Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons

Charlotte M. Ermine, Jordan L. Wright, Clare L. Parish, Davor Stanic, Lachlan H. Thompson

PDF(10412 KB)
PDF(10412 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (3) : 246-255. DOI: 10.1007/s11515-016-1404-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons

Author information +
History +

Abstract

Although the functional neuroanatomy of the midbrain dopamine (mDA) system has been well characterized, the literature regarding its capacity to innervate the hippocampal formation has been inconsistent. The lack of expression of definitive markers for dopaminergic fibers, such as the dopamine transporter, in the hippocampus has complicated studies in this area. Here we have used immunohistochemical techniques to characterize the tyrosine hydroxylase expressing fiber network in the rat hippocampus, combined with retrograde tracing from the dentate gyrus to assess the capacity for afferent innervation by mDA neurons. The results indicate that virtually all tyrosine hydroxylase fibers throughout the hippocampus are of a noradrenergic phenotype, while the overlying cortex contains both dopaminergic and noradrenergic fiber networks. Furthermore, retrograde tracing from the dentate gyrus robustly labels tyrosine hydroxylase-immunoreactive noradrenergic neurons in the locus coeruleus but not mDA neurons.

Keywords

noradrenaline / hippocampus / connectivity / DAT / neurogenesis

Cite this article

Download citation ▾
Charlotte M. Ermine, Jordan L. Wright, Clare L. Parish, Davor Stanic, Lachlan H. Thompson. Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons. Front. Biol., 2016, 11(3): 246‒255 https://doi.org/10.1007/s11515-016-1404-4

References

[1]
Amaral D G, Cowan W M (1980). Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol, 189(4): 573–591
CrossRef Pubmed Google scholar
[2]
Baker S A, Baker K A, Hagg T (2004). Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci, 20(2): 575–579
CrossRef Pubmed Google scholar
[3]
Ben Abdallah N M, Slomianka L, Vyssotski A L, Lipp H P (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging, 31(1): 151–161
CrossRef Pubmed Google scholar
[4]
Bischoff S, Scatton B, Korf J (1979). Biochemical evidence for a transmitter role of dopamine in the rat hippocampus. Brain Res, 165(1): 161–165
CrossRef Pubmed Google scholar
[5]
Bjorklund A (1978). Monoaminergic inputs to the hippocampus. In: Symposium, C.F. (ed), Functions of the Septo-Hippocampal System. Elsevier Excerpta Medica North-Holland, Amsterdam
[6]
Björklund A, Dunnett S B (2007). Dopamine neuron systems in the brain: an update. Trends Neurosci, 30(5): 194–202
CrossRef Pubmed Google scholar
[7]
Borgkvist A, Malmlöf T, Feltmann K, Lindskog M, Schilström B (2012). Dopamine in the hippocampus is cleared by the norepinephrine transporter. Int J Neuropsychopharmacol, 15(4): 531–540
Pubmed
[8]
Broussard J I, Yang K, Levine A T, Tsetsenis T, Jenson D, Cao F, Garcia I, Arenkiel B R, Zhou F M, De Biasi M, Dani J A (2016). Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Reports, 14(8): 1930–1939
CrossRef Pubmed Google scholar
[9]
Carr D B, Sesack S R (2000). GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse, 38(2): 114–123
CrossRef Pubmed Google scholar
[10]
Creed M C, Ntamati N R, Tan K R (2014). VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci, 8: 8
CrossRef Pubmed Google scholar
[11]
Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza P V, Abrous D N (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA, 100(24): 14385–14390
CrossRef Pubmed Google scholar
[12]
Dubois A, Savasta M, Curet O, Scatton B (1986). Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. Neuroscience, 19(1): 125–137
CrossRef Pubmed Google scholar
[13]
Emre M (2003). Dementia associated with Parkinson’s disease. Lancet Neurol, 2(4): 229–237
CrossRef Pubmed Google scholar
[14]
Freundlieb N, François C, Tandé D, Oertel W H, Hirsch E C, Höglinger G U (2006). Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci, 26(8): 2321–2325
CrossRef Pubmed Google scholar
[15]
Gasbarri A, Sulli A, Packard M G (1997). The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry, 21(1): 1–22
CrossRef Pubmed Google scholar
[16]
Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994). Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res, 668(1-2): 71–79
CrossRef Pubmed Google scholar
[17]
Harley C W (2007). Norepinephrine and the dentate gyrus. Prog Brain Res, 163: 299–318
CrossRef Pubmed Google scholar
[18]
Höglinger G U, Rizk P, Muriel M P, Duyckaerts C, Oertel W H, Caille I, Hirsch E C (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci, 7(7): 726–735
CrossRef Pubmed Google scholar
[19]
Ito R, Robbins T W, Pennartz C M, Everitt B J (2008). Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci, 28(27): 6950–6959
CrossRef Pubmed Google scholar
[20]
Kwon O B, Paredes D, Gonzalez C M, Neddens J, Hernandez L, Vullhorst D, Buonanno A (2008). Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci USA, 105(40): 15587–15592
CrossRef Pubmed Google scholar
[21]
Levy G, Schupf N, Tang M X, Cote L J, Louis E D, Mejia H, Stern Y, Marder K (2002). Combined effect of age and severity on the risk of dementia in Parkinson’s disease. Ann Neurol, 51(6): 722–729
CrossRef Pubmed Google scholar
[22]
Loughlin S E, Foote S L, Bloom F E (1986). Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience, 18(2): 291–306
CrossRef Pubmed Google scholar
[23]
Loy R, Koziell D A, Lindsey J D, Moore R Y (1980). Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol, 189(4): 699–710
CrossRef Pubmed Google scholar
[24]
Meibach R C, Siegel A (1977). Efferent connections of the hippocampal formation in the rat. Brain Res, 124(2): 197–224
CrossRef Pubmed Google scholar
[25]
Pohle W, Ott T, Müller-Welde P (1984). Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch, 25(1): 1–10
Pubmed
[26]
Regensburger M, Prots I, Winner B (2014). Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast, 2014: 454696
CrossRef Pubmed Google scholar
[27]
Reymann K, Pohle W, Müller-Welde P, Ott T (1983). Dopaminergic innervation of the hippocampus: evidence for midbrain raphe neurons as the site of origin. Biomed Biochim Acta, 42(10): 1247–1255
Pubmed
[28]
Rosen Z B, Cheung S, Siegelbaum S A (2015). Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive.Nat Neurosci, 18(12): 1763–1771
CrossRef Pubmed Google scholar
[29]
Samuels E R, Szabadi E (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol, 6(3): 235–253
CrossRef Pubmed Google scholar
[30]
Sara S J (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci, 10(3): 211–223
CrossRef Pubmed Google scholar
[31]
Scatton B, Simon H, Le Moal M, Bischoff S (1980). Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett, 18(2): 125–131
CrossRef Pubmed Google scholar
[32]
Schwab M E, Javoy-Agid F, Agid Y (1978). Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res, 152(1): 145–150
CrossRef Pubmed Google scholar
[33]
Schwarz L A, Miyamichi K, Gao X J, Beier K T, Weissbourd B, DeLoach K E, Ren J, Ibanes S, Malenka R C, Kremer E J, Luo L (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563): 88–92
CrossRef Pubmed Google scholar
[34]
Seib D R, Corsini N S, Ellwanger K, Plaas C, Mateos A, Pitzer C, Niehrs C, Celikel T, Martin-Villalba A (2013). Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell, 12(2): 204–214
CrossRef Pubmed Google scholar
[35]
Simon H, Le Moal M, Calas A (1979). Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Res, 178(1): 17–40
CrossRef Pubmed Google scholar
[36]
Small S A, Schobel S A, Buxton R B, Witter M P, Barnes C A (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci, 12(10): 585–601
CrossRef Pubmed Google scholar
[37]
Smith C C, Greene R W (2012). CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci, 32(18): 6072–6080
CrossRef Pubmed Google scholar
[38]
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
CrossRef Pubmed Google scholar
[39]
Sui Y, Horne M K, Stanić D (2012). Reduced proliferation in the adult mouse subventricular zone increases survival of olfactory bulb interneurons. PLoS ONE, 7(2): e31549
CrossRef Pubmed Google scholar
[40]
Suzuki K, Okada K, Wakuda T, Shinmura C, Kameno Y, Iwata K, Takahashi T, Suda S, Matsuzaki H, Iwata Y, Hashimoto K, Mori N (2010). Destruction of dopaminergic neurons in the midbrain by 6-hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS ONE, 5(2): e9260
CrossRef Pubmed Google scholar
[41]
Swanson L W (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull, 9(1-6): 321–353
CrossRef Pubmed Google scholar
[42]
Szabadi E (2013). Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol, 27(8): 659–693
CrossRef Pubmed Google scholar
[43]
Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle K B (1985). Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience, 14(4): 1039–1052
CrossRef Pubmed Google scholar
[44]
Wisman L A, Sahin G, Maingay M, Leanza G, Kirik D (2008). Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci, 28(31): 7797–7807
CrossRef Pubmed Google scholar
[45]
Wyss J M, Swanson L W, Cowan W M (1979). A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience, 4(4): 463–476
CrossRef Pubmed Google scholar

Acknowledgements

The authors thank MongTien for expert technical assistance in the tissue preparation and immunohistochemical procedures. C.P. is a Viertel Senior Research Fellow. This work was supported byNHMRC project grant #1042584. The Florey Institute of Neuroscience and Mental Health acknowledges the strong support of the Victorian Government and in particular the funding from the Operational Infrastructure Support Grant.

Compliance with ethics guidelines

Charlotte M Ermine, Jordan L Wright, Clare L Parish, Davor Stanic and Lachlan H Thompson declare that they have no conflict of interest.
All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(10412 KB)

Accesses

Citations

Detail

Sections
Recommended

/