FAK and Pyk2 in disease

James M. Murphy, Hyeonsoo Park, Ssang-Taek Steve Lim

PDF(379 KB)
PDF(379 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (1) : 1-9. DOI: 10.1007/s11515-016-1384-4
REVIEW
REVIEW

FAK and Pyk2 in disease

Author information +
History +

Abstract

Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are non-receptor protein tyrosine kinases that are involved in cell proliferation, migration and survival. Current research of FAK and Pyk2 is greatly focused in cancer biology and several small molecule inhibitors are being tested under clinical development. Like cancer, certain chronic diseases such as cardiovascular disease, bone disease, fibrosis, rheumatoid arthritis, and neurological disorders, share malignant characteristics of cancer. Accumulating evidence has demonstrated that FAK and Pyk2 contribute to other proliferative and degenerative diseases. Thus, the goal of this review is to briefly highlight studies that have implicated FAK and Pyk2 as players in disease progression.

Keywords

FAK / Pyk2 / FRNK / disease

Cite this article

Download citation ▾
James M. Murphy, Hyeonsoo Park, Ssang-Taek Steve Lim. FAK and Pyk2 in disease. Front. Biol., 2016, 11(1): 1‒9 https://doi.org/10.1007/s11515-016-1384-4

References

[1]
Avraham H, Park S Y, Schinkmann K, Avraham S (2000). RAFTK/Pyk2-mediated cellular signalling. Cell Signal, 12(3): 123–133
CrossRef Pubmed Google scholar
[2]
Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J, Jiang S, Pasztor L M, White R A, Groopman J E, (1995). Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem, 270(46): 27742–27751
CrossRef Pubmed Google scholar
[3]
Bae Y H, Mui K L, Hsu B Y, Liu S L, Cretu A, Razinia Z, Xu T, Puré E, Assoian R K (2014). A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal, 7(330): ra57
CrossRef Pubmed Google scholar
[4]
Barsukov I L, Prescot A, Bate N, Patel B, Floyd D N, Bhanji N, Bagshaw C R, Letinic K, Di Paolo G, De Camilli P, Roberts G C, Critchley D R (2003). Phosphatidylinositol phosphate kinase type 1gamma and beta1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J Biol Chem, 278(33): 31202–31209
CrossRef Pubmed Google scholar
[5]
Bayer A L, Heidkamp M C, Patel N, Porter M J, Engman S J, Samarel A M (2002). PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol, 283(2): H695–H706
CrossRef Pubmed Google scholar
[6]
Beggs H E, Schahin-Reed D, Zang K, Goebbels S, Nave K A, Gorski J, Jones K R, Sretavan D, Reichardt L F (2003). FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron, 40(3): 501–514
CrossRef Pubmed Google scholar
[7]
Buckbinder L, Crawford D T, Qi H, Ke H Z, Olson L M, Long K R, Bonnette P C, Baumann A P, Hambor J E, Grasser W A 3rd, Pan L C, Owen T A, Luzzio M J, Hulford C A, Gebhard D F, Paralkar V M, Simmons H A, Kath J C, Roberts W G, Smock S L, Guzman-Perez A, Brown T A, Li M (2007). Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA, 104(25): 10619–10624
CrossRef Pubmed Google scholar
[8]
Cai X, Lietha D, Ceccarelli D F, Karginov A V, Rajfur Z, Jacobson K, Hahn K M, Eck M J, Schaller M D (2008). Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol, 28(1): 201–214
CrossRef Pubmed Google scholar
[9]
Ceccarelli D F, Song H K, Poy F, Schaller M D, Eck M J (2006). Crystal structure of the FERM domain of focal adhesion kinase. J Biol Chem, 281(1): 252–259
CrossRef Pubmed Google scholar
[10]
Chen J, Kubalak S W, Chien K R (1998). Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development, 125(10): 1943–1949
Pubmed
[11]
Cheng Z, DiMichele L A, Hakim Z S, Rojas M, Mack C P, Taylor J M (2012). Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol, 32(4): 924–933
CrossRef Pubmed Google scholar
[12]
Clemente C F, Tornatore T F, Theizen T H, Deckmann A C, Pereira T C, Lopes-Cendes I, Souza J R, Franchini K G (2007). Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ Res, 101(12): 1339–1348
CrossRef Pubmed Google scholar
[13]
Cooper L A, Shen T L, Guan J L (2003). Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol, 23(22): 8030–8041
CrossRef Pubmed Google scholar
[14]
DiMichele L A, Doherty J T, Rojas M, Beggs H E, Reichardt L F, Mack C P, Taylor J M (2006). Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res, 99(6): 636–645
CrossRef Pubmed Google scholar
[15]
Ding Q, Gladson C L, Wu H, Hayasaka H, Olman M A (2008). Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem, 283(40): 26839–26849
CrossRef Pubmed Google scholar
[16]
Duong L T, Nakamura I, Lakkakorpi P T, Lipfert L, Bett A J, Rodan G A (2001). Inhibition of osteoclast function by adenovirus expressing antisense protein-tyrosine kinase 2. J Biol Chem, 276(10): 7484–7492
CrossRef Pubmed Google scholar
[17]
Fan Y, Abrahamsen G, Mills R, Calderón C C, Tee J Y, Leyton L, Murrell W, Cooper-White J, McGrath J J, Mackay-Sim A (2013). Focal adhesion dynamics are altered in schizophrenia. Biol Psychiatry, 74(6): 418–426
CrossRef Pubmed Google scholar
[18]
Gil-Henn H, Destaing O, Sims N A, Aoki K, Alles N, Neff L, Sanjay A, Bruzzaniti A, De Camilli P, Baron R, Schlessinger J (2007). Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. J Cell Biol, 178(6): 1053–1064
CrossRef Pubmed Google scholar
[19]
Goñi G M, Epifano C, Boskovic J, Camacho-Artacho M, Zhou J, Bronowska A, Martín M T, Eck M J, Kremer L, Gräter F, Gervasio F L, Perez-Moreno M, Lietha D (2014). Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proc Natl Acad Sci USA, 111(31): E3177–E3186
CrossRef Pubmed Google scholar
[20]
Hakim Z S, DiMichele L A, Rojas M, Meredith D, Mack C P, Taylor J M (2009). FAK regulates cardiomyocyte survival following ischemia/reperfusion. J Mol Cell Cardiol, 46(2): 241–248
CrossRef Pubmed Google scholar
[21]
Itonaga I, Fujikawa Y, Sabokbar A, Murray D W, Athanasou N A (2000). Rheumatoid arthritis synovial macrophage-osteoclast differentiation is osteoprotegerin ligand-dependent. J Pathol, 192(1): 97–104
CrossRef Pubmed Google scholar
[22]
Kharbanda S, Saleem A, Yuan Z, Emoto Y, Prasad K V, Kufe D (1995). Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc Natl Acad Sci USA, 92(13): 6132–6136
CrossRef Pubmed Google scholar
[23]
Klein E A, Yin L, Kothapalli D, Castagnino P, Byfield F J, Xu T, Levental I, Hawthorne E, Janmey P A, Assoian R K (2009). Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol, 19(18): 1511–1518
CrossRef Pubmed Google scholar
[24]
Kuppuswamy D, Kerr C, Narishige T, Kasi V S, Menick D R, Cooper G 4th (1997). Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem, 272(7): 4500–4508
CrossRef Pubmed Google scholar
[25]
Lagares D, Busnadiego O, García-Fernández R A, Kapoor M, Liu S, Carter D E, Abraham D, Shi-Wen X, Carreira P, Fontaine B A, Shea B S, Tager A M, Leask A, Lamas S, Rodríguez-Pascual F (2012). Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum, 64(5): 1653–1664
CrossRef Pubmed Google scholar
[26]
Lagares D, Kapoor M (2013). Targeting focal adhesion kinase in fibrotic diseases. BioDrugs, 27(1): 15–23
CrossRef Pubmed Google scholar
[27]
Leask A, Abraham D J (2004). TGF-beta signaling and the fibrotic response. FASEB J, 18(7): 816–827
CrossRef Pubmed Google scholar
[28]
Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio J M, Plowman G D, Rudy B, Schlessinger J (1995). Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature, 376(6543): 737–745
CrossRef Pubmed Google scholar
[29]
Lietha D, Cai X, Ceccarelli D F, Li Y, Schaller M D, Eck M J (2007). Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129(6): 1177–1187
CrossRef Pubmed Google scholar
[30]
Lim S T, Chen X L, Lim Y, Hanson D A, Vo T T, Howerton K, Larocque N, Fisher S J, Schlaepfer D D, Ilic D (2008). Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell, 29(1): 9–22
CrossRef Pubmed Google scholar
[31]
Lim S T, Chen X L, Tomar A, Miller N L, Yoo J, Schlaepfer D D (2010a). Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. J Biol Chem, 285(28): 21526–21536
CrossRef Pubmed Google scholar
[32]
Lim S T, Miller N L, Chen X L, Tancioni I, Walsh C T, Lawson C, Uryu S, Weis S M, Cheresh D A, Schlaepfer D D (2012). Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression. J Cell Biol, 197(7): 907–919
CrossRef Pubmed Google scholar
[33]
Lim S T, Miller N L, Nam J O, Chen X L, Lim Y, Schlaepfer D D (2010b). Pyk2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival. J Biol Chem, 285(3): 1743–1753
CrossRef Pubmed Google scholar
[34]
Lipinski C A, Loftus J C (2010). Targeting Pyk2 for therapeutic intervention. Expert Opin Ther Targets, 14(1): 95–108
CrossRef Pubmed Google scholar
[35]
Liu S, Xu S W, Kennedy L, Pala D, Chen Y, Eastwood M, Carter D E, Black C M, Abraham D J, Leask A (2007). FAK is required for TGFbeta-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype. Mol Biol Cell, 18(6): 2169–2178
CrossRef Pubmed Google scholar
[36]
Matsumoto Y, Tanaka K, Hirata G, Hanada M, Matsuda S, Shuto T, Iwamoto Y (2002). Possible involvement of the vascular endothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclast precursor cells in arthritic joints. J Immunol, 168(11): 5824–5831
CrossRef Pubmed Google scholar
[37]
McCartney-Francis N L, Frazier-Jessen M, Wahl S M (1998). TGF-beta: a balancing act. Int Rev Immunol, 16(5-6): 553–580
CrossRef Pubmed Google scholar
[38]
Mitra S K, Hanson D A, Schlaepfer D D (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol, 6(1): 56–68
CrossRef Pubmed Google scholar
[39]
Mui K L, Bae Y H, Gao L, Liu S L, Xu T, Radice G L, Chen C S, Assoian R K (2015). N-Cadherin Induction by ECM Stiffness and FAK Overrides the Spreading Requirement for Proliferation of Vascular Smooth Muscle Cells. Cell Rep, Ossovskaya, V., Lim, S. T., Ota, N., Schlaepfer, D. D. and Ilic, D. (2008). FAK nuclear export signal sequences. FEBS Lett, 582: 2402–2406
[40]
Parsons J T (2003). Focal adhesion kinase: the first ten years. J Cell Sci, 116(Pt 8): 1409–1416
CrossRef Pubmed Google scholar
[41]
Peng X, Guan J L (2011). Focal adhesion kinase: from in vitro studies to functional analyses in vivo. Curr Protein Pept Sci, 12(1): 52–67
CrossRef Pubmed Google scholar
[42]
Peng X, Kraus M S, Wei H, Shen T L, Pariaut R, Alcaraz A, Ji G, Cheng L, Yang Q, Kotlikoff M I, Chen J, Chien K, Gu H, Guan J L (2006). Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest, 116(1): 217–227
CrossRef Pubmed Google scholar
[43]
Ray B J, Thomas K, Huang C S, Gutknecht M F, Botchwey E A, Bouton A H (2012). Regulation of osteoclast structure and function by FAK family kinases. J Leukoc Biol, 92(5): 1021–1028
CrossRef Pubmed Google scholar
[44]
Richardson A, Parsons T (1996). A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature, 380(6574): 538–540
CrossRef Pubmed Google scholar
[45]
Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T (1995). Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem, 270(36): 21206–21219
CrossRef Pubmed Google scholar
[46]
Sayers R L, Sundberg-Smith L J, Rojas M, Hayasaka H, Parsons J T, Mack C P, Taylor J M (2008). FRNK expression promotes smooth muscle cell maturation during vascular development and after vascular injury. Arterioscler Thromb Vasc Biol, 28(12): 2115–2122
CrossRef Pubmed Google scholar
[47]
Schlaepfer D D, Hauck C R, Sieg D J (1999). Signaling through focal adhesion kinase. Prog Biophys Mol Biol, 71(3-4): 435–478
CrossRef Pubmed Google scholar
[48]
Serrels A, Lund T, Serrels B, Byron A, McPherson R C, von Kriegsheim A, Gómez-Cuadrado L, Canel M, Muir M, Ring J E, Maniati E, Sims A H, Pachter J A, Brunton V G, Gilbert N, Anderton S M, Nibbs R J, Frame M C (2015). Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell, 163(1): 160–173
CrossRef Pubmed Google scholar
[49]
Shahrara S, Castro-Rueda H P, Haines G K, Koch A E (2007). Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res Ther, 9(5): R112
CrossRef Pubmed Google scholar
[50]
Shelef M A, Bennin D A, Yasmin N, Warner T F, Ludwig T, Beggs H E, Huttenlocher A (2014). Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Res Ther, 16(5): 464
CrossRef Pubmed Google scholar
[51]
Shen T L, Park A Y, Alcaraz A, Peng X, Jang I, Koni P, Flavell R A, Gu H, Guan J L (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol, 169(6): 941–952
CrossRef Pubmed Google scholar
[52]
Song M Y, Tian F F, Wang Y Z, Huang X, Guo J L, Ding D X (2015). Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. Mol Med Rep, 11(3): 1738–1744
Pubmed
[53]
Suda T, Nakamura I, Jimi E, Takahashi N (1997). Regulation of osteoclast function. J Bone Miner Res, 12(6): 869–879
CrossRef Pubmed Google scholar
[54]
Sulzmaier F J, Jean C, Schlaepfer D D (2014). FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer, 14(9): 598–610
CrossRef Pubmed Google scholar
[55]
Tavora B, Reynolds L E, Batista S, Demircioglu F, Fernandez I, Lechertier T, Lees D M, Wong P P, Alexopoulou A, Elia G, Clear A, Ledoux A, Hunter J, Perkins N, Gribben J G, Hodivala-Dilke K M (2014). Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature, 514(7520): 112–116
CrossRef Pubmed Google scholar
[56]
Taylor J M, Mack C P, Nolan K, Regan C P, Owens G K, Parsons J T (2001). Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells. Mol Cell Biol, 21(5): 1565–1572
CrossRef Pubmed Google scholar
[57]
Taylor J M, Rovin J D, Parsons J T (2000). A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem, 275(25): 19250–19257
CrossRef Pubmed Google scholar
[58]
Wendt M K, Schiemann B J, Parvani J G, Lee Y H, Kang Y, Schiemann W P (2013). TGF-b stimulates Pyk2 expression as part of an epithelial-mesenchymal transition program required for metastatic outgrowth of breast cancer. Oncogene, 32(16): 2005–2015
CrossRef Pubmed Google scholar
[59]
Wynn T A (2011). Integrating mechanisms of pulmonary fibrosis. J Exp Med, 208(7): 1339–1350
CrossRef Pubmed Google scholar
[60]
Xiong W C, Macklem M, Parsons J T (1998). Expression and characterization of splice variants of PYK2, a focal adhesion kinase-related protein. J Cell Sci, 111(Pt 14): 1981–1991
Pubmed
[61]
Yoon H, Dehart J P, Murphy J M, Lim S T (2015). Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem, 63(2): 114–128
CrossRef Pubmed Google scholar
[62]
Zhao J, Guan J L (2009). Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev, 28(1-2): 35–49
CrossRef Pubmed Google scholar
[63]
Zhou J, Aponte-Santamaría C, Sturm S, Bullerjahn J T, Bronowska A, Gräter F (2015). Mechanism of Focal Adhesion Kinase Mechanosensing. PLOS Comput Biol, 11(11): e1004593
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by American Heart Association 12SDG10970000 (to S. L.) and 2013-2015 Abraham Mitchell Cancer Research Fund (to S. L.).
James Murphy, Hyeonsoo Park, and Steve Lim declare that they have no conflict of interest.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(379 KB)

Accesses

Citations

Detail

Sections
Recommended

/