Functions of the adaptor protein p66Shc in solid tumors

Yanan Sun, Jie Yang, Zhenyi Ma

PDF(425 KB)
PDF(425 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (6) : 487-494. DOI: 10.1007/s11515-015-1376-9
REVIEW
REVIEW

Functions of the adaptor protein p66Shc in solid tumors

Author information +
History +

Abstract

p66Shc is a 66 kDa Src homology 2 domain containing (Shc) adaptor protein homolog. Previous studies have demonstrated that p66Shc is a proapoptotic protein involved in the cellular response to oxidative stress and in regulating mammalian lifespan. However, accumulating evidence also indicates its critical role in solid tumor progression. The expression of p66Shc varies in different types of solid tumors, and it can paradoxically promote as well as suppress tumor progression, survival, and metastasis, depending on the cellular context. In this review, we discuss its functions in various solid tumors, the mechanisms by which it mediates the process of anoikis (detachment-induced cell death), and the epigenetic mechanisms that regulate its expression. These studies indicate the potential of p66Shc as a novel prognostic marker and therapeutic target for the prevention of tumor progression and metastasis.

Keywords

adaptor protein / p66Shc / anoikis / metastasis / autophagy

Cite this article

Download citation ▾
Yanan Sun, Jie Yang, Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors. Front. Biol., 2015, 10(6): 487‒494 https://doi.org/10.1007/s11515-015-1376-9

References

[1]
Abdollahi A, Gruver B N, Patriotis C, Hamilton T C (2003). Identification of epidermal growth factor-responsive genes in normal rat ovarian surface epithelial cells. Biochem Biophys Res Commun, 307(1): 188–197
CrossRef Pubmed Google scholar
[2]
Alam S M, Rajendran M, Ouyang S, Veeramani S, Zhang L, Lin M F (2009). A novel role of Shc adaptor proteins in steroid hormone-regulated cancers. Endocr Relat Cancer, 16(1): 1–16
CrossRef Pubmed Google scholar
[3]
Almeida M, Han L, Ambrogini E, Bartell S M, Manolagas S C (2010). Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol, 24(10): 2030–2037
CrossRef Pubmed Google scholar
[4]
Banerjee P, Basu A, Wegiel B, Otterbein L E, Mizumura K, Gasser M, Waaga-Gasser A M, Choi A M, Pal S (2012). Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules. J Biol Chem, 287(38): 32113–32123
CrossRef Pubmed Google scholar
[5]
Bhat H F, Baba R A, Adams M E, Khanday F A (2014). Role of SNTA1 in Rac1 activation, modulation of ROS generation, and migratory potential of human breast cancer cells. Br J Cancer, 110(3): 706–714
CrossRef Pubmed Google scholar
[6]
Borkowska A, Knap N, Antosiewicz J (2013). Diallyl trisulfide is more cytotoxic to prostate cancer cells PC-3 than to noncancerous epithelial cell line PNT1A: a possible role of p66Shc signaling axis. Nutr Cancer, 65(5): 711–717
CrossRef Pubmed Google scholar
[7]
Brown J E, Zeiger S L, Hettinger J C, Brooks J D, Holt B, Morrow J D, Musiek E S, Milne G, McLaughlin B (2010). Essential role of the redox-sensitive kinase p66shc in determining energetic and oxidative status and cell fate in neuronal preconditioning. J Neurosci, 30(15): 5242–5252
CrossRef Pubmed Google scholar
[8]
Chen C S, Mrksich M, Huang S, Whitesides G M, Ingber D E (1997). Geometric control of cell life and death. Science, 276(5317): 1425–1428
CrossRef Pubmed Google scholar
[9]
Chen X, Yang C S (2001). Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis, 22(8): 1119–1129
CrossRef Pubmed Google scholar
[10]
Deffieu M, Bhatia-Kissová I, Salin B, Galinier A, Manon S, Camougrand N (2009). Glutathione participates in the regulation of mitophagy in yeast. J Biol Chem, 284(22): 14828–14837
CrossRef Pubmed Google scholar
[11]
Du W, Jiang Y, Zheng Z, Zhang Z, Chen N, Ma Z, Yao Z, Terada L, Liu Z (2013). Feedback loop between p66(Shc) and Nrf2 promotes lung cancer progression. Cancer Lett, 337(1): 58–65
CrossRef Pubmed Google scholar
[12]
Faisal A, el-Shemerly M, Hess D, Nagamine Y (2002). Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem, 277(33): 30144–30152
CrossRef Pubmed Google scholar
[13]
Foschi M, Franchi F, Han J, La Villa G, Sorokin A (2001). Endothelin-1 induces serine phosphorylation of the adaptor protein p66Shc and its association with 14-3-3 protein in glomerular mesangial cells. J Biol Chem, 276(28): 26640–26647
CrossRef Pubmed Google scholar
[14]
Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci P G, Schiavoni M, Lüscher T F, Volpe M, Cosentino F (2004). Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation, 110(18): 2889–2895
CrossRef Pubmed Google scholar
[15]
Frisch S M, Francis H (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 124(4): 619–626
CrossRef Pubmed Google scholar
[16]
Frisch S M, Vuori K, Ruoslahti E, Chan-Hui P Y (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol, 134(3): 793–799
CrossRef Pubmed Google scholar
[17]
Galimov E R, Chernyak B V, Sidorenko A S, Tereshkova A V, Chumakov P M (2014). Prooxidant properties of p66shc are mediated by mitochondria in human cells. PLoS ONE, 9(3): e86521
CrossRef Pubmed Google scholar
[18]
Gilmore A P (2005). Anoikis. Cell Death Differ, 12(Suppl 2): 1473–1477
CrossRef Pubmed Google scholar
[19]
Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci P G (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122(2): 221–233
CrossRef Pubmed Google scholar
[20]
Grossman S R, Lyle S, Resnick M B, Sabo E, Lis R T, Rosinha E, Liu Q, Hsieh C C, Bhat G, Frackelton A R Jr, Hafer L J (2007). p66 Shc tumor levels show a strong prognostic correlation with disease outcome in stage IIA colon cancer. Clin Cancer Res, 13(19): 5798–5804
CrossRef Pubmed Google scholar
[21]
Guertin D A, Sabatini D M (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1): 9–22
CrossRef Pubmed Google scholar
[22]
Henderson B E, Feigelson H S (2000). Hormonal carcinogenesis. Carcinogenesis, 21(3): 427–433
CrossRef Pubmed Google scholar
[23]
Jackson J G, Yoneda T, Clark G M, Yee D (2000). Elevated levels of p66 Shc are found in breast cancer cell lines and primary tumors with high metastatic potential. Clin Cancer Res, 6(3): 1135–1139
Pubmed
[24]
Khanday F A, Yamamori T, Mattagajasingh I, Zhang Z, Bugayenko A, Naqvi A, Santhanam L, Nabi N, Kasuno K, Day B W, Irani K (2006). Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell, 17(1): 122–129
CrossRef Pubmed Google scholar
[25]
Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, Pisto T, Saarela M, Skotheim R I, Björkman M, Mpindi J P, Haapa-Paananen S, Vainio P, Edgren H, Wolf M, Astola J, Nees M, Hautaniemi S, Kallioniemi O (2008). Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol, 9(9): R139
CrossRef Pubmed Google scholar
[26]
Lee M S, Igawa T, Chen S J, Van Bemmel D, Lin J S, Lin F F, Johansson S L, Christman J K, Lin M F (2004). p66Shc protein is upregulated by steroid hormones in hormone-sensitive cancer cells and in primary prostate carcinomas. Int J Cancer, 108(5): 672–678
CrossRef Pubmed Google scholar
[27]
Levine B (2006). Unraveling the role of autophagy in cancer. Autophagy, 2(2): 65–66
CrossRef Pubmed Google scholar
[28]
Levine B (2007). Cell biology: autophagy and cancer. Nature, 446(7137): 745–747
CrossRef Pubmed Google scholar
[29]
Li X, Gao D, Wang H, Li X, Yang J, Yan X, Liu Z, Ma Z (2015). Negative feedback loop between p66Shc and ZEB1 regulates fibrotic EMT response in lung cancer cells. Cell Death Dis, 6: e1708
[30]
Li X, Xu Z, Du W, Zhang Z, Wei Y, Wang H, Zhu Z, Qin L, Wang L, Niu Q, Zhao X, Girard L, Gong Y, Ma Z, Sun B, Yao Z, Minna J D, Terada L S, Liu Z (2014). Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells. Cancer Cell, 25(5): 575–589
CrossRef Pubmed Google scholar
[31]
Li Y, Zhang Q, Tian R, Wang Q, Zhao J J, Iglehart J D, Wang Z C, Richardson A L (2011). Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells. Cancer Res, 71(24): 7481–7489
CrossRef Pubmed Google scholar
[32]
Lin M F, Lee M S, Zhou X W, Andressen J C, Meng T C, Johansson S L, West W W, Taylor R J, Anderson J R, Lin F F (2001). Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J Urol, 166(5): 1943–1950
CrossRef Pubmed Google scholar
[33]
Lin M F, Meng T C (1996). Tyrosine phosphorylation of a 185 kDa phosphoprotein (pp185) inversely correlates with the cellular activity of human prostatic acid phosphatase. Biochem Biophys Res Commun, 226(1): 206–213
CrossRef Pubmed Google scholar
[34]
Luzi L, Confalonieri S, Di Fiore P P, Pelicci P G (2000). Evolution of Shc functions from nematode to human. Curr Opin Genet Dev, 10(6): 668–674
CrossRef Pubmed Google scholar
[35]
Ma Z, Liu Z, Wu R F, Terada L S (2010). p66(Shc) restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene, 29(41): 5559–5567
CrossRef Pubmed Google scholar
[36]
Ma Z, Myers D P, Wu R F, Nwariaku F E, Terada L S (2007). p66Shc mediates anoikis through RhoA. J Cell Biol, 179(1): 23–31
CrossRef Pubmed Google scholar
[37]
Mailleux A A, Overholtzer M, Schmelzle T, Bouillet P, Strasser A, Brugge J S (2007). BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell, 12(2): 221–234
CrossRef Pubmed Google scholar
[38]
Malhotra A, Vashistha H, Yadav V S, Dube M G, Kalra S P, Abdellatif M, Meggs L G (2009). Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol, 296(2): H380–H388
CrossRef Pubmed Google scholar
[39]
Martin M J, Melnyk N, Pollard M, Bowden M, Leong H, Podor T J, Gleave M, Sorensen P H (2006). The insulin-like growth factor I receptor is required for Akt activation and suppression of anoikis in cells transformed by the ETV6-NTRK3 chimeric tyrosine kinase. Mol Cell Biol, 26(5): 1754–1769
CrossRef Pubmed Google scholar
[40]
Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi P P, Lanfrancone L, Pelicci P G (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402(6759): 309–313
CrossRef Pubmed Google scholar
[41]
Migliaccio E, Mele S, Salcini A E, Pelicci G, Lai K M, Superti-Furga G, Pawson T, Di Fiore P P, Lanfrancone L, Pelicci P G (1997). Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J, 16(4): 706–716
CrossRef Pubmed Google scholar
[42]
Mohan N, Banik N L, Ray S K (2011). Combination of N-(4-hydroxyphenyl) retinamide and apigenin suppressed starvation-induced autophagy and promoted apoptosis in malignant neuroblastoma cells. Neurosci Lett, 502(1): 24–29
CrossRef Pubmed Google scholar
[43]
Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, Wu P, Neben S, Georgopoulos K (1997). Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J, 16(8): 2004–2013
CrossRef Pubmed Google scholar
[44]
Muniyan S, Chou Y W, Tsai T J, Thomes P, Veeramani S, Benigno B B, Walker L D, McDonald J F, Khan S A, Lin F F, Lele S M, Lin M F (2015). p66Shc longevity protein regulates the proliferation of human ovarian cancer cells. Mol Carcinog, 54(8): 618–631
CrossRef Pubmed Google scholar
[45]
Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003). Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA, 100(4): 2112–2116
CrossRef Pubmed Google scholar
[46]
Nemoto S, Finkel T (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science, 295(5564): 2450–2452
CrossRef Pubmed Google scholar
[47]
Nobes C D, Hall A (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1): 53–62
CrossRef Pubmed Google scholar
[48]
Northey J J, Chmielecki J, Ngan E, Russo C, Annis M G, Muller W J, Siegel P M (2008). Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Mol Cell Biol, 28(10): 3162–3176
CrossRef Pubmed Google scholar
[49]
Orsini F, Migliaccio E, Moroni M, Contursi C, Raker V A, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci P G (2004). The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem, 279(24): 25689–25695
CrossRef Pubmed Google scholar
[50]
Pattingre S, Bauvy C, Codogno P (2003). Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem, 278(19): 16667–16674
CrossRef Pubmed Google scholar
[51]
Pelicci G, Giordano S, Zhen Z, Salcini A E, Lanfrancone L, Bardelli A, Panayotou G, Waterfield M D, Ponzetto C, Pelicci P G,  (1995). The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene, 10(8): 1631–1638 
Pubmed
[52]
Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci P G (1992). A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell, 70(1): 93–104
CrossRef Pubmed Google scholar
[53]
Pellegrini M, Pacini S, Baldari C T (2005). p66SHC: the apoptotic side of Shc proteins. Apoptosis, 10(1): 13–18
CrossRef Pubmed Google scholar
[54]
Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994). Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol, 127(2): 537–546
CrossRef Pubmed Google scholar
[55]
Sakai H, Igawa T, Saha P K, Nomata K, Yushita Y, Kanetake H, Saito Y (1992). A case of prostatic carcinoma presenting as a metastatic orbital tumor. Hinyokika Kiyo, 38(1): 77–80 
Pubmed
[56]
Shen N, Tsao B P (2004). Current advances in the human lupus genetics. Curr Rheumatol Rep, 6(5): 391–398
CrossRef Pubmed Google scholar
[57]
Stevenson L E, Frackelton A R Jr (1998). Constitutively tyrosine phosphorylated p52 Shc in breast cancer cells: correlation with ErbB2 and p66 Shc expression. Breast Cancer Res Treat, 49(2): 119–128
CrossRef Pubmed Google scholar
[58]
Thompson E C, Cobb B S, Sabbattini P, Meixlsperger S, Parelho V, Liberg D, Taylor B, Dillon N, Georgopoulos K, Jumaa H, Smale S T, Fisher A G, Merkenschlager M (2007). Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity, 26(3): 335–344
CrossRef Pubmed Google scholar
[59]
Trinei M, Migliaccio E, Bernardi P, Paolucci F, Pelicci P, Giorgio M (2013). p66Shc, mitochondria, and the generation of reactive oxygen species. Methods Enzymol, 528: 99–110
CrossRef Pubmed Google scholar
[60]
Varma M, Morgan M, O’Rourke D, Jasani B (2004). Prostate specific antigen (PSA) and prostate specific acid phosphatase (PSAP) immunoreactivity in benign seminal vesicleduct epithelium: a potential pitfall in the diagnosis of prostate cancer in needle biopsy specimens. Histopathology, 44(4): 405–406
CrossRef Pubmed Google scholar
[61]
Veeramani S, Chou Y W, Lin F C, Muniyan S, Lin F F, Kumar S, Xie Y, Lele S M, Tu Y, Lin M F (2012). Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells. Free Radic Biol Med, 53(1): 95–108
CrossRef Pubmed Google scholar
[62]
Veeramani S, Igawa T, Yuan T C, Lin F F, Lee M S, Lin J S, Johansson S L, Lin M F (2005a). Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene, 24(48): 7203–7212
CrossRef Pubmed Google scholar
[63]
Veeramani S, Yuan T C, Chen S J, Lin F F, Petersen J E, Shaheduzzaman S, Srivastava S, MacDonald R G, Lin M F (2005b). Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr Relat Cancer, 12(4): 805–822
CrossRef Pubmed Google scholar
[64]
Veeramani S, Yuan T C, Lin F F, Lin M F (2008). Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene, 27(37): 5057–5068
CrossRef Pubmed Google scholar
[65]
Wang J H, Avitahl N, Cariappa A, Friedrich C, Ikeda T, Renold A, Andrikopoulos K, Liang L, Pillai S, Morgan B A, Georgopoulos K (1998). Aiolos regulates B cell activation and maturation to effector state. Immunity, 9(4): 543–553
CrossRef Pubmed Google scholar
[66]
Webster M A, Hutchinson J N, Rauh M J, Muthuswamy S K, Anton M, Tortorice C G, Cardiff R D, Graham F L, Hassell J A, Muller W J (1998). Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol, 18(4): 2344–2359
CrossRef Pubmed Google scholar
[67]
Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P (2012). Autophagy: for better or for worse. Cell Res, 22(1): 43–61
CrossRef Pubmed Google scholar
[68]
Xiao D, Singh S V (2010). p66Shc is indispensable for phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Cancer Res, 70(8): 3150–3158
CrossRef Pubmed Google scholar
[69]
Xie Y, Hung M C (1996). p66Shc isoform down-regulated and not required for HER-2/neu signaling pathway in human breast cancer cell lines with HER-2/neu overexpression. Biochem Biophys Res Commun, 221(1): 140–145
CrossRef Pubmed Google scholar
[70]
Yang J, Zheng Z, Yan X, Li X, Liu Z, Ma Z (2013). Integration of autophagy and anoikis resistance in solid tumors. Anat Rec (Hoboken), 296(10): 1501–1508
CrossRef Pubmed Google scholar
[71]
Yoo  B  H,  Wu  X,  Li  Y,  Haniff  M,  Sasazuki  T,  Shirasawa  S, Eskelinen E L, Rosen K V (2010). Oncogenic ras-induced down-regulation of autophagy mediator Beclin-1 is required for malignant transformation of intestinal epithelial cells. J Biol Chem, 285(8): 5438–5449
CrossRef Pubmed Google scholar
[72]
Zheng Z, Yang J, Zhao D, Gao D, Yan X, Yao Z, Liu Z, Ma Z (2013). Downregulated adaptor protein p66(Shc) mitigates autophagy process by low nutrient and enhances apoptotic resistance in human lung adenocarcinoma A549 cells. FEBS J, 280(18): 4522–4530
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(425 KB)

Accesses

Citations

Detail

Sections
Recommended

/