Modeling neurodegenerative disorders in adult somatic cells: A critical review
An Truong, Emily Si, Thomas Duncan, Michael Valenzuela
Modeling neurodegenerative disorders in adult somatic cells: A critical review
Development of new therapeutic targets for neurodegenerative disorders has been hampered by a reliance on post mortem tissue that is representative of end-stage disease, or on animal models that fail to provide faithful analogs. However, rapid advances in cellular genetic reprogramming, in particular the induction of somatic cells into stem cells, or directly into neurons, has led to intense interest in modeling of human neurodegeneration in vitro. Here, we critically review current methods and recent progress in cellular models of Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Several challenges are identified, including technical variability, lack of degenerative phenotypes, neurodevelopmental age and establishing ground truths for models of sporadic disease. Recommendations for evaluating neurodegenerative cellular models are proposed along with suggestions for future research.
[1] |
Anokye-Danso F, Snitow M, Morrisey E E (2012). How microRNAs facilitate reprogramming to pluripotency. J Cell Sci, 125(Pt 18): 4179–4187
CrossRef
Pubmed
Google scholar
|
[2] |
Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279–286
CrossRef
Pubmed
Google scholar
|
[3] |
Braak H, Braak E 1998. Evolution of neuronal changes in the course of Alzheimer’s disease. In: Jellinger K, Fazekas F, Windisch M (eds.) Ageing and Dementia. Vienna: Springer Vienna
|
[4] |
Braak H, Brettschneider J, Ludolph A C, Lee V M, Trojanowski J Q, Del Tredici K (2013). Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol, 9(12): 708–714
CrossRef
Pubmed
Google scholar
|
[5] |
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004). Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res, 318(1): 121–134
CrossRef
Pubmed
Google scholar
|
[6] |
Brayne C (2007). The elephant in the room- healthy brains in later life, epidemiology and public health. Nat Rev Neurosci, 8(3): 233–239
CrossRef
Pubmed
Google scholar
|
[7] |
Breitner J C (2015). Comment: Yet another “disconnect” between amyloid and Alzheimer disease? Neurology, 85(8): 698
CrossRef
Pubmed
Google scholar
|
[8] |
Bruijn L I, Becher M W, Lee M K, Anderson K L, Jenkins N A, Copeland N G, Sisodia S S, Rothstein J D, Borchelt D R, Price D L, Cleveland D W (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 18(2): 327–338
CrossRef
Pubmed
Google scholar
|
[9] |
Burkhardt M F, Martinez F J, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci, 56: 355–364
CrossRef
Pubmed
Google scholar
|
[10] |
Byers B, Cord B, Nguyen H N, Schüle B, Fenno L, Lee P C, Deisseroth K, Langston J W, Pera R R, Palmer T D (2011). SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate a-synuclein and are susceptible to oxidative stress. PLoS ONE, 6(11): e26159–e26159
CrossRef
Pubmed
Google scholar
|
[11] |
Byrne J A (2008). Generation of isogenic pluripotent stem cells. Hum Mol Genet, 17(R1): R37–R41
CrossRef
Pubmed
Google scholar
|
[12] |
Cairns N J,Perrin R J , Franklin E E, Carter D, Vincent B, Xie M, Bateman R J, Benzinger T, Friedrichsen K, Brooks W S, Halliday G M, McLean C, Ghetti B, Morris J C, the Alzheimer Disease Neuroimaging Initiative, the Dominantly Inherited Alzheimer Network (2015). Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN). Neuropathology, 35(4): 390–400
CrossRef
Pubmed
Google scholar
|
[13] |
Choi S H, Kim Y H, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee J B, Zhang C, Wainger B J, Peitz M, Kovacs D M, Woolf C J, Wagner S L, Tanzi R E, Kim D Y (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature, 515(7526): 274–278
CrossRef
Pubmed
Google scholar
|
[14] |
Coan G, Mitchell C S (2015). An assessment of possible neuropathology and clinical relationships in 46 Sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegener Dis, 15(5): 301–312
CrossRef
Pubmed
Google scholar
|
[15] |
Collins P Y, Patel V, Joestl S S, March D, Insel T R, Daar A S, Anderson W, Dhansay M A, Phillips A, Shurin S, Walport M, Ewart W, Savill S J, Bordin I A, Costello E J, Durkin M, Fairburn C, Glass R I, Hall W, Huang Y, Hyman S E, Jamison K, Kaaya S, Kapur S, Kleinman A, Ogunniyi A, Otero-Ojeda A, Poo M M, Ravindranath V, Sahakian B J, Saxena S, Singer P A, Stein D J, the Scientific Advisory Board and the Executive Committee of the Grand Challenges on Global Mental Health (2011). Grand challenges in global mental health. Nature, 475(7354): 27–30
CrossRef
Pubmed
Google scholar
|
[16] |
Crystal H A, Dickson D, Sliwinski M, Masur D, Blau A, Lipton R B (1996). Associations of status and change measures of neuropsychological function with pathologic changes in elderly, originally nondemented subjects. Arch Neurol, 53(1): 82–87
CrossRef
Pubmed
Google scholar
|
[17] |
Dauer W, Przedborski S (2003). Parkinson’s disease: mechanisms and models. Neuron, 39(6): 889–909
CrossRef
Pubmed
Google scholar
|
[18] |
Duan L, Bhattacharyya B J, Belmadani A, Pan L, Miller R J, Kessler J A (2014). Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener, 9(1): 3–3
CrossRef
Pubmed
Google scholar
|
[19] |
Fernández-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez-Danés A, Vilarrasa-Blasi R, Sánchez-Pla A, Mosquera J L, Soriano J, López-Barneo J, Canals J M, Alberch J, Raya Á, Vila M, Consiglio A, Martín-Subero J I, Ezquerra M, Tolosa E (2015). Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson’s disease patients. EMBO Mol Med, 7(12): 1529–1546
CrossRef
Pubmed
Google scholar
|
[20] |
Gandhi S, Wood N W (2010). Genome-wide association studies: the key to unlocking neurodegeneration? Nat Neurosci, 13(7): 789–794
CrossRef
Pubmed
Google scholar
|
[21] |
Gurney M E, Pu H, Chiu A Y, Dal Canto M C, Polchow C Y, Alexander D D, Caliendo J, Hentati A, Kwon Y W, Deng H X, et (1994). Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264(5166): 1772–1775
CrossRef
Pubmed
Google scholar
|
[22] |
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere M L, Pahwa J S, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan A R, Lovestone S, Powell J, Proitsi P, Lupton M K, Brayne C, Rubinsztein D C, Gill M, Lawlor B, Lynch A, Morgan K, Brown K S, Passmore P A, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith A D, Love S, Kehoe P G, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate A M, Kauwe J S, Cruchaga C, Nowotny P, Morris J C, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn P P, Van Broeckhoven C, Livingston G, Bass N J, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw C E, Tsolaki M, Singleton A B, Guerreiro R, Mühleisen T W, Nöthen M M, Moebus S, Jöckel K H, Klopp N, Wichmann H E, Carrasquillo M M, Pankratz V S, Younkin S G, Holmans P A, O’Donovan M, Owen M J, Williams J (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet, 41(10): 1088–1093
CrossRef
Pubmed
Google scholar
|
[23] |
Honda M, Minami I, Tooi N, Morone N, Nishioka H, Uemura K, Kinoshita A, Heuser J E, Nakatsuji N, Aiba K (2016). The modeling of Alzheimer’s disease by the overexpression of mutant Presenilin 1 in human embryonic stem cells. Biochem Biophys Res Commun, 469(3): 587–592
CrossRef
Pubmed
Google scholar
|
[24] |
Hossini A M, Megges M, Prigione A, Lichtner B, Toliat M R, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis C C, Adjaye J (2015). Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics, 16(1): 84
CrossRef
Pubmed
Google scholar
|
[25] |
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146): 651–654
CrossRef
Pubmed
Google scholar
|
[26] |
Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G (2015a). Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17(2): 204–212
CrossRef
Pubmed
Google scholar
|
[27] |
Hu Z, Pu J, Jiang H, Zhong P, Qiu J, Li F, Wang X, Zhang B, Yan Z, Feng J (2015b). Generation of naivetropic induced pluripotent stem cells from Parkinson’s disease patients for high-efficiency genetic manipulation and disease modeling. Stem Cells Dev, 24(21): 2591–2604
CrossRef
Pubmed
Google scholar
|
[28] |
Israel M A, Yuan S H, Bardy C, Reyna S M, Mu Y, Herrera C, Hefferan M P, Van Gorp S, Nazor K L, Boscolo F S, Carson C T, Laurent L C, Marsala M, Gage F H, Remes A M, Koo E H, Goldstein L S B (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384): 216–220
Pubmed
|
[29] |
Ittner L M, Götz J (2011). Amyloid-b and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci, 12(2): 65–72
CrossRef
Pubmed
Google scholar
|
[30] |
Kim D, Kim C H, Moon J I, Chung Y G, Chang M Y, Han B S, Ko S, Yang E, Cha K Y, Lanza R, Kim K S (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6): 472–476
CrossRef
Pubmed
Google scholar
|
[31] |
Kim Y H, Choi S H, D’Avanzo C, Hebisch M, Sliwinski C, Bylykbashi E, Washicosky K J, Klee J B, Brüstle O, Tanzi R E, Kim D Y (2015). A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat Protoc, 10(7): 985–1006
CrossRef
Pubmed
Google scholar
|
[32] |
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein W L, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Ab and differential drug responsiveness. Cell Stem Cell, 12(4): 487–496
CrossRef
Pubmed
Google scholar
|
[33] |
Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K K, Nakanishi M, Nishimura K, Ohtaka M, Weltner J, Van Handel B, Parkkonen O, Sinisalo J, Jalanko A, Hawkins R D, Woods N B, Otonkoski T, Trokovic R (2016). Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Rep, 6(2): 200–212
CrossRef
Pubmed
Google scholar
|
[34] |
Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F, Herms S, Wernet P, Kögler G, Müller F J, Koch P, Brüstle O (2012). Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods, 9(6): 575–578
CrossRef
Pubmed
Google scholar
|
[35] |
Lambert J C,Heath S , Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido M J, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P,Engelborghs S , De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo M M, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanché H, Dartigues J F, Tzourio C, Gut I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P, the European Alzheimer’s Disease Initiative Investigators (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet, 41(10): 1094–1099
CrossRef
Pubmed
Google scholar
|
[36] |
Lancaster M A, Knoblich J A (2014). Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc, 9(10): 2329–2340
CrossRef
Pubmed
Google scholar
|
[37] |
Lancaster M A, Renner M, Martin C A, Wenzel D, Bicknell L S, Hurles M E, Homfray T, Penninger J M, Jackson A P, Knoblich J A (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467): 373–379
CrossRef
Pubmed
Google scholar
|
[38] |
Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez J M, De Vos J, Lehmann S, Lemaitre J M (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev, 25(21): 2248–2253
CrossRef
Pubmed
Google scholar
|
[39] |
Lau S, Rylander Ottosson D, Jakobsson J, Parmar M (2014). Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Reports, 9(5): 1673–1680
CrossRef
Pubmed
Google scholar
|
[40] |
Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Schöler H R, Hayek A, Ding S (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27(12): 2992–3000
Pubmed
|
[41] |
Lim S M, Choi W J, Oh K W, Xue Y, Choi J Y, Kim S H, Nahm M, Kim Y E, Lee J, Noh M Y, Lee S, Hwang S, Ki C S, Fu X D, Kim S H (2016). Directly converted patient-specific induced neurons mirror the neuropathology of FUS with disrupted nuclear localization in amyotrophic lateral sclerosis. Mol Neurodegener, 11(1): 8
CrossRef
Pubmed
Google scholar
|
[42] |
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs. Nat Methods, 6(11): 805–808
CrossRef
Pubmed
Google scholar
|
[43] |
Liras A, Segovia C, Gabán A S (eds.) (2013). Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical Considerations. InTechOpen
|
[44] |
Liu M L, Zang T, Zhang C L (2016). Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Reports, 14(1): 115–128
CrossRef
Pubmed
Google scholar
|
[45] |
Liu M L, Zang T, Zou Y, Chang J C, Gibson J R, Huber K M, Zhang C L (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun, 4: 2183
Pubmed
|
[46] |
Mahmoudi S, Brunet A (2012). Aging and reprogramming: a two-way street. Curr Opin Cell Biol, 24(6): 744–756
CrossRef
Pubmed
Google scholar
|
[47] |
Marion R M, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco M A (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4(2): 141–154
CrossRef
Pubmed
Google scholar
|
[48] |
Mascalchi M, Salvi F, Valzania F, Marcacci G, Bartolozzi C, Tassinari C A (1995). Corticospinal tract degeneration in motor neuron disease. AJNR Am J Neuroradiol, 16(4 Suppl): 878–880
Pubmed
|
[49] |
Mertens J, Paquola A C, Ku M, Hatch E, Böhnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy J R, Gonçalves J T, Toda T, Kim Y, Winkler J, Yao J, Hetzer M W, Gage F H (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell, 17(6): 705–718
CrossRef
Pubmed
Google scholar
|
[50] |
Miller J D, Ganat Y M, Kishinevsky S, Bowman R L, Liu B, Tu E Y, Mandal P K, Vera E, Shim J W, Kriks S, Taldone T, Fusaki N, Tomishima M J, Krainc D, Milner T A, Rossi D J, Studer L (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell, 13(6): 691–705
CrossRef
Pubmed
Google scholar
|
[51] |
Muratore C R, Rice H C, Srikanth P, Callahan D G, Shin T, Benjamin L N, Walsh D M, Selkoe D J, Young-Pearse T L (2014). The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet, 23(13): 3523–3536
CrossRef
Pubmed
Google scholar
|
[52] |
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 26(1): 101–106
CrossRef
Pubmed
Google scholar
|
[53] |
Narsinh K H, Sun N, Sanchez-Freire V, Lee A S, Almeida P, Hu S, Jan T, Wilson K D, Leong D, Rosenberg J, Yao M, Robbins R C, Wu J C (2011). Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest, 121(3): 1217–1221
CrossRef
Pubmed
Google scholar
|
[54] |
Ohta E, Nihira T, Uchino A, Imaizumi Y, Okada Y, Akamatsu W, Takahashi K, Hayakawa H, Nagai M, Ohyama M, Ryo M, Ogino M, Murayama S, Takashima A, Nishiyama K, Mizuno Y, Mochizuki H, Obata F, Okano H 2015. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3 signaling pathway. Human Mol Genet, 24(17):4879–4900
|
[55] |
Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151): 313–317
CrossRef
Pubmed
Google scholar
|
[56] |
Ooi L, Sidhu K, Poljak A, Sutherland G, O’Connor M D, Sachdev P, Münch G (2013). Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm (Vienna), 120(1): 103–111
CrossRef
Pubmed
Google scholar
|
[57] |
Pang Z P, Yang N, Vierbuchen T, Ostermeier A, Fuentes D R, Yang T Q, Citri A, Sebastiano V, Marro S, Südhof T C, Wernig M (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359): 220–223
Pubmed
|
[58] |
Pasinelli P, Brown R H (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci, 7(9): 710–723
CrossRef
Pubmed
Google scholar
|
[59] |
Price J L, Ko A I, Wade M J, Tsou S K, McKeel D W, Morris J C (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol, 58(9): 1395–1402
CrossRef
Pubmed
Google scholar
|
[60] |
Ring K L, An M C, Zhang N, O’Brien R N, Ramos E M, Gao F, Atwood R, Bailus B J, Melov S, Mooney S D, Coppola G, Ellerby L M, the RING (2015). Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human Hungtinton's disease neural stem cells. Stem Cell Rep, 5(6): 1023–1038
CrossRef
Google scholar
|
[61] |
Ring K L, Tong L M, Balestra M E, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang W R, Kreitzer A C, Huang Y (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell, 11(1): 100–109
CrossRef
Pubmed
Google scholar
|
[62] |
Ryan S D, Dolatabadi N, Chan S F, Zhang X, Akhtar M W, Parker J, Soldner F, Sunico C R, Nagar S, Talantova M, Lee B, Lopez K, Nutter A, Shan B, Molokanova E, Zhang Y, Han X, Nakamura T, Masliah E, Yates J R 3rd, Nakanishi N, Andreyev A Y, Okamoto S, Jaenisch R, Ambasudhan R, Lipton S A (2013). Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1a transcription. Cell, 155(6): 1351–1364
CrossRef
Pubmed
Google scholar
|
[63] |
Schuster J, Halvardson J, Pilar Lorenzo L, Ameur A, Sobol M, Raykova D, Annerén G, Feuk L, Dahl N (2015). Transcriptome profiling reveals degree of variability in induced pluripotent stem cell lines: Impact for human disease modeling. Cell Reprogram, 17(5): 327–337
CrossRef
Pubmed
Google scholar
|
[64] |
Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci, 31(16): 5970–5976
CrossRef
Pubmed
Google scholar
|
[65] |
Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen T W, Smith A (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 6(10): e253
CrossRef
Pubmed
Google scholar
|
[66] |
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5): 964–977
CrossRef
Pubmed
Google scholar
|
[67] |
Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2): 318–331
CrossRef
Pubmed
Google scholar
|
[68] |
Sommer C A, Christodoulou C, Gianotti-Sommer A, Shen S S, Sailaja B S, Hezroni H, Spira A, Meshorer E, Kotton D N, Mostoslavsky G (2012). Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells. PLoS ONE, 7(12): e51711
CrossRef
Pubmed
Google scholar
|
[69] |
Sproul A, Jacob S, Paquet D, Ortiz-Virumbrales M, Campos B, Gandy S, Tessier-Lavigne M, Noggle S (2014). Using familial Alzheimer's disease and isogenic control IPSc-derived basal forebrain neurons to model AD. Alzheimers Dement, 10(4): 643–P644
CrossRef
Google scholar
|
[70] |
Strong M J, Yang W (2011). The frontotemporal syndromes of ALS. Clinicopathological correlates. J Mol Neurosci, 45(3): 648–655
CrossRef
Pubmed
Google scholar
|
[71] |
Su Y, Blazey T M, Owen C J, Christensen J J, Friedrichsen K, Joseph-Mathurin N, Wang Q, Hornbeck R C, Ances B M, Snyder A Z, Cash L A, Koeppe R A, Klunk W E, Galasko D, Brickman A M, McDade E, Ringman J M, Thompson P M, Saykin A J, Ghetti B, Sperling R A, Johnson K A, Salloway S P, Schofield P R, Masters C L, Villemagne V L, Fox N C, Förster S, Chen K, Reiman E M, Xiong C, Marcus D S, Weiner M W, Morris J C, Bateman R J, Benzinger T L, the Dominantly Inherited Alzheimer Network (2016). Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: Results from the DIAN study group. PLoS ONE, 11(3): e0152082
CrossRef
Pubmed
Google scholar
|
[72] |
Suhr S T, Chang E A, Tjong J, Alcasid N, Perkins G A, Goissis M D, Ellisman M H, Perez G I, Cibelli J B (2010). Mitochondrial rejuvenation after induced pluripotency. PLoS ONE, 5(11): e14095
CrossRef
Pubmed
Google scholar
|
[73] |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
CrossRef
Pubmed
Google scholar
|
[74] |
Tanzi R E, Bertram L (2005). Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, 120(4): 545–555
CrossRef
Pubmed
Google scholar
|
[75] |
Thatava T, Kudva Y C, Edukulla R, Squillace K, De Lamo J G, Khan Y K, Sakuma T, Ohmine S, Terzic A, Ikeda Y (2013). Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther, 21(1): 228–239
CrossRef
Pubmed
Google scholar
|
[76] |
The Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) (1998). Cognitive function and dementia in six areas of England and Wales: the distribution of MMSE and prevalence of GMS organicity level in the MRC CFA Study. Psychol Med, 28(2): 319–335
CrossRef
Pubmed
Google scholar
|
[77] |
Tsai M S, Tangalos E G, Petersen R C, Smith G E, Schaid D J, Kokmen E, Ivnik R J, Thibodeau S N (1994). Apolipoprotein E: risk factor for Alzheimer disease. Am J Hum Genet, 54(4): 643–649
Pubmed
|
[78] |
Vera E, Studer L (2015). When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development, 142(18): 3085–3089
CrossRef
Pubmed
Google scholar
|
[79] |
Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035–1041
CrossRef
Pubmed
Google scholar
|
[80] |
Wapinski O L, Vierbuchen T, Qu K, Lee Q Y, Chanda S, Fuentes D R, Giresi P G, Ng Y H, Marro S, Neff N F, Drechsel D, Martynoga B, Castro D S, Webb A E, Südhof T C, Brunet A, Guillemot F, Chang H Y, Wernig M (2013). Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell, 155(3): 621–635
CrossRef
Pubmed
Google scholar
|
[81] |
West M J, Coleman P D, Flood D G, Troncoso J C (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 344(8925): 769–772
CrossRef
Pubmed
Google scholar
|
[82] |
Wilcock D M (2010). The usefulness and challenges of transgenic mouse models in the study of Alzheimer’s disease. CNS Neurol Disord Drug Targets, 9(4): 386–394
CrossRef
Pubmed
Google scholar
|
[83] |
Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet, 20(23): 4530–4539
CrossRef
Pubmed
Google scholar
|
[84] |
Yoo A S, Sun A X, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch R E, Tsien R W, Crabtree G R (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359): 228–231
CrossRef
Pubmed
Google scholar
|
[85] |
Zhou W, Freed C R (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11): 2667–2674
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |