Smoothened regulation in response to Hedgehog stimulation
Kai Jiang, Jianhang Jia
Smoothened regulation in response to Hedgehog stimulation
The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.
Hh signaling / phospholipid / phosphorylation / Smo / ubiquitination / signal transduction
[1] |
Aikin R A, Ayers K L, Thérond P P (2008). The role of kinases in the Hedgehog signalling pathway. EMBO Rep, 9(4): 330–336
CrossRef
Pubmed
Google scholar
|
[2] |
Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper J E (1996). The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell, 86(2): 221–232
CrossRef
Pubmed
Google scholar
|
[3] |
Apionishev S, Katanayeva N M, Marks S A, Kalderon D, Tomlinson A (2005). Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol, 7(1): 86–92
CrossRef
Pubmed
Google scholar
|
[4] |
Arensdorf A M, Marada S, Ogden S K (2015). Smoothened Regulation: A Tale of Two Signals. Trends Pharmacol Sci, 37(1): 62–72
Pubmed
|
[5] |
Atwood S X, Li M, Lee A, Tang J Y, Oro A E (2013). GLI activation by atypical protein kinase C i/l regulates the growth of basal cell carcinomas. Nature, 494(7438): 484–488
CrossRef
Pubmed
Google scholar
|
[6] |
Atwood S X, Sarin K Y, Whitson R J, Li J R, Kim G, Rezaee M, Ally M S, Kim J, Yao C, Chang A L, Oro A E, Tang J Y (2015). Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell, 27(3): 342–353
CrossRef
Pubmed
Google scholar
|
[7] |
Balla T (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev, 93(3): 1019–1137
CrossRef
Pubmed
Google scholar
|
[8] |
Balmer S, Dussert A, Collu G M, Benitez E, Iomini C, Mlodzik M (2015). Components of intraflagellar transport complex A function independently of the cilium to regulate canonical Wnt signaling in Drosophila. Dev Cell, 34(6): 705–718
CrossRef
Pubmed
Google scholar
|
[9] |
Bielas S L, Silhavy J L, Brancati F, Kisseleva M V, Al-Gazali L, Sztriha L, Bayoumi R A, Zaki M S, Abdel-Aleem A, Rosti R O, Kayserili H, Swistun D, Scott L C, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field S J, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus P W, Valente E M, Gleeson J G (2009). Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet, 41(9): 1032–1036
CrossRef
Pubmed
Google scholar
|
[10] |
Briscoe J, Thérond P P (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol, 14(7): 416–429
CrossRef
Pubmed
Google scholar
|
[11] |
Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, Yu Q, Ostrom L, Fordjour P, Anderson D L, Monahan J E, Kelleher J F, Peukert S, Pan S, Wu X, Maira S M, García-Echeverría C, Briggs K J, Watkins D N, Yao Y M, Lengauer C, Warmuth M, Sellers W R, Dorsch M (2010). Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med, 2(51): 51ra70
CrossRef
Pubmed
Google scholar
|
[12] |
Callejo A, Culi J, Guerrero I (2008). Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci USA, 105(3): 912–917
CrossRef
Pubmed
Google scholar
|
[13] |
Camp D, Currie K, Labbé A, van Meyel D J, Charron F (2010). Ihog and Boi are essential for Hedgehog signaling in Drosophila. Neural Dev, 5(1): 28
CrossRef
Pubmed
Google scholar
|
[14] |
Casali A, Struhl G (2004). Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein. Nature, 431(7004): 76–80
CrossRef
Pubmed
Google scholar
|
[15] |
Casso D J, Liu S, Iwaki D D, Ogden S K, Kornberg T B (2008). A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics, 178(3): 1399–1413
CrossRef
Pubmed
Google scholar
|
[16] |
Chávez M, Ena S, Van Sande J, de Kerchove d’Exaerde A, Schurmans S, Schiffmann S N (2015). Modulation of ciliary phosphoinositide content regulates trafficking and sonic Hedgehog signaling output. Dev Cell, 34(3): 338–350
CrossRef
Pubmed
Google scholar
|
[17] |
Chen C H, von Kessler D P, Park W, Wang B, Ma Y, Beachy P A (1999). Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell, 98(3): 305–316
CrossRef
Pubmed
Google scholar
|
[18] |
Chen Y, Jiang J (2013). Decoding the phosphorylation code in Hedgehog signal transduction. Cell Res, 23(2): 186–200
CrossRef
Pubmed
Google scholar
|
[19] |
Chen Y, Li S, Tong C, Zhao Y, Wang B, Liu Y, Jia J, Jiang J (2010). G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in Drosophila. Genes Dev, 24(18): 2054–2067
CrossRef
Pubmed
Google scholar
|
[20] |
Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011). Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol, 9(6): e1001083
CrossRef
Pubmed
Google scholar
|
[21] |
Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021
CrossRef
Pubmed
Google scholar
|
[22] |
DeCaen P G, Delling M, Vien T N, Clapham D E (2013). Direct recording and molecular identification of the calcium channel of primary cilia. Nature, 504(7479): 315–318
CrossRef
Pubmed
Google scholar
|
[23] |
Delling M, DeCaen P G, Doerner J F, Febvay S, Clapham D E (2013). Primary cilia are specialized calcium signalling organelles. Nature, 504(7479): 311–314
CrossRef
Pubmed
Google scholar
|
[24] |
Denef N, Neubüser D, Perez L, Cohen S M (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4): 521–531
CrossRef
Pubmed
Google scholar
|
[25] |
Di Paolo G, De Camilli P (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112): 651–657
CrossRef
Pubmed
Google scholar
|
[26] |
Dorn K V, Hughes C E, Rohatgi R (2012). A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev Cell, 23(4): 823–835
CrossRef
Pubmed
Google scholar
|
[27] |
Du J, Zhang J, Su Y, Liu M, Ospina J K, Yang S, Zhu A J (2011). In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling. PLoS ONE, 6(9): e24168
CrossRef
Pubmed
Google scholar
|
[28] |
Dussillol-Godar F, Brissard-Zahraoui J, Limbourg-Bouchon B, Boucher D, Fouix S, Lamour-Isnard C, Plessis A, Busson D (2006). Modulation of the Suppressor of fused protein regulates the Hedgehog signaling pathway in Drosophila embryo and imaginal discs. Dev Biol, 291(1): 53–66
CrossRef
Pubmed
Google scholar
|
[29] |
Eaton S (2008). Multiple roles for lipids in the Hedgehog signalling pathway. Nat Rev Mol Cell Biol, 9(6): 437–445
CrossRef
Pubmed
Google scholar
|
[30] |
Fan J, Jiang K, Liu Y, Jia J (2013). Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS ONE, 8(11): e79021
CrossRef
Pubmed
Google scholar
|
[31] |
Fan J, Liu Y, Jia J (2012). Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner. Dev Biol, 366(2): 172–184
CrossRef
Pubmed
Google scholar
|
[32] |
Fan S, Hurd T W, Liu C J, Straight S W, Weimbs T, Hurd E A, Domino S E, Margolis B (2004). Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol, 14(16): 1451–1461
CrossRef
Pubmed
Google scholar
|
[33] |
Fukumoto T, Watanabe-Fukunaga R, Fujisawa K, Nagata S, Fukunaga R (2001). The fused protein kinase regulates Hedgehog-stimulated transcriptional activation in Drosophila Schneider 2 cells. J Biol Chem, 276(42): 38441–38448
CrossRef
Pubmed
Google scholar
|
[34] |
Garcia-Gonzalo F R, Phua S C, Roberson E C, Garcia G 3rd, Abedin M, Schurmans S, Inoue T, Reiter J F (2015). Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. Dev Cell, 34(4): 400–409
CrossRef
Pubmed
Google scholar
|
[35] |
Goetz S C, Anderson K V (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5): 331–344
CrossRef
Pubmed
Google scholar
|
[36] |
He Q, Wang G, Dasgupta S, Dinkins M, Zhu G, Bieberich E (2012). Characterization of an apical ceramide-enriched compartment regulating ciliogenesis. Mol Biol Cell, 23(16): 3156–3166
CrossRef
Pubmed
Google scholar
|
[37] |
Heo J S, Lee M Y, Han H J (2007). Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells, 25(12): 3069–3080
CrossRef
Pubmed
Google scholar
|
[38] |
Hildebrandt F, Benzing T, Katsanis N (2011). Ciliopathies. N Engl J Med, 364(16): 1533–1543
CrossRef
Pubmed
Google scholar
|
[39] |
Ho K S, Suyama K, Fish M, Scott M P (2005). Differential regulation of Hedgehog target gene transcription by Costal2 and Suppressor of Fused. Development, 132(6): 1401–1412
CrossRef
Pubmed
Google scholar
|
[40] |
Hooper J E, Scott M P (2005). Communicating with Hedgehogs. Nat Rev Mol Cell Biol, 6(4): 306–317
CrossRef
Pubmed
Google scholar
|
[41] |
Hsia E Y, Gui Y, Zheng X (2015). Regulation of Hedgehog signaling by ubiquitination. Front Biol (Beijing), 10(3): 203–220
CrossRef
Pubmed
Google scholar
|
[42] |
Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA, 102(32): 11325–11330
CrossRef
Pubmed
Google scholar
|
[43] |
Huangfu D, Liu A, Rakeman A S, Murcia N S, Niswander L, Anderson K V (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962): 83–87
CrossRef
Pubmed
Google scholar
|
[44] |
Humbert M C, Weihbrecht K, Searby C C, Li Y, Pope R M, Sheffield V C, Seo S (2012). ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci USA, 109(48): 19691–19696
CrossRef
Pubmed
Google scholar
|
[45] |
Ingham P W, McMahon A P (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 15(23): 3059–3087
CrossRef
Pubmed
Google scholar
|
[46] |
Jacoby M, Cox J J, Gayral S, Hampshire D J, Ayub M, Blockmans M, Pernot E, Kisseleva M V, Compère P, Schiffmann S N, Gergely F, Riley J H, Pérez-Morga D, Woods C G, Schurmans S (2009). INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet, 41(9): 1027–1031
CrossRef
Pubmed
Google scholar
|
[47] |
Jia H, Liu Y, Xia R, Tong C, Yue T, Jiang J, Jia J (2010). Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J Biol Chem, 285(48): 37218–37226
CrossRef
Pubmed
Google scholar
|
[48] |
Jia H, Liu Y, Yan W, Jia J (2009). PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation. Development, 136(2): 307–316
CrossRef
Pubmed
Google scholar
|
[49] |
Jia J (2012). Phosphorylation regulation of Hedgehog signaling. Vitam Horm, 88: 253–272
CrossRef
Pubmed
Google scholar
|
[50] |
Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 416(6880): 548–552
CrossRef
Pubmed
Google scholar
|
[51] |
Jia J, Jiang J (2006). Decoding the Hedgehog signal in animal development. Cell Mol Life Sci, 63(11): 1249–1265
CrossRef
Pubmed
Google scholar
|
[52] |
Jia J, Tong C, Jiang J (2003). Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes Dev, 17(21): 2709–2720
CrossRef
Pubmed
Google scholar
|
[53] |
Jia J, Tong C, Wang B, Luo L, Jiang J (2004). Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020): 1045–1050
CrossRef
Pubmed
Google scholar
|
[54] |
Jiang J (2006). Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle, 5(21): 2457–2463
CrossRef
Pubmed
Google scholar
|
[55] |
Jiang J, Hui C C (2008). Hedgehog signaling in development and cancer. Dev Cell, 15(6): 801–812
CrossRef
Pubmed
Google scholar
|
[56] |
Jiang J, Struhl G (1995). Protein kinase A and hedgehog signaling in Drosophila limb development. Cell, 80(4): 563–572
CrossRef
Pubmed
Google scholar
|
[57] |
Jiang J, Struhl G (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 391(6666): 493–496
CrossRef
Pubmed
Google scholar
|
[58] |
Jiang K, Liu Y, Fan J, Epperly G, Gao T, Jiang J, Jia J (2014). Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila. Proc Natl Acad Sci USA, 111(45): E4842–E4850
CrossRef
Pubmed
Google scholar
|
[59] |
Jiang K, Liu Y, Fan J, Zhang J, Li X, Evers B M, Zhu H, Jia J (2016). PI(4)P promotes phosphorylation and conformational change of Smoothened through interaction with its C-terminal tail. PLoS Biol, 14(1): e1002375
|
[60] |
Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M, Eaton S (2009). Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development, 136(24): 4111–4121
CrossRef
Pubmed
Google scholar
|
[61] |
Kim J, Hsia E Y, Brigui A, Plessis A, Beachy P A, Zheng X (2015). The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal, 8(379): ra55
CrossRef
Pubmed
Google scholar
|
[62] |
Kool M, Jones D T, Jäger N, Northcott P A, Pugh T J, Hovestadt V, Piro R M, Esparza L A, Markant S L, Remke M, Milde T, Bourdeaut F, Ryzhova M, Sturm D, Pfaff E, Stark S, Hutter S, Seker-Cin H, Johann P, Bender S, Schmidt C, Rausch T,Shih D , Reimand J, Sieber L, Wittmann A,Linke L , Witt H, Weber U D, Zapatka M, König R, Beroukhim R, Bergthold G, van Sluis P, Volckmann R, Koster J,Versteeg R , Schmidt S, Wolf S, Lawerenz C,Bartholomae C C , von Kalle C, Unterberg A, Herold-Mende C, Hofer S, Kulozik A E, von Deimling A, Scheurlen W, Felsberg J, Reifenberger G, Hasselblatt M, Crawford J R, Grant G A, Jabado N, Perry A, Cowdrey C, Croul S, Zadeh G, Korbel J O, Doz F, Delattre O, Bader G D, McCabe M G, Collins V P, Kieran M W, Cho Y J, Pomeroy S L, Witt O, Brors B, Taylor M D, Schüller U, Korshunov A, Eils R, Wechsler-Reya R J, Lichter P, Pfister S M, and the ICGC PedBrain Tumor Project (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25(3): 393–405
CrossRef
Pubmed
Google scholar
|
[63] |
Kovacs J J, Whalen E J, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz R J (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320(5884): 1777–1781
CrossRef
Pubmed
Google scholar
|
[64] |
Kuzhandaivel A, Schultz S W, Alkhori L, Alenius M (2014). Cilia-mediated hedgehog signaling in Drosophila. Cell Reports, 7(3): 672–680
CrossRef
Pubmed
Google scholar
|
[65] |
Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J (2012). Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol, 10(1): e1001239
CrossRef
Pubmed
Google scholar
|
[66] |
Li S, Ma G, Wang B, Jiang J (2014). Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. Sci Signal, 7(332): ra62
CrossRef
Pubmed
Google scholar
|
[67] |
Liu A, Wang B, Niswander L A (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13): 3103–3111
CrossRef
Pubmed
Google scholar
|
[68] |
Liu Y, Cao X, Jiang J, Jia J (2007). Fused-Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes Dev, 21(15): 1949–1963
CrossRef
Pubmed
Google scholar
|
[69] |
Lum L, Beachy P A (2004). The Hedgehog response network: sensors, switches, and routers. Science, 304(5678): 1755–1759
CrossRef
Pubmed
Google scholar
|
[70] |
Lum L, Zhang C, Oh S, Mann R K, von Kessler D P, Taipale J, Weis-Garcia F, Gong R, Wang B, Beachy P A (2003). Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell, 12(5): 1261–1274
CrossRef
Pubmed
Google scholar
|
[71] |
Marada S, Navarro G, Truong A, Stewart D P, Arensdorf A M, Nachtergaele S, Angelats E, Opferman J T, Rohatgi R, McCormick P J, Ogden S K (2015). Functional divergence in the role of N-linked glycosylation in Smoothened signaling. PLoS Genet, 11(8): e1005473
CrossRef
Pubmed
Google scholar
|
[72] |
Méthot N, Basler K (2000). Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development, 127(18): 4001–4010
Pubmed
|
[73] |
Mukhopadhyay S, Wen X, Chih B, Nelson C D, Lane W S, Scales S J, Jackson P K (2010). TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev, 24(19): 2180–2193
CrossRef
Pubmed
Google scholar
|
[74] |
Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales S J, Jackson P K (2013). The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell, 152(1-2): 210–223
CrossRef
Pubmed
Google scholar
|
[75] |
Myers B R, Sever N, Chong Y C, Kim J, Belani J D, Rychnovsky S, Bazan J F, Beachy P A (2013). Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell, 26(4): 346–357
CrossRef
Pubmed
Google scholar
|
[76] |
Nachtergaele S, Whalen D M, Mydock L K, Zhao Z, Malinauskas T, Krishnan K, Ingham P W, Covey D F, Siebold C, Rohatgi R (2013). Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. eLife, 2: e01340
CrossRef
Pubmed
Google scholar
|
[77] |
Nüsslein-Volhard C, Wieschaus E (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785): 795–801
CrossRef
Pubmed
Google scholar
|
[78] |
Nybakken K, Vokes S A, Lin T Y, McMahon A P, Perrimon N (2005). A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet, 37(12): 1323–1332
CrossRef
Pubmed
Google scholar
|
[79] |
Ogden S K, Fei D L, Schilling N S, Ahmed Y F, Hwa J, Robbins D J (2008). G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature, 456(7224): 967–970
CrossRef
Pubmed
Google scholar
|
[80] |
Oh S, Kato M, Zhang C, Guo Y, Beachy P A (2015). A comparison of Ci/Gli activity as regulated by Sufu in Drosophila and mammalian Hedgehog response. PLoS ONE, 10(8): e0135804
CrossRef
Pubmed
Google scholar
|
[81] |
Pradhan-Sundd T, Verheyen E M (2015). The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled. Mol Biol Cell, 26(18): 3329–3342
CrossRef
Pubmed
Google scholar
|
[82] |
Price M A (2006). CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev, 20(4): 399–410
CrossRef
Pubmed
Google scholar
|
[83] |
Price M A, Kalderon D (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108(6): 823–835
CrossRef
Pubmed
Google scholar
|
[84] |
Prulière G, Cosson J, Chevalier S, Sardet C, Chenevert J (2011). Atypical protein kinase C controls sea urchin ciliogenesis. Mol Biol Cell, 22(12): 2042–2053
CrossRef
Pubmed
Google scholar
|
[85] |
Pusapati G V, Hughes C E, Dorn K V, Zhang D, Sugianto P, Aravind L, Rohatgi R (2014). EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell, 28(5): 483–496
CrossRef
Pubmed
Google scholar
|
[86] |
Rana R, Carroll C E, Lee H J, Bao J, Marada S, Grace C R, Guibao C D, Ogden S K, Zheng J J (2013). Structural insights into the role of the Smoothened cysteine-rich domain in Hedgehog signalling. Nat Commun, 4: 2965
CrossRef
Pubmed
Google scholar
|
[87] |
Ranieri N, Ruel L, Gallet A, Raisin S, Thérond P P (2012). Distinct phosphorylations on kinesin costal-2 mediate differential hedgehog signaling strength. Dev Cell, 22(2): 279–294
CrossRef
Pubmed
Google scholar
|
[88] |
Ranieri N, Thérond P P, Ruel L (2014). Switch of PKA substrates from Cubitus interruptus to Smoothened in the Hedgehog signalosome complex. Nat Commun, 5: 5034
CrossRef
Pubmed
Google scholar
|
[89] |
Robbins D J, Nybakken K E, Kobayashi R, Sisson J C, Bishop J M, Thérond P P (1997). Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell, 90(2): 225–234
CrossRef
Pubmed
Google scholar
|
[90] |
Rohatgi R, Milenkovic L, Corcoran R B, Scott M P (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA, 106(9): 3196–3201
CrossRef
Pubmed
Google scholar
|
[91] |
Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376
CrossRef
Pubmed
Google scholar
|
[92] |
Rorick A M, Mei W, Liette N L, Phiel C, El-Hodiri H M, Yang J (2007). PP2A:B56epsilon is required for eye induction and eye field separation. Dev Biol, 302(2): 477–493
CrossRef
Pubmed
Google scholar
|
[93] |
Rosenbaum J L, Witman G B (2002). Intraflagellar transport. Nat Rev Mol Cell Biol, 3(11): 813–825
CrossRef
Pubmed
Google scholar
|
[94] |
Ruel L, Rodriguez R, Gallet A, Lavenant-Staccini L, Thérond P P (2003). Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat Cell Biol, 5(10): 907–913
CrossRef
Pubmed
Google scholar
|
[95] |
Sekulic A, Migden M R, Oro A E, Dirix L, Lewis K D, Hainsworth J D, Solomon J A, Yoo S, Arron S T, Friedlander P A, Marmur E, Rudin C M, Chang A L, Low J A, Mackey H M, Yauch R L, Graham R A, Reddy J C, Hauschild A (2012). Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med, 366(23): 2171–2179
CrossRef
Pubmed
Google scholar
|
[96] |
Sharpe H J, Pau G, Dijkgraaf G J, Basset-Seguin N, Modrusan Z, Januario T, Tsui V, Durham A B, Dlugosz A A, Haverty P M, Bourgon R, Tang J Y, Sarin K Y, Dirix L, Fisher D C, Rudin C M, Sofen H, Migden M R, Yauch R L, de Sauvage F J (2015). Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell, 27(3): 327–341
CrossRef
Pubmed
Google scholar
|
[97] |
Shi Q, Li S, Jia J, Jiang J (2011). The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation. Development, 138(19): 4219–4231
CrossRef
Pubmed
Google scholar
|
[98] |
Sisson J C, Ho K S, Suyama K, Scott M P (1997). Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell, 90(2): 235–245
CrossRef
Pubmed
Google scholar
|
[99] |
Su Y, Ospina J K, Zhang J, Michelson A P, Schoen A M, Zhu A J (2011). Sequential phosphorylation of smoothened transduces graded hedgehog signaling. Sci Signal, 4(180): ra43
CrossRef
Pubmed
Google scholar
|
[100] |
Swanson K D, Tang Y, Ceccarelli D F, Poy F, Sliwa J P, Neel B G, Eck M J (2008). The Skap-hom dimerization and PH domains comprise a 3′-phosphoinositide-gated molecular switch. Mol Cell, 32(4): 564–575
CrossRef
Pubmed
Google scholar
|
[101] |
Taipale J, Cooper M K, Maiti T, Beachy P A (2002). Patched acts catalytically to suppress the activity of Smoothened. Nature, 418(6900): 892–897
CrossRef
Pubmed
Google scholar
|
[102] |
Tang J Y, Mackay-Wiggan J M, Aszterbaum M, Yauch R L, Lindgren J, Chang K, Coppola C, Chanana A M, Marji J, Bickers D R, Epstein E H Jr (2012). Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med, 366(23): 2180–2188
CrossRef
Pubmed
Google scholar
|
[103] |
Thérond P P, Knight J D, Kornberg T B, Bishop J M (1996). Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc Natl Acad Sci USA, 93(9): 4224–4228
CrossRef
Pubmed
Google scholar
|
[104] |
Tuson M, He M, Anderson K V (2011). Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development, 138(22): 4921–4930
CrossRef
Pubmed
Google scholar
|
[105] |
Wang B, Fallon J F, Beachy P A (2000a). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 100(4): 423–434
CrossRef
Pubmed
Google scholar
|
[106] |
Wang C, Wu H, Katritch V, Han G W, Huang X P, Liu W, Siu F Y, Roth B L, Cherezov V, Stevens R C (2013). Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497(7449): 338–343
CrossRef
Pubmed
Google scholar
|
[107] |
Wang G, Amanai K, Wang B, Jiang J (2000b). Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev, 14(22): 2893–2905
CrossRef
Pubmed
Google scholar
|
[108] |
Wang Y, Zhou Z, Walsh C T, McMahon A P (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA, 106(8): 2623–2628
CrossRef
Pubmed
Google scholar
|
[109] |
Williams R L, Urbé S (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol, 8(5): 355–368
CrossRef
Pubmed
Google scholar
|
[110] |
Wilson C W, Chen M H, Chuang P T (2009). Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS ONE, 4(4): e5182
CrossRef
Pubmed
Google scholar
|
[111] |
Wilson C W, Chuang P T (2010). Mechanism and evolution of cytosolic Hedgehog signal transduction. Development, 137(13): 2079–2094
CrossRef
Pubmed
Google scholar
|
[112] |
Wollert T, Hurley J H (2010). Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature, 464(7290): 864–869
CrossRef
Pubmed
Google scholar
|
[113] |
Xia R, Jia H, Fan J, Liu Y, Jia J (2012). USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol, 10(1): e1001238
CrossRef
Pubmed
Google scholar
|
[114] |
Xie J, Murone M, Luoh S M, Ryan A, Gu Q, Zhang C, Bonifas J M, Lam C W, Hynes M, Goddard A, Rosenthal A, Epstein E H Jr, de Sauvage F J (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662): 90–92
CrossRef
Pubmed
Google scholar
|
[115] |
Yang C, Chen W, Chen Y, Jiang J (2012). Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res, 22(11): 1593–1604
CrossRef
Pubmed
Google scholar
|
[116] |
Yang L, Xie G, Fan Q, Xie J (2010). Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 29(4): 469–481
CrossRef
Pubmed
Google scholar
|
[117] |
Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu W, Zhou Z, Zhang L, Zhao Y (2013). Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci, 126(Pt 18): 4230–4238
CrossRef
Pubmed
Google scholar
|
[118] |
Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott M P, Banerjee U (2010). Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell, 19(1): 54–65
CrossRef
Pubmed
Google scholar
|
[119] |
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069): 873–877
CrossRef
Pubmed
Google scholar
|
[120] |
Zhang C, Williams E H, Guo Y, Lum L, Beachy P A (2004). Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci USA, 101(52): 17900–17907
CrossRef
Pubmed
Google scholar
|
[121] |
Zhang J, Du J, Lei C, Liu M, Zhu A J (2014). Ubpy controls the stability of the ESCRT-0 subunit Hrs in development. Development, 141(7): 1473–1479
CrossRef
Pubmed
Google scholar
|
[122] |
Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005). Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell, 8(2): 267–278
CrossRef
Pubmed
Google scholar
|
[123] |
Zhang Y, Mao F, Lu Y, Wu W, Zhang L, Zhao Y (2011). Transduction of the Hedgehog signal through the dimerization of Fused and the nuclear translocation of Cubitus interruptus. Cell Res, 21(10): 1436–1451
CrossRef
Pubmed
Google scholar
|
[124] |
Zhao X, Ponomaryov T, Ornell K J, Zhou P, Dabral S K, Pak E, Li W, Atwood S X, Whitson R J, Chang A L, Li J, Oro A E, Chan J A, Kelleher J F, Segal R A (2015). RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res, 75(17): 3623–3635
CrossRef
Pubmed
Google scholar
|
[125] |
Zhao Y, Tong C, Jiang J (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167): 252–258
CrossRef
Pubmed
Google scholar
|
[126] |
Zheng X, Mann R K, Sever N, Beachy P A (2010). Genetic and biochemical definition of the Hedgehog receptor. Genes Dev, 24(1): 57–71
CrossRef
Pubmed
Google scholar
|
[127] |
Zwolak A, Yang C, Feeser E A, Ostap E M, Svitkina T, Dominguez R (2013). CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Nat Commun, 4: 2523
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |