Drosophila seizure disorders: genetic suppression of seizure susceptibility

Arunesh Saras, Laura E. Simon, Harlan J. Brawer, Richard E. Price, Mark A. Tanouye

PDF(541 KB)
PDF(541 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (2) : 96-108. DOI: 10.1007/s11515-016-1395-1
REVIEW
REVIEW

Drosophila seizure disorders: genetic suppression of seizure susceptibility

Author information +
History +

Abstract

Various Drosophila models of human disease have recently received increased interest. The main goal is to uncover the fundamental biological basis for human pathology taking advantage of the power of Drosophila genetics. This review examines a set of Drosophila seizure-sensitive mutations that model human seizure disorders, especially epilepsy. Also described is a novel set of mutations that act as seizure-suppressors that ameliorate epilepsy phenotypes in double mutant combinations.

Keywords

Drosophila / epilepsy / seizure disorders / sodium channel / seizure-suppressor genes

Cite this article

Download citation ▾
Arunesh Saras, Laura E. Simon, Harlan J. Brawer, Richard E. Price, Mark A. Tanouye. Drosophila seizure disorders: genetic suppression of seizure susceptibility. Front. Biol., 2016, 11(2): 96‒108 https://doi.org/10.1007/s11515-016-1395-1

References

[1a]
Barreto E, Cressman J R (2011). Ion concentration dynamics as a mechanism for neuronal bursting. J Biol Phys, 37(3): 361–373
[1]
Bassuk A G, Wallace R H, Buhr A, Buller A R, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-Alegre P, Griesbach H L, Wu S, Nashelsky M, Vladar E K, Antic D, Ferguson P J, Cirak S, Voit T, Scott M P, Axelrod J D, Gurnett C, Daoud A S, Kivity S, Neufeld M Y, Mazarib A, Straussberg R, Walid S, Korczyn A D, Slusarski D C, Berkovic S F, El-Shanti H I (2008). A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet, 83(5): 572–581
CrossRef Google scholar
[2]
Ben-Ari Y (2002). Excitatory actions of GABA during development: the nature of the nurture. Nature, 3: 728–739
[3]
Ben-Ari Y, Gaiarsa J L, Tyzio R, Khazipov R (2007). GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev, 87(4): 1215–1284
CrossRef Google scholar
[4]
Benzer S (1971). From the gene to behavior. JAMA, 218(7): 1015–1022
CrossRef Google scholar
[5]
Boettger T, Rust M B, Maier H, Seidenbecher T, Schweizer M, Keating D J, Faulhaber J, Ehmke H, Pfeffer C, Scheel O, (2003). Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J, 22(20): 5422–5434
CrossRef Google scholar
[6]
Bullock T H, Horridge G A (1965). “Structure and Function in the Nervous System of Invertebrates”, 2 vol. San Francisco and London: W H Freeman A Comp Ltd, XXVIII, 1722pp
[7]
Carlson S D, Juang J L, Hilgers S L, Garment M B (2000). Blood barriers of the insect. Annu Rev Entomol, 45(1): 151–174
CrossRef Google scholar
[8]
Catterall W A (2014). Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol, 54(1): 317–338
CrossRef Google scholar
[9]
Catterall W A, Goldin A L, Waxman S G (2003). International Union of Pharmacology, XXXIX Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev, 55(4): 575–578
CrossRef Google scholar
[10]
Champoux J J (2001). DNA topoisomerases: Structure, function and mechanism. Annu Rev Biochem, 70(1): 369–413
CrossRef Google scholar
[11]
Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn P J (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA, 106(14): 5731–5736
CrossRef Google scholar
[12]
Chvatal A, Sykova E (2000). Glial influence on neuronal signaling. Prog Brain Res, 125: 199–216
CrossRef Google scholar
[13]
Cressman J RJr, Ullah G, Ziburkus J, Schiff S J, Barreto E (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. J Comput Neurosci, 26(2): 159–170
CrossRef Google scholar
[14]
D'Ambrosio R (2004). The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Ther, 103(2): 95–108
CrossRef Google scholar
[15]
Devinsky O, Vezzani A, Najjar S, De Lanerolle N C, Rogawski M A (2013). Glia and epilepsy: excitability and inflammation. Trends Neurosci, 36(3): 174–184
CrossRef Google scholar
[16]
DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu D C, Bonilla E, DeVivo D C, (2002). Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol, 89: 217–229
[17]
Dong K (2007). Insect sodium channels and insecticide resistance. Invert Neurosci, 7(1): 17–30
CrossRef Google scholar
[18]
Engel J E, Wu C F (1994). Altered mechanoreceptor response in Drosophila bang-sensitive mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 175(3): 267–278
CrossRef Google scholar
[19]
Fahmy O G, Fahmy M J (1960). Cytogenetic analysis of the action of carcinogens and tumor inhibitors in Drosophila melanogaster. Genetics, 45: 419–438
[20]
Feng G, Deak P, Chopra M, Hall L M (1995). Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell, 82(6): 1001–1011
CrossRef Google scholar
[21]
Fergestad T, Bostwick B, Ganetzky B (2006). Metabolic disruption in Drosophila bang-sensitive seizure mutants. Genetics, 173(3): 1357–1364
CrossRef Google scholar
[22]
Fertziger A P, Ranck J BJr (1970). Potassium accumulation in interstitial space during epileptiform seizures. Exp Neurol, 26(3): 571–585
CrossRef Google scholar
[23]
Florence G, Dahlem M A, Almeida A C G, Bassani J W M, Kurths J (2009). The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study. J Theor Biol, 258(2): 219–228
CrossRef Google scholar
[24]
Freeman A A, Syed S, Sanyal S (2013). Modeling the genetic basis for human sleep disorders in Drosophila. Commun Integr Biol, 6(1): e22733
CrossRef Google scholar
[25]
Ganetzky B (1984). Genetic studies of membrane excitability in Drosophila: lethal interaction between two temperature-sensitive paralytic mutations. Genetics, 108: 897–911
[26]
Ganetzky B, Wu C F (1982a). Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics, 100: 597–614
[27]
Ganetzky B, Wu C F (1982b). Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J Neurophysiol, 47: 501–514
[28]
Glasscock E, Singhania A, Tanouye M A (2005). The mei-p26 gene encodes an RBCC-NHL protein that regulates seizure susceptibility in Drosophila. Genetics, 170: 1677–1689
CrossRef Google scholar
[29]
Glasscock E, Tanouye M A (2005). Drosophila couch potato mutants exhibit complex neurological abnormalities including epilepsy phenotypes. Genetics, 169(4): 2137–2149
CrossRef Google scholar
[30]
Goldin A L (2001). Resurgence of sodium channel research. Annu Rev Physiol, 63(1): 871–894
CrossRef Google scholar
[31]
Greenhill S D, Jones R S G (2010). Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurons of the rat entorhinal cortex in vitro. Neurosci, 167(2): 456–474
CrossRef Google scholar
[32]
Griesemer D A, Kellner C H, Beale M D, Smith G M (1997). Electroconvulsive therapy for treatment of intractable seizures: initial findings in two children. Neurology, 49(5): 1389–1392
CrossRef Google scholar
[33]
Grigliatti T A, Hall L, Rosenbluth R, Suzuki D T (1973). Temperature-sensitive mutations in Drosophila melanogaster. Mol Gen Genet, 120(2): 107–114
CrossRef Google scholar
[34]
Guo M (2012). Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb Perspect Med, 2(11): a009944
CrossRef Google scholar
[35]
Hariharan I K, Haber D A (2003). Yeast, flies, worms, and fish in the study of human disease. N Engl J Med, 348(24): 2457–2463
CrossRef Google scholar
[36]
Hebert S C, Mount D B, Gamba G (2004). Molecular physiology of cation-coupled Cl cotransport: the SLC12 family. Pflugers Arch, 447(5): 580–593
CrossRef Google scholar
[37]
Hekmat-Scafe D S, Lundy M Y, Ranga R, Tanouye M A (2006). Mutations in the K+/Cl cotransporter gene kazachoc (kcc) increase seizure susceptibility in Drosophila. J Neurosci, 26(35): 8943–8954
CrossRef Google scholar
[38]
Hekmat-Scafe D S, Mercado A, Fajilan A A, Lee A W, Hsu R, Mount D B, Tanouye M A (2010). Seizure sensitivity is ameliorated by targeted expression of K+-Cl cotransporter function in the mushroom body of the Drosophila brain. Genetics, 184(1): 171–183
CrossRef Google scholar
[39]
Hirth F (2010). Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets, 9(4): 504–523
CrossRef Google scholar
[40]
Howlett I C, Tanouye M A (2013). Seizure-sensitivity in Drosophila is ameliorated by dorsal vessel injection of the antiepileptic drug valproate. J Neurogenet, 27(4): 143–150
CrossRef Google scholar
[41]
Hubner C A, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch T J (2001). Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron, 30(2): 515–524
CrossRef Google scholar
[42]
Imbrici P, Jaffe S L, Eunson L H, Davies N P, Herd C, Robertson R, Kullmann D M, Hanna M G (2004). Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain, 127(12): 2682–2692
CrossRef Google scholar
[43]
Jacobs J, Dubeau F, Olivier A, Andermann F (2008). Pathways of seizure propagation from the temporal to the occipital lobe. Epileptic Disord, 10: 266–270
[44a]
Kager H, Wadman W J, Somjen G G (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol, 84(1): 195–512
[44]
Kandel E R, Spencer W A (1961). The pyramidal cell during hippocampal seizure. Epilepsia, 2(1): 63–69
CrossRef Google scholar
[45]
Kawasaki F, Felling R, Ordway R W (2000). A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. J Neurosci, 20: 4885–4889
[46]
Kitamoto T (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol, 47(2): 81–92
CrossRef Google scholar
[47]
Koenig J H, Ikeda K (1989). Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci, 9: 3844–3860
[48]
Kroll J R, Wong K G, Siddiqui F M, Tanouye M A (2015). Disruption of endocytosis with the dynamin mutant shibirets1 suppresses seizures in Drosophila. Genetics, 201(3): 1087–1102
CrossRef Google scholar
[49]
Kuebler D, Tanouye M A (2000). Modifications of seizure susceptibility in Drosophila. J Neurophysiol, 83: 998–1009
[50]
Kuebler D, Tanouye M A (2002). The anticonvulsant sodium valproate reduces seizure-susceptibility in mutant Drosophila. Brain Res, 958(1): 36–42
CrossRef Google scholar
[51]
Kuebler D, Zhang H, Ren X, Tanouye M A (2001). Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol, 86: 1211–1225
[52]
Kuromi H, Honda A, Kidokoro Y (2004). Ca2<?A3B2 h=-0.3h?>+ influx through distinct routes controls exocytosis and endocytosis at Drosophila presynaptic terminals. Neuron, 41(1): 101–111
CrossRef Google scholar
[53]
Kwan P, Brodie M J (2000). Early identification of refractory epilepsy. N Engl J Med, 342(5): 314–319
CrossRef Google scholar
[54]
Landmark C J (2008). Targets for antiepileptic drugs in the synapse. Med Sci Monit, 13: RA1–RA7
[55]
Lee J, Wu C F (2002). Electroconvulsive seizure behavior in Drosophila: analysis of the physiological repertoire underlying a stereotyped action pattern in bang sensitive mutants. J Neurosci, 22: 11065–11079
[56]
Lee J, Wu C F (2006). Genetic modifications of seizure susceptibility and expression by altered excitability in Drosophila Na(+) and K(+) channel mutants. J Neurophysiol, 96(5): 2465–2478
CrossRef Google scholar
[57]
Lilly M, Carlson J (1990). smellblind: a gene required for Drosophila olfaction. Genetics, 124: 293–302
[58]
Lin W H, Baines R A (2014). Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Molec Neurobiol, 10.1007/s12035-014-8674-0 /fulltext.html
[59]
Lin W H, Wright D E, Muraro N I, Baines R A (2009). Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. J Neurophysiol, 102(3): 1994–2006
CrossRef Google scholar
[60]
Loscher W (2002). Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 16: 669–694
CrossRef Google scholar
[61]
Lossin C (2009). A catalog of SCN1A variants. Brain Dev, 31(2): 114–130
CrossRef Google scholar
[62]
Loughney K, Kreber R, Ganetzky B (1989). Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell, 58(6): 1143–1154
CrossRef Google scholar
[63]
Lunde M E, Lee E K, Rasmussen K G (2006). Electroconvulsive therapy in patients with epilepsy. Epilepsy Behav, 9(2): 355–359
CrossRef Google scholar
[64]
Mayer F, Mayer N, Chinn L, Pinsonneault R L, Kroetz D, Bainton R J (2009). Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila. J Neurosci, 29(11): 3538–3550
CrossRef Google scholar
[65]
McIntyre D C, Gilby K L (2008). Mapping seizure pathways in the temporal lobe. Epilepsia, 49(s3Suppl 3): 23–30
CrossRef Google scholar
[66]
McNamara J O (1994). Cellular and molecular basis of epilepsy. J Neurosci, 14: 3413–3425
[67]
Mount D B, Delpire E, Gamba G, Hall A E, Poch E, Hoover R S, Herbert S C (1998). The electroneutral cation-chloride cotransporters. J Exp Biol, 201: 2091–2102
[68]
Mulley J C, Scheffer I E, Petrou S, Dibbens L M, Berkovic S F, Harkin L A (2005). SCN1A mutations and epilepsy. Hum Mutat, 25(6): 535–542
CrossRef Google scholar
[69]
Noebels J L (1996). Targeting epilepsy genes. Neuron, 16(2): 241–244
CrossRef Google scholar
[70]
O’Dowd D K, Gee J R, Smith M A (1995). Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons. J Neurosci, 15: 4005–4012
[71]
Oh C Y, Bainbridge J (2012). Lowering the seizure threshold associated with antidepressants, stimulants, antipsychotics, and others. Mental Health Clinician: November 2012-Epilepsy and seizure disorders and their treatment, Vol. 2, No. 5, pp. 127–128
[72]
Olson R O, Liu Z, Nomura Y, Song W, Dong K (2008). Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster. Insect Biochem Mol Biol, 38(5): 604–610
CrossRef Google scholar
[73]
Paemka L, Mahajan V B, Ehaideb S N, Skeie J M, Tan M C, Wu S, Cox A J, Sowers L P, Gecz J, Jolly L, Ferguson P J, Darbro B, Schneider A, Scheffer I E, Carvill G L, Mefford H C, El-Shanti H, Wood S A, Manak J R, Bassuk A G (2015). Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet, 11(3): e1005022
CrossRef Google scholar
[74]
Parker L, Padilla M, Du Y, Dong K, Tanouye M A (2011). Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the Para sodium channel gene that leads to seizures. Genetics, 187(2): 523–534
CrossRef Google scholar
[75]
Pavlidis P, Ramaswami M, Tanouye M A (1994). The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell, 79(1): 23–33
CrossRef Google scholar
[76]
Pavlidis P, Tanouye M A (1995). Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. J Neurosci, 15: 5810–5819
[77]
Pfeiffer B D, Truman J W, Rubin G M (2012). Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci USA, 109(17): 6626–6631
CrossRef Google scholar
[78]
Phelan P, Nakagawa M, Wilkin M B, Moffat K G, O’Kane C J, Davies J A, Bacon J P (1996). Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. J Neurosci, 16: 1101–1113
[79]
Phelan P, Starich T A (2001). Innexins get into the gap. BioEssays, 23(5): 388–396
CrossRef Google scholar
[80]
Phelan P, Stebbings L A, Baines R A, Bacon J P, Davies J A, Ford C (1998). Drosophila shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature, 391(6663): 181–184
CrossRef Google scholar
[81]
Pisani F, Oteri G, Costa C, Di Raimando G, Di Perri R (2002). Effects of psychotropic drugs on seizure threshold. Drug Saf, 25(2): 91–110
CrossRef Google scholar
[82]
Pittendrigh B, Reenan R, ffrench-Constant R H, Ganetzky B (1997). Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol Gen Genet, 356(6): 602–610
CrossRef Google scholar
[83]
Ramaswami M, Tanouye M A (1989). Two sodium channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci USA, 86(6): 2079–2082
CrossRef Google scholar
[84]
Read R (2011). Drosophila melanogaster as a model system for human brain cancers. Glia, 59(9): 1364–1376
CrossRef Google scholar
[85]
Regenold W T, Weintraub D, Taller A (1998). Electroconvulsive therapy for epilepsy and major depression. Am J Geriatr Psychiatry, 6(2): 180–183(Top of Form)
CrossRef Google scholar
[86]
Rein K, Zöckler M, Mader M T, Grübel C, Heisenberg M (2002). The Drosophila standard brain. Curr Biol, 12(3): 227–231
CrossRef Google scholar
[87]
Reiter L T, Bier E (2001). Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin Ther Targets, 6: 387–399
[88]
Reynolds E R, Stauffer E A, Feeney L, Rojahn E, Jacobs B, McKeever C (2003). Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants. J Neurobiol, 58(4): 503–513
CrossRef Google scholar
[89]
Rieckhof G E, Yoshihara M, Guan Z, Littleton J T (2003). Presynaptic N-type calcium channels regulate synaptic growth. J Biol Chem, 278(42): 41099–41108
CrossRef Google scholar
[90]
Royden C S, Pirrotta V, Jan L Y (1987). The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell, 51(2): 165–173
CrossRef Google scholar
[91]
Rusan Z M, Kingsford O A, Tanouye M A (2014). Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster. PLoS ONE, 9(6): e101117
CrossRef Google scholar
[92]
Sackeim H A, Decina P, Prohovnik I, Malitz S S R, Resor S R (1987). Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action. Biol Psychiatry, 18: 1301–1310
[93]
Salkoff L, Kelly L (1978). Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of Drosophila. Nature, 273(5658): 156–158
CrossRef Google scholar
[94]
Saras A, Tanouye M A (2016). Mutations of the calcium channel gene cacophony suppress seizures in Drosophila. PLoS Genet, 12(1): e1005784
CrossRef Google scholar
[95]
Schutte R J, Schutte S S, Algara J, Barragan E V, Gilligan J, Staber C, Savva Y A, Smith M A, Reenan R, O’Dowd D K (2014). Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current. J Neurophysiol, 112(4): 903–912
CrossRef Google scholar
[96]
Schwarz N, Hahn A, Bast T, Müller S, Löffler H, Maljevic S, Gaily E, Prehl I, Biskup S, Joensuu T, Lehesjoki A E, Neubauer B A, Lerche H, Hedrich U B (2016). Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J Neurol, 263(2): 334–343
CrossRef Google scholar
[97]
Sehgal A, Mignot E (2011). Genetics of sleep and sleep disorders. Cell, 146(2): 194–207
CrossRef Google scholar
[98]
Seifert G, Carmignoto G, Steinhäuser C (2010). Astrocyte dysfunction in epilepsy. Brain Res Brain Res Rev, 63(1-2): 212–221
CrossRef Google scholar
[99]
Shneker B F, Fountain N B (2003). Epilepsy. Dis Mon, 49(7): 426–478
CrossRef Google scholar
[100]
Siddiqi O, Benzer S (1976). Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc Natl Acad Sci USA, 73(9): 3253–3257
CrossRef Google scholar
[101]
Smith L A, Wang X, Peixoto A A, Neumann E K, Hall L M, Hall J C (1996). A Drosophila calcium channel alpha1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J Neurosci, 16: 7868–7879
[102]
Somjen G G (2004). “Ions in the Brain : Normal Function, Seizures, and Stroke: Normal Function, Seizures, and Stroke”. Oxford University Press, USA. At<https://books.google.com/books?id=WjSoQVt-taYC&pgis=1>
[103]
Song J, Hu J, Tanouye M A (2007). Seizure suppression by top1 mutations in Drosophila. J Neurosci, 27(11): 2927–2937
CrossRef Google scholar
[104]
Song J, Parker L, Hormozi L, Tanouye M A (2008). DNA topoisomerase I inhibitors ameliorate seizure-like behaviors and paralysis in a Drosophila model of epilepsy. Neuroscience, 156(3): 722–728
CrossRef Google scholar
[105]
Song J, Tanouye M A (2006). Seizure suppression by shakB2, a gap junction mutation in Drosophila. J Neurophysiol, 95(2): 627–635
CrossRef Google scholar
[106]
Song J, Tanouye M A (2007). Role for para sodium channel gene 3′ UTR in the modification of Drosophila seizure susceptibility. Dev Neurobiol, 67(14): 1944–1956
CrossRef Google scholar
[107]
Stefan H, Lopes da Silva F H (2013). Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol, 4: 8
CrossRef Google scholar
[108]
Steinhoff B, Hirsch E, Mutani R, Nakken K (2003). The ideal characteristics of antiepileptic therapy: an overview of old and new AEDs. Acta Neurol Scand, 107(2): 87–95
CrossRef Google scholar
[109]
Stilwell G E, Saraswati S, Littleton J T, Chouinard S W (2006). Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur J Neurosci, 24(8): 2211–2222
CrossRef Google scholar
[110]
Stödberg T, McTague A, Ruiz A J, Hirata H, Zhen J, Long P, Farabella I, Meyer E, Kawahara A, Vassallo G, Stivaros S M, Bjursell M K, Stranneheim H, Tigerschiöld S, Persson B, Bangash I, Das K, Hughes D, Lesko N, Lundeberg J, Scott R C, Poduri A, Scheffer I E, Smith H, Gissen P, Schorge S, Reith M E, Topf M, Kullmann D M, Harvey R J, Wedell A, Kurian M A (2015). Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat Commun, 6: 8038
CrossRef Google scholar
[111]
Stork T, Engelen D, Krudewig A, Silies M, Bainton R J, Klambt C (2008). Organization and function of the blood-brain barrier in Drosophila. J Neurosci, 28(3): 587–597
CrossRef Google scholar
[112]
Sun L, Gilligan J, Staber C, Schutte R J, Nguyen V, O’Dowd D K, Reenan R (2012). A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci, 32(41): 14145–14155
CrossRef Google scholar
[113]
Suzuki D, Grigliatti T, Williamson R (1971). Temperature-sensitive mutations in Drosophila melanogaster, VII. A mutation (parats) causing reversible adult paralysis. Proc Natl Acad Sci USA, 68(5): 890–893
CrossRef Google scholar
[114]
Tan J S, Lin F, Tanouye M A (2004). Potassium bromide, an anticonvulsant, is effective at alleviating seizures in the Drosophila bang-sensitive mutant bang senseless. Brain Res, 1020(1-2): 45–52
CrossRef Google scholar
[115]
Tanouye M A, Ferrus A, Fujita S C (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci USA, 78(10): 6548–6552
CrossRef Google scholar
[116]
Tao H, Manak J R, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh N S, Yang T, Wu S, Chen S, Fox M H, Gurnett C, Montine T, Bird T, Shaffer L G, Rosenfeld J A, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto R P, Scott M P, Antic D, Reed J, Boland R, Ehaideb S N, El-Shanti H, Mahajan V B, Ferguson P J, Axelrod J D, Lehesjoki A E, Fritzsch B, Slusarski D C, Wemmie J, Ueno N, Bassuk A G (2011). Mutations in Prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet, 88(2): 138–149
CrossRef Google scholar
[117]
Thackeray J R, Ganetzky B (1994). Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J Neurosci, 14: 2569–2578
[118]
Thackeray J R, Ganetzky B (1995). Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics, 141: 203–214
[119]
Tornberg J, Voikar V, Savilahti H, Rauvala H, Airaksinen M S (2005). Behavioural phenotypes of hypomorphic KCC2-deficient mice. Eur J Neurosci, 21(5): 1327–1337
CrossRef Google scholar
[120]
Ueda A, Grabbe C, Lee J, Lee J, Palmer R H, Wu C F (2008). Mutation of Drosophila focal adhesion kinase induces bang-sensitive behavior and disrupts glial function, axonal conduction and synaptic transmission. Eur J Neurosci, 27(11): 2860–2870
CrossRef Google scholar
[121]
van der Bliek A M, Meyerowitz E M (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature, 351(6325): 411–414
CrossRef Google scholar
[122]
Warmke J W, Reenan R A G, Wang P, Qian S, Arena J P, Wang J, Wunderler D, Liu K, Kaczorowski G J, Ploeg L H T V, Ganetzky B, Cohen C J (1997). Functional expression of Drosophila para sodium channels: modulation by the membrane protein tipE and toxin pharmacology. J Gen Physiol, 110(2): 119–133
CrossRef Google scholar
[123]
Watanabe T K, Yamazaki T (1976). Evidence for coadaptation: negative correlation between lethal genes and polymorphic inversions in Drosophila melanogaster. Genetics, 82: 697–702
[124]
White H S, Smith M D, Wilcox K S (2007). Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol, 81: 85–110
CrossRef Google scholar
[125]
Willoughby L, Chang H, Lumb C, Robin C, Batterham P, Daborn P J (2006). A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and Phenobarbital. Insect Biochem Mol Biol, 36(12): 934–942
CrossRef Google scholar
[126]
Woo N S, Lu J, England R, McClellan R, Dufour S, Mount D B, Deutch A Y, Lovinger D M, Delpire E (2002). Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus, 12(2): 258–268
CrossRef Google scholar
[127]
Wu C F, Ganetzky B (1980). Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature, 286(5775): 814–816
CrossRef Google scholar
[128]
Zhang H, Tan J, Reynolds E, Kuebler D, Faulhaber S, Tanouye M A (2002). The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizure, paralysis and neuronal failure. Genetics, 162: 1283–1299
[129]
Zhang Y Q, Roote J, Brogna S, Davis A W, Barbash D A, Nash D, Ashburner M (1999). Stress sensitive B encodes an adenine nucleotide translocase in Drosophila melanogaster. Genetics, 153: 891–903
[130]
Zuckermann E C, Glaser G H (1970). Activation of experimental epileptogenic foci. Action of increased K+ in extracellular spaces of the brain. Arch Neurol, 23(4): 358–364
CrossRef Google scholar

Acknowledgements

This study was supported by awards from the McKnight Foundation and the NIH (NS31231) to M.A.T. We thank the members of the Tanouye laboratory for helpful discussions throughout the project.
Arunesh Saras, Laura E. Simon, Harlan J. Brawer, Richard E. Price, Mark A. Tanouye declare that they have no conflict of interest.
This article does not contain any studies with human or vertebrate animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(541 KB)

Accesses

Citations

Detail

Sections
Recommended

/