Choroid plexus trophic factors in the developing and adult brain

Karen Arnaud, Ariel A. Di Nardo

PDF(613 KB)
PDF(613 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (3) : 214-221. DOI: 10.1007/s11515-016-1401-7
REVIEW
REVIEW

Choroid plexus trophic factors in the developing and adult brain

Author information +
History +

Abstract

The choroid plexus (CP), localized in brain ventricles, is the major source of cerebrospinal fluid (CSF) and participates in the blood-CSF barrier. It is essential for brain immunosurveillance and the clearance of toxics, and for brain development and activity. Indeed, the CP secretes a large variety of trophic factors in the CSF that impact the entire brain. These factors are mainly implicated in neurogenesis, but also in the maintenance of brain functions and the vasculature. In this mini-review, we provide an overview of the various trophic factors secreted by the CP in the CSF, and describe their roles in the developing, adult and diseased brain.

Keywords

choroid plexus / trophic factors / CSF / neurogenesis / development / adult brain

Cite this article

Download citation ▾
Karen Arnaud, Ariel A. Di Nardo. Choroid plexus trophic factors in the developing and adult brain. Front. Biol., 2016, 11(3): 214‒221 https://doi.org/10.1007/s11515-016-1401-7

References

[1]
Alshehri B, D’Souza D G, Lee J Y, Petratos S, Richardson S J (2015). The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol, 27(5): 303–323
CrossRef Pubmed Google scholar
[2]
Ashpole N M, Sanders J E, Hodges E L, Yan H, Sonntag W E (2015). Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol, 68: 76–81
CrossRef Pubmed Google scholar
[3]
Aurbach E L, Inui E G, Turner C A, Hagenauer M H, Prater K E, Li J Z, Absher D, Shah N, Blandino PJr, Bunney W E, Myers R M, Barchas J D, Schatzberg A F, Watson S JJr, Akil H (2015). Fibroblast growth factor 9 is a novel modulator of negative affect. Proc Natl Acad Sci USA, 112(38): 11953–11958
CrossRef Pubmed Google scholar
[4]
Baruch K, Deczkowska A, David E, Castellano J M, Miller O, Kertser A, Berkutzki T, Barnett-Itzhaki Z, Bezalel D, Wyss-Coray T, Amit I, Schwartz M (2014). Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science, 346(6205): 89–93
CrossRef Pubmed Google scholar
[5]
Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003). Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci, 24(3): 623–631
CrossRef Pubmed Google scholar
[6]
Binder D K, Scharfman H E (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3): 123–131
CrossRef Pubmed Google scholar
[7]
Brinker T, Stopa E, Morrison J, Klinge P (2014). A new look at cerebrospinal fluid circulation. Fluids Barriers CNS, 11(1): 10
CrossRef Pubmed Google scholar
[8]
Budni J, Bellettini-Santos T, Mina F, Garcez M L, Zugno A I (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis, 6(5): 331–341
CrossRef Pubmed Google scholar
[9]
Carro E, Trejo J L, Spuch C, Bohl D, Heard J M, Torres-Aleman I (2006). Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging, 27(11): 1618–1631
CrossRef Pubmed Google scholar
[10]
Chen C P C, Chen R L, Preston J E (2012). The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Exp Gerontol, 47(4): 323–328
CrossRef Pubmed Google scholar
[11]
Cheng Y, Black I B, DiCicco-Bloom E (2002). Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci, 15(1): 3–12
CrossRef Pubmed Google scholar
[12]
Chodobski A, Szmydynger-Chodobska J (2001). Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech, 52(1): 65–82
CrossRef Pubmed Google scholar
[13]
Craig C G, Tropepe V, Morshead C M, Reynolds B A, Weiss S, van der Kooy D (1996). In vivogrowth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci, 16(8): 2649–2658
Pubmed
[14]
Damkier H H, Brown P D, Praetorius J (2013). Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev, 93(4): 1847–1892
CrossRef Pubmed Google scholar
[15]
Das K P, Chao S L, White L D, Haines W T, Harry G J, Tilson H A, Barone SJr (2001). Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA and protein levels in developing regions of rat brain. Neuroscience, 103(3): 739–761
CrossRef Pubmed Google scholar
[16]
Delgado A C, Ferrón S R, Vicente D, Porlan E, Perez-Villalba A, Trujillo C M, D’Ocón P, Fariñas I (2014). Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron, 83(3): 572–585
CrossRef Pubmed Google scholar
[17]
Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J M, Alvarez-Buylla A (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36(6): 1021–1034
CrossRef Pubmed Google scholar
[18]
Dziegielewska K M, Ek J, Habgood M D, Saunders N R (2001). Development of the choroid plexus. Microsc Res Tech, 52(1): 5–20
CrossRef Pubmed Google scholar
[19]
Emerich D F, Skinner S J M, Borlongan C V, Vasconcellos A V, Thanos C G (2005). The choroid plexus in the rise, fall and repair of the brain. BioEssays, 27(3): 262–274
CrossRef Pubmed Google scholar
[20]
Emerich D F, Vasconcellos A V, Elliott R B, Skinner S J, Borlongan C V (2004). The choroid plexus: function, pathology and therapeutic potential of its transplantation. Expert Opin Biol Ther, 4(8): 1191–1201
CrossRef Pubmed Google scholar
[21]
Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001). Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech, 52(1): 112–129
CrossRef Pubmed Google scholar
[22]
Falcão A M, Marques F, Novais A, Sousa N, Palha J A, Sousa J C (2012). The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci, 6: 34
CrossRef Pubmed Google scholar
[23]
Falk S, Wurdak H, Ittner L M, Ille F, Sumara G, Schmid M T, Draganova K, Lang K S, Paratore C, Leveen P, Suter U, Karlsson S, Born W, Ricci R, Götz M, Sommer L (2008). Brain area-specific effect of TGF-b signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell, 2(5): 472–483
CrossRef Pubmed Google scholar
[24]
Forlenza O V, Diniz B S, Teixeira A L, Radanovic M, Talib L L, Rocha N P, Gattaz W F (2015). Lower cerebrospinal fluid concentration of brain-derived neurotrophic factor predicts progression from mild cognitive impairment to Alzheimer’s disease. Neuromolecular Med, 17(3): 326–332
CrossRef Pubmed Google scholar
[25]
Gao L, Zhou S, Cai H, Gong Z, Zang D (2014). VEGF levels in CSF and serum in mild ALS patients. J Neurol Sci, 346(1-2): 216–220
CrossRef Pubmed Google scholar
[26]
Gato A, Alonso M I, Martín C, Carnicero E, Moro J A, De la Mano A, Fernández J M, Lamus F, Desmond M E (2014). Embryonic cerebrospinal fluid in brain development: neural progenitor control. Croat Med J, 55(4): 299–305
CrossRef Pubmed Google scholar
[27]
Gong Z, Gao L, Guo J, Lu Y, Zang D (2015). bFGF in the CSF and serum of sALS patients. Acta Neurol Scand, 132(3): 171–178
CrossRef Pubmed Google scholar
[28]
González-Marrero I, Giménez-Llort L, Johanson C E, Carmona-Calero E M, Castañeyra-Ruiz L, Brito-Armas J M, Castañeyra-Perdomo A, Castro-Fuentes R (2015). Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci, 9: 17
CrossRef Pubmed Google scholar
[29]
Greenwood S, Swetloff A, Wade A M, Terasaki T, Ferretti P (2008). Fgf2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus epithelial cell behaviour. Cerebrospinal Fluid Res, 5(1): 20
CrossRef Pubmed Google scholar
[30]
Hébert J M, Mishina Y, McConnell S K (2002). BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron, 35(6): 1029–1041
CrossRef Pubmed Google scholar
[31]
Huang S L, Shi W, Jiao Q, He X J (2011). Change of neural stem cells in the choroid plexuses of developing rat. Int J Neurosci, 121(6): 310–315
CrossRef Pubmed Google scholar
[32]
Huang X, Ketova T, Fleming J T, Wang H, Dey S K, Litingtung Y, Chiang C (2009). Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development, 136(15): 2535–2543
CrossRef Pubmed Google scholar
[33]
Iliff J J, Wang M, Liao Y, Plogg B A, Peng W, Gundersen G A, Benveniste H, Vates G E, Deane R, Goldman S A, Nagelhus E A, Nedergaard M (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med, 4(147): 147ra111PMID:22896675
CrossRef Google scholar
[34]
Itokazu Y, Kitada M, Dezawa M, Mizoguchi A, Matsumoto N, Shimizu A, Ide C (2006). Choroid plexus ependymal cells host neural progenitor cells in the rat. Glia, 53(1): 32–42
CrossRef Pubmed Google scholar
[35]
Jackson E L, Garcia-Verdugo J M, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006). PDGFR a-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron, 51(2): 187–199
CrossRef Pubmed Google scholar
[36]
Jin K, Sun Y, Xie L, Batteur S, Mao X O, Smelick C, Logvinova A, Greenberg D A (2003). Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell, 2(3): 175–183
CrossRef Pubmed Google scholar
[37]
Jin K, Zhu Y, Sun Y, Mao X O, Xie L, Greenberg D A (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA, 99(18): 11946–11950
CrossRef Pubmed Google scholar
[38]
Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E (2004). Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res, 1(1): 3
CrossRef Pubmed Google scholar
[39]
Johanson C, Stopa E, Baird A, Sharma H (2011a). Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna), 118(1): 115–133
CrossRef Pubmed Google scholar
[40]
Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G (2011b). The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol, 39(1): 186–212
CrossRef Pubmed Google scholar
[41]
Johansson P A (2014). The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci, 8: 340
CrossRef Pubmed Google scholar
[42]
Krizhanovsky V, Ben-Arie N (2006). A novel role for the choroid plexus in BMP-mediated inhibition of differentiation of cerebellar neural progenitors. Mech Dev, 123(1): 67–75
CrossRef Pubmed Google scholar
[43]
Krzyzanowska A, Carro E (2012). Pathological alteration in the choroid plexus of Alzheimer’s disease: implication for new therapy approaches. Front Pharmacol, 3: 75
CrossRef Pubmed Google scholar
[44]
Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M (2013). IFN-g-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain, 136(Pt 11): 3427–3440
CrossRef Pubmed Google scholar
[45]
Lehtinen M K, Zappaterra M W, Chen X, Yang Y J, Hill A D, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole A J, Wong E T, LaMantia A S, Walsh C A (2011). The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 69(5): 893–905
CrossRef Pubmed Google scholar
[46]
Li Y, Chen J, Chopp M (2002). Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci, 193(2): 137–146
CrossRef Pubmed Google scholar
[47]
Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E (2010). VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development, 137(2): 261–271
CrossRef Pubmed Google scholar
[48]
Liddelow S A (2015). Development of the choroid plexus and blood-CSF barrier. Front Neurosci, 9: 32
CrossRef Pubmed Google scholar
[49]
Lun M P, Monuki E S, Lehtinen M K (2015). Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci, 16(8): 445–457
CrossRef Pubmed Google scholar
[50]
Mackenzie F, Ruhrberg C (2012). Diverse roles for VEGF-A in the nervous system. Development, 139(8): 1371–1380
CrossRef Pubmed Google scholar
[51]
Maharaj A S R, Walshe T E, Saint-Geniez M, Venkatesha S, Maldonado A E, Himes N C, Matharu K S, Karumanchi S A, D’Amore P A (2008). VEGF and TGF-b are required for the maintenance of the choroid plexus and ependyma. J Exp Med, 205(2): 491–501
CrossRef Pubmed Google scholar
[52]
Maisonpierre P C, Belluscio L, Friedman B, Alderson R F, Wiegand S J, Furth M E, Lindsay R M, Yancopoulos G D (1990). NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron, 5(4): 501–509
CrossRef Pubmed Google scholar
[53]
Marques F, Sousa J C, Coppola G, Gao F, Puga R, Brentani H, Geschwind D H, Sousa N, Correia-Neves M, Palha J A (2011). Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS, 8(1): 10
CrossRef Pubmed Google scholar
[54]
Mashayekhi F, Azari M, Moghadam L M, Yazdankhah M, Naji M, Salehi Z (2009). Changes in cerebrospinal fluid nerve growth factor levels during chick embryonic development. J Clin Neurosci, 16(10): 1334–1337
CrossRef Pubmed Google scholar
[55]
Mashayekhi F, Sadeghi M, Rajaei F (2011). Induction of perlecan expression and neural cell proliferation by FGF-2 in the developing cerebral cortex: an in vivo study. J Mol Neurosci, 45(2): 87–93
CrossRef Pubmed Google scholar
[56]
McCoy M K, Tansey M G (2008). TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation, 5(1): 45
CrossRef Pubmed Google scholar
[57]
Meeker R B, Williams K, Killebrew D A, Hudson L C (2012). Cell trafficking through the choroid plexus. Cell Adhes Migr, 6(5): 390–396
CrossRef Pubmed Google scholar
[58]
Mesquita S D, Ferreira A C, Gao F, Coppola G, Geschwind D H, Sousa J C, Correia-Neves M, Sousa N, Palha J A, Marques F (2015). The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun, 49: 280–292
CrossRef Pubmed Google scholar
[59]
Miyan J A, Nabiyouni M, Zendah M (2003). Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol, 81(4): 317–328
CrossRef Pubmed Google scholar
[60]
Moore L, Bain J M, Loh J M, Levison S W (2014). PDGF-responsive progenitors persist in the subventricular zone across the lifespan. ASN Neuro, 6(2): 65–81
CrossRef Pubmed Google scholar
[61]
Nielsen C M, Dymecki S M (2010). Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol, 340(2): 430–437
CrossRef Pubmed Google scholar
[62]
Nilsson C, Hultberg B M, Gammeltoft S (1996). Autocrine role of insulin-like growth factor II secretion by the rat choroid plexus. Eur J Neurosci, 8(3): 629–635
CrossRef Pubmed Google scholar
[63]
Pencea V, Bingaman K D, Freedman L J, Luskin M B (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol, 172(1): 1–16
CrossRef Pubmed Google scholar
[64]
Pillai A, Kale A, Joshi S, Naphade N, Raju M S V K, Nasrallah H, Mahadik S P (2010). Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. Int J Neuropsychopharmacol, 13(4): 535–539
CrossRef Pubmed Google scholar
[65]
Prasongchean W, Vernay B, Asgarian Z, Jannatul N, Ferretti P (2015). The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation. Front Neurosci, 9: 103
CrossRef Pubmed Google scholar
[66]
Preston J E (2001). Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech, 52(1): 31–37
CrossRef Pubmed Google scholar
[67]
Rabie M A, Mohsen M, Ibrahim M, El-Sawy Mahmoud R (2014). Serum level of brain derived neurotrophic factor (BDNF) among patients with bipolar disorder. J Affect Disord, 162: 67–72
CrossRef Pubmed Google scholar
[68]
Redzic Z B, Preston J E, Duncan J A, Chodobski A, Szmydynger-Chodobska J (2005). “The Choroid Plexus‐Cerebrospinal Fluid System: From Development to Aging,” in Current Topics in Developmental Biology, ed. Gerald P. Schatten (Academic Press), 1–52. Available at: http://www.sciencedirect.com/science/article/pii/S0070215305710012 [<Date>Accessed November 15, 2013</Date>].
[69]
Redzic Z B, Segal M B (2004). The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev, 56(12): 1695–1716
CrossRef Pubmed Google scholar
[70]
Ruiz de Almodovar C, Coulon C, Salin P A, Knevels E, Chounlamountri N, Poesen K, Hermans K, Lambrechts D, Van Geyte K, Dhondt J, Dresselaers T, Renaud J, Aragones J, Zacchigna S, Geudens I, Gall D, Stroobants S, Mutin M, Dassonville K, Storkebaum E, Jordan B F, Eriksson U, Moons L, D’Hooge R, Haigh J J, Belin M F, Schiffmann S, Van Hecke P, Gallez B, Vinckier S, Chédotal A, Honnorat J, Thomasset N, Carmeliet P, Meissirel C (2010). Matrix-binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1. J Neurosci, 30(45): 15052–15066
CrossRef Pubmed Google scholar
[71]
Salehi Z, Mashayekhi F, Naji M, Pandamooz S (2009). Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J Clin Neurosci, 16(7): 950–953
CrossRef Pubmed Google scholar
[72]
Sathyanesan M, Girgenti M J, Banasr M, Stone K, Bruce C, Guilchicek E, Wilczak-Havill K, Nairn A, Williams K, Sass S, Duman J G, Newton S S (2012). A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry, 2(7): e139
CrossRef Pubmed Google scholar
[73]
Saunders N R, Daneman R, Dziegielewska K M, Liddelow S A (2013). Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med, 34(2-3): 742–752
CrossRef Pubmed Google scholar
[74]
Schänzer A, Wachs F P, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, Winkler J, Aigner L, Plate K H, Kuhn H G (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivoby vascular endothelial growth factor. Brain Pathol, 14(3): 237–248
CrossRef Pubmed Google scholar
[75]
Scola G, Andreazza A C (2015). The role of neurotrophins in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry, 56: 122–128
CrossRef Pubmed Google scholar
[76]
Segklia A, Seuntjens E, Elkouris M, Tsalavos S, Stappers E, Mitsiadis T A, Huylebroeck D, Remboutsika E, Graf D (2012). Bmp7 regulates the survival, proliferation, and neurogenic properties of neural progenitor cells during corticogenesis in the mouse. PLoS ONE, 7(3): e34088
CrossRef Pubmed Google scholar
[77]
Serot J M, Béné M C, Foliguet B, Faure G C (1997). Altered choroid plexus basement membrane and epithelium in late-onset Alzheimer’s disease: an ultrastructural study. Ann N Y Acad Sci, 826(1 Cerebrovascul): 507–509
CrossRef Pubmed Google scholar
[78]
Serot J M, Foliguet B, Béné M C, Faure G C (2001). Choroid plexus and ageing in rats: a morphometric and ultrastructural study. Eur J Neurosci, 14(5): 794–798
CrossRef Pubmed Google scholar
[79]
Spatazza J, Lee H H C, Di Nardo A A, Tibaldi L, Joliot A, Hensch T K, Prochiantz A (2013). Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports, 3(6): 1815–1823
CrossRef Pubmed Google scholar
[80]
Spector R, Johanson C E (2010). Vectorial ligand transport through mammalian choroid plexus. Pharm Res, 27(10): 2054–2062
CrossRef Pubmed Google scholar
[81]
Spector R, Keep R F, Robert Snodgrass S, Smith Q R, Johanson C E (2015a). A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol, 267: 78–86
CrossRef Pubmed Google scholar
[82]
Spector R, Robert Snodgrass S, Johanson C E (2015b). A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol, 273: 57–68
CrossRef Pubmed Google scholar
[83]
Stolp H B, Molnár Z (2015). Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci, 9: 20
CrossRef Pubmed Google scholar
[84]
Storkebaum E, Carmeliet P (2004). VEGF: a critical player in neurodegeneration. J Clin Invest, 113(1): 14–18
CrossRef Pubmed Google scholar
[85]
Strazielle N, Mutin M, Ghersi-Egea J F (2005). Les plexus choroïdes: une interface dynamique entre sang et liquide cephalo-rachidien. Morphologie, 89(285): 90–101
CrossRef Pubmed Google scholar
[86]
Strelau J, Sullivan A, Böttner M, Lingor P, Falkenstein E, Suter-Crazzolara C, Galter D, Jaszai J, Krieglstein K, Unsicker K (2000). Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci, 20(23): 8597–8603
Pubmed
[87]
Tochitani S, Kondo S (2013). Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS ONE, 8(2): e56901
CrossRef Pubmed Google scholar
[88]
Turner C A, Thompson R C, Bunney W E, Schatzberg A F, Barchas J D, Myers R M, Akil H, Watson S J (2014). Altered choroid plexus gene expression in major depressive disorder. Front Hum Neurosci, 8: 238
CrossRef Pubmed Google scholar
[89]
Vaccarino F M, Schwartz M L, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J D, Wyland J J, Hung Y T (1999). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci, 2(3): 246–253
CrossRef Pubmed Google scholar
[90]
Wagner J P, Black I B, DiCicco-Bloom E (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci, 19(14): 6006–6016
Pubmed
[91]
Watanabe M, Kang Y J, Davies L M, Meghpara S, Lau K, Chung C Y, Kathiriya J, Hadjantonakis A K, Monuki E S (2012). BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors. J Neurosci, 32(45): 15934–15945
CrossRef Pubmed Google scholar
[92]
Werner H, LeRoith D (2014). Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur Neuropsychopharmacol, 24(12): 1947–1953
CrossRef Pubmed Google scholar
[93]
Xia Y X, Ikeda T, Xia X Y, Ikenoue T (2000). Differential neurotrophin levels in cerebrospinal fluid and their changes during development in newborn rat. Neurosci Lett, 280(3): 220–222
CrossRef Pubmed Google scholar
[94]
Zappaterra M W, Lehtinen M K (2012). The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci, 69(17): 2863–2878
CrossRef Pubmed Google scholar
[95]
Ziegler A N, Levison S W, Wood T L (2015). Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat Rev Endocrinol, 11(3): 161–170
CrossRef Pubmed Google scholar
[96]
Ziegler A N, Schneider J S, Qin M, Tyler W A, Pintar J E, Fraidenraich D, Wood T L, Levison S W (2012). IGF-II promotes stemness of neural restricted precursors. Stem Cells, 30(6): 1265–1276
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

K. Arnaud and A. A. Di Nardo declare they have no conflict of interest.
This article does not contain studies with human or animal subjects performed by the authors.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(613 KB)

Accesses

Citations

Detail

Sections
Recommended

/