Mol Cell Biol, 28(10): 3502–3512
CrossRef
Pubmed
Google scholar
|
[169] |
Samuel A Stoner R D, Lo M C, Zhang D E (2013). Tumor Suppressor RASSF2 Is Downregulated By The RUNX1-ETO Fusion Protein In t(8;21)+ Acute Myeloid Leukemia. Blood, 122: 1268
|
[170] |
Schessl C, Rawat V P, Cusan M, Deshpande A, Kohl T M, Rosten P M, Spiekermann K, Humphries R K, Schnittger S, Kern W, Hiddemann W, Quintanilla-Martinez L, Bohlander S K, Feuring-Buske M, Buske C (2005). The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest, 115(8): 2159–2168
CrossRef
Pubmed
Google scholar
|
[171] |
Scholl C, Gilliland D G, Fröhling S (2008). Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol, 35(4): 336–345
CrossRef
Pubmed
Google scholar
|
[172] |
Schuh A H, Tipping A J, Clark A J, Hamlett I, Guyot B, Iborra F J, Rodriguez P, Strouboulis J, Enver T, Vyas P, Porcher C (2005). ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol, 25(23): 10235–10250
CrossRef
Pubmed
Google scholar
|
[173] |
Schwartz R, Engel I, Fallahi-Sichani M, Petrie H T, Murre C (2006). Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci USA, 103(26): 9976–9981
CrossRef
Pubmed
Google scholar
|
[174] |
Seita J, Weissman I L (2010). Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med, 2(6): 640–653
CrossRef
Pubmed
Google scholar
|
[175] |
Shen Y, Zhu Y M, Fan X, Shi J Y, Wang Q R, Yan X J, Gu Z H, Wang Y Y, Chen B, Jiang C L, Yan H, Chen F F, Chen H M, Chen Z, Jin J, Chen S J (2011). Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood, 118(20): 5593–5603
CrossRef
Pubmed
Google scholar
|
[176] |
Shia W J, Okumura A J, Yan M, Sarkeshik A, Lo M C, Matsuura S, Komeno Y, Zhao X, Nimer S D, Yates J R 3rd, Zhang D E (2012). PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood, 119(21): 4953–4962
CrossRef
Pubmed
Google scholar
|
[177] |
Shiina M, Hamada K, Inoue-Bungo T, Shimamura M, Uchiyama A, Baba S, Sato K, Yamamoto M, Ogata K (2015). A novel allosteric mechanism on protein-DNA interactions underlying the phosphorylation-dependent regulation of Ets1 target gene expressions. J Mol Biol, 427(8): 1655–1669
CrossRef
Pubmed
Google scholar
|
[178] |
Shrivastava T, Mino K, Babayeva N D, Baranovskaya O I, Rizzino A, Tahirov T H (2014). Structural basis of Ets1 activation by Runx1. Leukemia, 28(10): 2040–2048
CrossRef
Pubmed
Google scholar
|
[179] |
Sun X J, Wang Z, Wang L, Jiang Y, Kost N, Soong T D, Chen W Y, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel D J, Nimer S D, Roeder R G (2013). A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature, 500(7460): 93–97
CrossRef
Pubmed
Google scholar
|
[179a] |
Sykes D B, Kamps M P (2001). Estrogen-dependent E2a/Pbx1 myeloid cell Lines exhibit conditional differentiation that can be arrested by other leukemic oncoproteins. Blood, 98: 2308–2318
|
[180] |
Tahirov T H, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 104(5): 755–767
CrossRef
Pubmed
Google scholar
|
[181] |
Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, Shibata Y, Yazaki Y, Hirai H (1995). An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J, 14(2): 341–350
Pubmed
|
[182] |
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008). Acetylation is indispensable for p53 activation. Cell, 133(4): 612–626
CrossRef
Pubmed
Google scholar
|
[183] |
Tonks A, Pearn L, Musson M, Gilkes A, Mills K I, Burnett A K, Darley R L (2007). Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia, 21(12): 2495–2505
CrossRef
Pubmed
Google scholar
|
[184] |
Toyonaga K, Kikuchi H, Yamashita K, Nakayama M, Chijiiwa K, Nakayama T (2009). E2A participates in a fine control of pre-mature B-cell apoptosis mediated by B-cell receptor signaling via transcriptional regulation of survivin, IAP2 and caspase-8 genes. FEBS J, 276(5): 1418–1428
CrossRef
Pubmed
Google scholar
|
[185] |
Trombly D J, Whitfield T W, Padmanabhan S, Gordon J A, Lian J B, van Wijnen A J, Zaidi S K, Stein J L, Stein G S (2015). Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics, 16(1): 309
CrossRef
Pubmed
Google scholar
|
[186] |
Valk P J, Verhaak R G, Beijen M A, Erpelinck C A, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer J M, Beverloo H B, Moorhouse M J, van der Spek P J, Löwenberg B, Delwel R (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med, 350(16): 1617–1628
CrossRef
Pubmed
Google scholar
|
[187] |
Wang J, Hoshino T, Redner R L, Kajigaya S, Liu J M (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA, 95(18): 10860–10865
CrossRef
Pubmed
Google scholar
|
[188] |
Wang L, Gural A, Sun X J, Zhao X, Perna F, Huang G, Hatlen M A, Vu L, Liu F, Xu H, Asai T, Xu H, Deblasio T, Menendez S, Voza F, Jiang Y, Cole P A, Zhang J, Melnick A, Roeder R G, Nimer S D (2011a). The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science, 333(6043): 765–769
CrossRef
Pubmed
Google scholar
|
[189] |
Wang L, Man N, Sun X J, Tan Y, Cao M G, Liu F, Hatlen M, Xu H, Huang G, Mattlin M, Mehta A, Rampersaud E, Benezra R, Nimer S D (2015). Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood, 126(5): 640–650
CrossRef
Pubmed
Google scholar
|
[190] |
Wang X, Truckses D M, Takada S, Matsumura T, Tanese N, Jacobson R H (2007). Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators. Proc Natl Acad Sci USA, 104(19): 7839–7844
CrossRef
Pubmed
Google scholar
|
[191] |
Wang Y Y, Zhao L J, Wu C F, Liu P, Shi L, Liang Y, Xiong S M, Mi J Q, Chen Z, Ren R, Chen S J (2011b). C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA, 108(6): 2450–2455
CrossRef
Pubmed
Google scholar
|
[192] |
Warren A J, Bravo J, Williams R L, Rabbitts T H (2000). Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO J, 19(12): 3004–3015
CrossRef
Pubmed
Google scholar
|
[193] |
Wei H, Liu X, Xiong X, Wang Y, Rao Q, Wang M, Wang J (2008). AML1-ETO interacts with Sp1 and antagonizes Sp1 transactivity through RUNT domain. FEBS Lett, 582(15): 2167–2172
CrossRef
Pubmed
Google scholar
|
[194] |
Wei Y, Liu S, Lausen J, Woodrell C, Cho S, Biris N, Kobayashi N, Wei Y, Yokoyama S, Werner M H (2007). A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol, 14(7): 653–661
CrossRef
Pubmed
Google scholar
|
[195] |
Westendorf J J, Yamamoto C M, Lenny N, Downing J R, Selsted M E, Hiebert S W (1998). The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol, 18(1): 322–333
CrossRef
Pubmed
Google scholar
|
[196] |
Wildonger J, Mann R S (2005). The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development, 132(10): 2263–2272
CrossRef
Pubmed
Google scholar
|
[197] |
Wolford J K, Prochazka M (1998). Structure and expression of the human MTG8/ETO gene. Gene, 212(1): 103–109
CrossRef
Pubmed
Google scholar
|
[198] |
Wood J D, Nucifora F C Jr, Duan K, Zhang C, Wang J, Kim Y, Schilling G, Sacchi N, Liu J M, Ross C A (2000). Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J Cell Biol, 150(5): 939–948
CrossRef
Pubmed
Google scholar
|
[199] |
Yamaguchi Y, Kurokawa M, Imai Y, Izutsu K, Asai T, Ichikawa M, Yamamoto G, Nitta E, Yamagata T, Sasaki K, Mitani K, Ogawa S, Chiba S, Hirai H (2004). AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem, 279(15): 15630–15638
CrossRef
Pubmed
Google scholar
|
[200] |
Yan M, Ahn E Y, Hiebert S W, Zhang D E (2009). RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood, 113(4): 883–886
CrossRef
Pubmed
Google scholar
|
[201] |
Yan M, Burel S A, Peterson L F, Kanbe E, Iwasaki H, Boyapati A, Hines R, Akashi K, Zhang D E (2004). Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA, 101(49): 17186–17191
CrossRef
Pubmed
Google scholar
|
[202] |
Yan M, Kanbe E, Peterson L F, Boyapati A, Miao Y, Wang Y, Chen I M, Chen Z, Rowley J D, Willman C L, Zhang D E (2006). A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med, 12(8): 945–949
CrossRef
Pubmed
Google scholar
|
[203] |
Yan W, Young A Z, Soares V C, Kelley R, Benezra R, Zhuang Y (1997). High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol, 17(12): 7317–7327
CrossRef
Pubmed
Google scholar
|
[204] |
Yang G, Khalaf W, van de Locht L, Jansen J H, Gao M, Thompson M A, van der Reijden B A, Gutmann D H, Delwel R, Clapp D W, Hiebert S W (2005). Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol, 25(14): 5869–5879
CrossRef
Pubmed
Google scholar
|
[205] |
Yergeau D A, Hetherington C J, Wang Q, Zhang P, Sharpe A H, Binder M, Marín-Padilla M, Tenen D G, Speck N A, Zhang D E (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet, 15(3): 303–306
CrossRef
Pubmed
Google scholar
|
[206] |
Yohe S (2015). Molecular genetic markers in acute myeloid leukemia. J Clin Med, 4(3): 460–478
CrossRef
Pubmed
Google scholar
|
[207] |
Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington C J, Burel S A, Lagasse E, Weissman I L, Akashi K, Zhang D E (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA, 98(18): 10398–10403
CrossRef
Pubmed
Google scholar
|
[208] |
Zamir I, Zhang J, Lazar M A (1997). Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev, 11(7): 835–846
CrossRef
Pubmed
Google scholar
|
[209] |
Zhang D E, Hetherington C J, Meyers S, Rhoades K L, Larson C J, Chen H M, Hiebert S W, Tenen D G (1996). CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol, 16(3): 1231–1240
CrossRef
Pubmed
Google scholar
|
[210] |
Zhang J, Hug B A, Huang E Y, Chen C W, Gelmetti V, Maccarana M, Minucci S, Pelicci P G, Lazar M A (2001). Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol, 21(1): 156–163
CrossRef
Pubmed
Google scholar
|
[211] |
Zhang J, Kalkum M, Chait B T, Roeder R G (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell, 9(3): 611–623
CrossRef
Pubmed
Google scholar
|
[212] |
Zhang J, Kalkum M, Yamamura S, Chait B T, Roeder R G (2004). E protein silencing by the leukemogenic AML1-ETO fusion protein. Science, 305(5688): 1286–1289
CrossRef
Pubmed
Google scholar
|
[213] |
Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997). Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell, 89(3): 357–364
CrossRef
Pubmed
Google scholar
|
[214] |
Zhang Y W, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y (2000). A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA, 97(19): 10549–10554
CrossRef
Pubmed
Google scholar
|
[215] |
Zhao F, Vilardi A, Neely R J, Choi J K (2001). Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol Cell Biol, 21(18): 6346–6357
CrossRef
Pubmed
Google scholar
|
[216] |
Zheng X, Beissert T, Kukoc-Zivojnov N, Puccetti E, Altschmied J, Strolz C, Boehrer S, Gul H, Schneider O, Ottmann O G, Hoelzer D, Henschler R, Ruthardt M (2004). Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood, 103(9): 3535–3543
CrossRef
Pubmed
Google scholar
|
[217] |
Zuber J, Radtke I, Pardee T S, Zhao Z, Rappaport A R, Luo W, McCurrach M E, Yang M M, Dolan M E, Kogan S C, Downing J R, Lowe S W (2009). Mouse models of human AML accurately predict chemotherapy response. Genes Dev, 23(7): 877–889
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |