The epigenetics of CHARGE syndrome
Nina K. Latcheva, Rupa Ghosh, Daniel R. Marenda
The epigenetics of CHARGE syndrome
In biology, we continue to appreciate the fact that the DNA sequence alone falls short when attempting to explain the intricate inheritance patterns for complex traits. This is particularly true for human disorders that appear to have simple genetic causes. The study of epigenetics, and the increased access to the epigenetic profiles of different tissues has begun to shed light on the genetic complexity of many basic biological processes, both physiological and pathological. Epigenetics refers to heritable changes in gene expression that are not due to alterations in the DNA sequence. Various mechanisms of epigenetic regulation exist, including DNA methylation and histone modification. The identification, and increased understanding of key players and mechanisms of epigenetic regulation have begun to provide significant insight into the underlying origins of various human genetic disorders. One such disorder is CHARGE syndrome (OMIM 214800), which is a leading cause of deaf-blindness worldwide. A majority of CHARGE syndrome cases are caused by haploinsufficiency for the CHD7 gene, which encodes an ATP-dependent chromatin remodeling protein involved in the epigenetic regulation of gene expression. The CHD7 protein has been highly conserved throughout evolution, and research into the function of CHD7 homologs in multiple model systems has increased our understanding of this family of proteins, and epigenetic mechanisms in general. Here we provide a review of CHARGE syndrome, and discuss the epigenetic functions of CHD7 in humans and CHD7 homologs in model organisms.
Drosophila / Kismet / CHD7 / CHARGE syndrome / chromatin remodeling
[1] |
Aalfs J D, Kingston R E (2000). What does ʻchromatin remodelingʼ mean? Trends Biochem Sci, 25(11): 548–555
CrossRef
Google scholar
|
[2] |
Allen M D, Religa T L, Freund S M, Bycroft M (2007). Solution structure of the BRK domains from CHD7. J Mol Biol, 371(5): 1135–1140
CrossRef
Google scholar
|
[3] |
Allis C D, Berger S L, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131(4): 633–636
CrossRef
Google scholar
|
[4] |
Bajpai R, Chen D A, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang C P, Zhao Y, Swigut T, Wysocka J (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463(7283): 958–962
CrossRef
Google scholar
|
[5] |
Balasubramanian D, Akhtar-Zaidi B, Song L, Bartels C F, Veigl M, Beard L, Myeroff L, Guda K, Lutterbaugh J, Willis J, Crawford G E, Markowitz S D, Scacheri P C (2012). H3K4me3 inversely correlates with DNA methylation at a large class of non-CpG-island-containing start sites. Genome Med, 4(5): 47
CrossRef
Google scholar
|
[6] |
Balow S A, Pierce L X, Zentner G E, Conrad P A, Davis S, Sabaawy H E, McDermott B MJr, Scacheri P C (2013). Knockdown of fbxl10/kdm2bb rescues chd7 morphant phenotype in a zebrafish model of CHARGE syndrome. Dev Biol, 382(1): 57–69
CrossRef
Google scholar
|
[7] |
Basson M A, van Ravenswaaij-Arts C (2015). Functional Insights into Chromatin remodelling from studies on CHARGE syndrome. Trends Genet, 31(10): 600–611
CrossRef
Google scholar
|
[8] |
Blake K D, Hartshorne T S, Lawand C, Dailor A N, Thelin J W (2008). Cranial nerve manifestations in CHARGE syndrome. Am J Med Genet A, 146A(5): 585–592
CrossRef
Google scholar
|
[9] |
Blake K D, Prasad C (2006). CHARGE syndrome. Orphanet J Rare Dis, 1(1): 34
CrossRef
Google scholar
|
[10] |
Bosman E A, Penn A C, Ambrose J C, Kettleborough R, Stemple D L, Steel K P (2005). Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet, 14(22): 3463–3476
CrossRef
Google scholar
|
[11] |
Bouazoune K, Kingston R E (2012). Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci USA, 109(47): 19238–19243
CrossRef
Google scholar
|
[12] |
Boyer L A, Latek R R, Peterson C L (2004). The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 5(2): 158–163
CrossRef
Google scholar
|
[13] |
Cavalli G, Paro R (1999). Epigenetic inheritance of active chromatin after removal of the main transactivator. Science, 286(5441): 955–958
CrossRef
Google scholar
|
[14] |
Daubresse G, Deuring R, Moore L, Papoulas O, Zakrajsek I, Waldrip W R, Scott M P, Kennison J A, Tamkun J W (1999). The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development, 126(6): 1175–1187
|
[15] |
de Lonlay-Debeney P, Cormier-Daire V, Amiel J, Abadie V, Odent S, Paupe A, Couderc S, Tellier A L, Bonnet D, Prieur M, Vekemans M, Munnich A, Lyonnet S (1997). Features of DiGeorge syndrome and CHARGE association in five patients. J Med Genet, 34(12): 986–989
CrossRef
Google scholar
|
[16] |
Dorighi K M, Tamkun J W (2013). The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila. Development, 140(20): 4182–4192
CrossRef
Google scholar
|
[17] |
Engelen E, Akinci U, Bryne J C, Hou J, Gontan C, Moen M, Szumska D, Kockx C, van Ijcken W, Dekkers D H, Demmers J, Rijkers E J, Bhattacharya S, Philipsen S, Pevny L H, Grosveld F G, Rottier R J, Lenhard B, Poot R A (2011). Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nat Genet, 43(6): 607–611
CrossRef
Google scholar
|
[18] |
Fasulo B, Deuring R, Murawska M, Gause M, Dorighi K M, Schaaf C A, Dorsett D, Brehm A, Tamkun J W (2012). The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS Genet, 8(8): e1002878
CrossRef
Google scholar
|
[19] |
Feng W, Khan M A, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, Liu H K (2013). The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell, 13(1): 62–72
CrossRef
Google scholar
|
[20] |
Feng W, Liu H K (2013). Epigenetic regulation of neuronal fate determination: the role of CHD7. Cell Cycle, 12(24): 3707–3708
CrossRef
Google scholar
|
[21] |
Fraga M F, Ballestar E, Paz M F, Ropero S, Setien F, Ballestar M L, Heine-Suner D, Cigudosa J C, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector T D, Wu Y Z, Plass C, Esteller M (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 102(30): 10604–10609
CrossRef
Google scholar
|
[22] |
Gangaraju V K, Bartholomew B (2007). Mechanisms of ATP dependent chromatin remodeling. Mutat Res, 618(1–2): 3–17
CrossRef
Google scholar
|
[23] |
Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, Wise C (2007). CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet, 80(5): 957–965
CrossRef
Google scholar
|
[24] |
Ghosh R, Vegesna S, Safi R, Bao H, Zhang B, Marenda D R, Liebl F L (2014). Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction. PLoS ONE, 9(11): e113494
CrossRef
Google scholar
|
[25] |
Gregory L C, Gevers E F, Baker J, Kasia T, Chong K, Josifova D J, Caimari M, Bilan F, McCabe M J, Dattani M T (2013). Structural pituitary abnormalities associated with CHARGE syndrome. J Clin Endocrinol Metab, 98(4): E737–E743
CrossRef
Google scholar
|
[26] |
He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, Clavairoly A, Frah M, Wang H, He X, Hmidan H, Jones B V, Witte D, Zalc B, Zhou X, Choo D I, Martin D M, Parras C, Lu Q R (2016). Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci, doi: 10.1038/nn.4258
|
[27] |
Hurd E A, Adams M E, Layman W S, Swiderski D L, Beyer L A, Halsey K E, Benson J M, Gong T W, Dolan D F, Raphael Y, Martin D M (2011). Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res, 282(1–2): 184–195
CrossRef
Google scholar
|
[28] |
Hurd E A, Capers P L, Blauwkamp M N, Adams M E, Raphael Y, Poucher H K, Martin D M (2007). Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome, 18(2): 94–104
CrossRef
Google scholar
|
[29] |
Hurd E A, Micucci J A, Reamer E N, Martin D M (2012). Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev, 129(9–12): 308–323
CrossRef
Google scholar
|
[30] |
Hurd E A, Poucher H K, Cheng K, Raphael Y, Martin D M (2010). The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development, 137(18): 3139–3150
CrossRef
Google scholar
|
[31] |
Jacobs-McDaniels N L, Albertson R C (2011). Chd7 plays a critical role in controlling left-right symmetry during zebrafish somitogenesis. Dev Dyn, 240(10): 2272–2280
CrossRef
Google scholar
|
[32] |
Janssen N, Bergman J E, Swertz M A, Tranebjaerg L, Lodahl M, Schoots J, Hofstra R M, van Ravenswaaij-Arts C M, Hoefsloot L H (2012). Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat, 33(8): 1149–1160
CrossRef
Google scholar
|
[33] |
Jongmans M C, Admiraal R J, van der Donk K P, Vissers L E, Baas A F, Kapusta L, van Hagen J M, Donnai D, de Ravel T J, Veltman J A, Geurts van Kessel A, De Vries B B, Brunner H G, Hoefsloot L H, van Ravenswaaij C M (2006). CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet, 43(4): 306–314
CrossRef
Google scholar
|
[34] |
Jongmans M C, Hoefsloot L H, van der Donk K P, Admiraal R J, Magee A, van de Laar I, Hendriks Y, Verheij J B, Walpole I, Brunner H G, van Ravenswaaij C M (2008). Familial CHARGE syndrome and the CHD7 gene: a recurrent missense mutation, intrafamilial recurrence and variability. Am J Med Genet A, 146A(1): 43–50
CrossRef
Google scholar
|
[35] |
Kaminsky Z A, Tang T, Wang S C, Ptak C, Oh G H, Wong A H, Feldcamp L A, Virtanen C, Halfvarson J, Tysk C, McRae A F, Visscher P M, Montgomery G W, Gottesman I I, Martin N G, Petronis A (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet, 41(2): 240–245
CrossRef
Google scholar
|
[36] |
Kim K H, Roberts C W (2013). CHD7 in charge of neurogenesis. Cell Stem Cell, 13(1): 1–2
CrossRef
Google scholar
|
[37] |
Kirmizis A, Santos-Rosa H, Penkett C J, Singer M A, Vermeulen M, Mann M, Bahler J, Green R D, Kouzarides T (2007). Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 449(7164): 928–932
CrossRef
Google scholar
|
[38] |
Kita Y, Nishiyama M, Nakayama K I (2012). Identification of CHD7S as a novel splicing variant of CHD7 with functions similar and antagonistic to those of the full-length CHD7L. Genes Cells, 17(7): 536–547
CrossRef
Google scholar
|
[39] |
Kornberg R D, Lorch Y (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98(3): 285–294
CrossRef
Google scholar
|
[40] |
Kosaki K (2011). Role of rare cases in deciphering the mechanisms of congenital anomalies: CHARGE syndrome research. Congenit Anom (Kyoto), 51(1): 12–15
CrossRef
Google scholar
|
[41] |
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
CrossRef
Google scholar
|
[42] |
Kouzarides T (2007). SnapShot: Histone-modifying enzymes. Cell, 131(4): 822–822.e1
CrossRef
Google scholar
|
[43] |
Kouzarides T (2007). SnapShot: Histone-modifying enzymes. Cell, 128(4): 802
CrossRef
Google scholar
|
[44] |
Lalani S R, Safiullah A M, Fernbach S D, Harutyunyan K G, Thaller C, Peterson L E, McPherson J D, Gibbs R A, White L D, Hefner M, Davenport S L, Graham J MJr, Bacino C A, Glass N L, Towbin J A, Craigen W J, Neish S R, Lin A E, Belmont J W (2006). Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet, 78(2): 303–314
CrossRef
Google scholar
|
[45] |
Layman W S, Hurd E A, Martin D M (2011). Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome. Hum Mol Genet, 20(16): 3138–3150
CrossRef
Google scholar
|
[46] |
Layman W S, McEwen D P, Beyer L A, Lalani S R, Fernbach S D, Oh E, Swaroop A, Hegg C C, Raphael Y, Martens J R, Martin D M (2009). Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet, 18(11): 1909–1923
CrossRef
Google scholar
|
[47] |
Melicharek D, Shah A, DiStefano G, Gangemi A J, Orapallo A, Vrailas-Mortimer A D, Marenda D R (2008). Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics, 180(4): 2095–2110
CrossRef
Google scholar
|
[48] |
Melicharek D J, Ramirez L C, Singh S, Thompson R, Marenda D R (2010). Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet, 19(21): 4253–4264
CrossRef
Google scholar
|
[49] |
Micucci J A, Layman W S, Hurd E A, Sperry E D, Frank S F, Durham M A, Swiderski D L, Skidmore J M, Scacheri P C, Raphael Y, Martin D M (2014). CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet, 23(2): 434–448
CrossRef
Google scholar
|
[50] |
Mueller-Planitz F, Klinker H, Ludwigsen J, Becker P B (2013). The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat Struct Mol Biol, 20(1): 82–89
CrossRef
Google scholar
|
[51] |
Papp B, Muller J (2006). Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev, 20(15): 2041–2054
CrossRef
Google scholar
|
[52] |
Paro R, Strutt H, Cavalli G (1998). Heritable chromatin states induced by the Polycomb and trithorax group genes. Novartis Found Symp, 214: 51–61; discussion 61–56, 104–113
|
[53] |
Patten S A, Jacobs-McDaniels N L, Zaouter C, Drapeau P, Albertson R C, Moldovan F (2012). Role of Chd7 in zebrafish: a model for CHARGE syndrome. PLoS ONE, 7(2): e31650
CrossRef
Google scholar
|
[54] |
Petruk S, Sedkov Y, Johnston D M, Hodgson J W, Black K L, Kovermann S K, Beck S, Canaani E, Brock H W, Mazo A (2012). TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell, 150(5): 922–933
CrossRef
Google scholar
|
[55] |
Pinto G, Abadie V, Mesnage R, Blustajn J, Cabrol S, Amiel J, Hertz-Pannier L, Bertrand A M, Lyonnet S, Rappaport R, Netchine I (2005). CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab, 90(10): 5621–5626
CrossRef
Google scholar
|
[56] |
Reisman D, Glaros S, Thompson E A (2009). The SWI/SNF complex and cancer. Oncogene, 28(14): 1653–1668
CrossRef
Google scholar
|
[57] |
Richmond T J, Davey C A (2003). The structure of DNA in the nucleosome core. Nature, 423(6936): 145–150
CrossRef
Google scholar
|
[58] |
Sanlaville D, Verloes A (2007). CHARGE syndrome: an update. Eur J Hum Genet, 15(4): 389–399
CrossRef
Google scholar
|
[59] |
Santoro R, Li J, Grummt I (2002). The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet, 32(3): 393–396
CrossRef
Google scholar
|
[60] |
Schnetz M P, Bartels C F, Shastri K, Balasubramanian D, Zentner G E, Balaji R, Zhang X, Song L, Wang Z, Laframboise T, Crawford G E, Scacheri P C (2009). Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res, 19(4): 590–601
CrossRef
Google scholar
|
[61] |
Schnetz M P, Handoko L, Akhtar-Zaidi B, Bartels C F, Pereira C F, Fisher A G, Adams D J, Flicek P, Crawford G E, Laframboise T, Tesar P, Wei C L, Scacheri P C (2010). CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet, 6(7): e1001023
CrossRef
Google scholar
|
[62] |
Souriau J, Gimenes M, Blouin C, Benbrik I, Benbrik E, Churakowskyi A, Churakowskyi B (2005). CHARGE syndrome: developmental and behavioral data. Am J Med Genet A, 133A(3): 278–281
CrossRef
Google scholar
|
[63] |
Srinivasan S, Armstrong J A, Deuring R, Dahlsveen I K, McNeill H, Tamkun J W (2005). The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development, 132(7): 1623–1635
CrossRef
Google scholar
|
[64] |
Srinivasan S, Dorighi K M, Tamkun J W (2008). Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet, 4(10): e1000217
CrossRef
Google scholar
|
[65] |
Tellier A L, Cormier-Daire V, Abadie V, Amiel J, Sigaudy S, Bonnet D, de Lonlay-Debeney P, Morrisseau-Durand M P, Hubert P, Michel J L, Jan D, Dollfus H, Baumann C, Labrune P, Lacombe D, Philip N, LeMerrer M, Briard M L, Munnich A, Lyonnet S (1998). CHARGE syndrome: report of 47 cases and review. Am J Med Genet, 76(5): 402–409
CrossRef
Google scholar
|
[66] |
Terriente-Felix A, Molnar C, Gomez-Skarmeta J L, de Celis J F (2011). A conserved function of the chromatin ATPase Kismet in the regulation of hedgehog expression. Dev Biol, 350(2): 382–392
CrossRef
Google scholar
|
[67] |
Therrien M, Morrison D K, Wong A M, Rubin G M (2000). A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics, 156(3): 1231–1242
|
[68] |
Torres-Padilla M E, Parfitt D E, Kouzarides T, Zernicka-Goetz M (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445(7124): 214–218
CrossRef
Google scholar
|
[69] |
Vissers L E, van Ravenswaaij C M, Admiraal R, Hurst J A, de Vries B B, Janssen I M, van der Vliet W A, Huys E H, de Jong P J, Hamel B C, Schoenmakers E F, Brunner H G, Veltman J A, van Kessel A G (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet, 36(9): 955–957
CrossRef
Google scholar
|
[70] |
Workman J L (2006). Nucleosome displacement in transcription. Genes Dev, 20(15): 2009–2017
CrossRef
Google scholar
|
[71] |
Zentner G E, Hurd E A, Schnetz M P, Handoko L, Wang C, Wang Z, Wei C, Tesar P J, Hatzoglou M, Martin D M, Scacheri P C (2010a). CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet, 19(18): 3491–3501
CrossRef
Google scholar
|
[72] |
Zentner G E, Layman W S, Martin D M, Scacheri P C (2010b). Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A, 152A(3): 674–686
CrossRef
Google scholar
|
/
〈 | 〉 |