Functional states of resident vascular stem cells and vascular remodeling
Desiree F. Leach, Mitzi Nagarkatti, Prakash Nagarkatti, Taixing Cui
Functional states of resident vascular stem cells and vascular remodeling
Recent evidence indicates that different types of vascular stem cells (VSCs) reside within the mural layers of arteries and veins. The precise identities of these resident VSCs are still unclear; generally, postnatal vasculature contains multilineage stem cells and vascular cell lineage-specific progenitor/stem cells which may participate in both vascular repair and lesion formation. However, the underlying mechanism remains poorly understood. In this review, we summarize the potential molecular mechanisms, which may control the quiescence and activation of resident VSCs and highlight a notion that the differential states of resident VSCs are directly linked to vascular repair or lesion formation.
vascular stem cell / quiescence / activation / remodeling
[1] |
Adler A S, McCleland M L, Truong T, Lau S, Modrusan Z, Soukup T M, Roose-Girma M, Blackwood E M, Firestein R (2012). CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res, 72(8): 2129–2139
CrossRef
Pubmed
Google scholar
|
[2] |
Alessandri G, Girelli M, Taccagni G, Colombo A, Nicosia R, Caruso A, Baronio M, Pagano S, Cova L, Parati E (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Lab Invest, 81(6): 875–885
CrossRef
Pubmed
Google scholar
|
[3] |
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118(2): 149–161
CrossRef
Pubmed
Google scholar
|
[4] |
Bautch V L (2011). Stem cells and the vasculature. Nat Med, 17(11): 1437–1443
CrossRef
Pubmed
Google scholar
|
[5] |
Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D’Amario D, D’Alessandro D A, Michler R E, Dimmeler S, Zeiher A M, Urbanek K, Hintze T H, Kajstura J, Anversa P (2009). Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA, 106(37): 15885–15890
CrossRef
Pubmed
Google scholar
|
[6] |
Blank U, Karlsson G, Karlsson S (2008). Signaling pathways governing stem-cell fate. Blood, 111(2): 492–503
CrossRef
Pubmed
Google scholar
|
[7] |
Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami A P, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121(15): 1735–1745
CrossRef
Pubmed
Google scholar
|
[8] |
Chen Y, Wong M M, Campagnolo P, Simpson R, Winkler B, Margariti A, Hu Y, Xu Q (2013). Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol, 33(8): 1844–1851
CrossRef
Pubmed
Google scholar
|
[9] |
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden D T (2000). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science, 287(5459): 1804–1808
CrossRef
Pubmed
Google scholar
|
[10] |
Covas D T, Piccinato C E, Orellana M D, Siufi J L, Silva W A Jr, Proto-Siqueira R, Rizzatti E G, Neder L, Silva A R, Rocha V, Zago M A (2005). Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res, 309(2): 340–344
CrossRef
Pubmed
Google scholar
|
[11] |
Fang S, Wei J, Pentinmikko N, Leinonen H, Salven P (2012). Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol, 10(10): e1001407
CrossRef
Pubmed
Google scholar
|
[12] |
Florian M C, Geiger H (2010). Concise review: polarity in stem cells, disease, and aging. Stem Cells, 28(9): 1623–1629
CrossRef
Google scholar
|
[13] |
Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007). Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells, 25(10): 2448–2459
CrossRef
Pubmed
Google scholar
|
[14] |
Guevara N V, Kim H S, Antonova E I, Chan L (1999). The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med, 5(3): 335–339
CrossRef
Pubmed
Google scholar
|
[15] |
Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A (2008). Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun, 368(2): 305–310
CrossRef
Pubmed
Google scholar
|
[16] |
Howson K M, Aplin A C, Gelati M, Alessandri G, Parati E A, Nicosia R F (2005). The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol, 289(6): C1396–C1407
CrossRef
Pubmed
Google scholar
|
[17] |
Hu Y, Zhang Z, Torsney E, Afzal A R, Davison F, Metzler B, Xu Q (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest, 113(9): 1258–1265
CrossRef
Pubmed
Google scholar
|
[18] |
Hüttmann A, Liu S L, Boyd A W, Li C L (2001). Functional heterogeneity within rhodamine123(lo) Hoechst33342(lo/sp) primitive hemopoietic stem cells revealed by pyronin Y. Exp Hematol, 29(9): 1109–1116
CrossRef
Pubmed
Google scholar
|
[19] |
Ingram D A, Mead L E, Moore D B, Woodard W, Fenoglio A, Yoder M C (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105(7): 2783–2786
CrossRef
Pubmed
Google scholar
|
[20] |
Invernici G, Emanueli C, Madeddu P, Cristini S, Gadau S, Benetti A, Ciusani E, Stassi G, Siragusa M, Nicosia R, Peschle C, Fascio U, Colombo A, Rizzuti T, Parati E, Alessandri G (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. Am J Pathol, 170(6): 1879–1892
CrossRef
Pubmed
Google scholar
|
[21] |
Kawabe J, Hasebe N (2014). Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. BioMed Res Int, 2014: 701571
CrossRef
Pubmed
Google scholar
|
[22] |
Kippin T E, Martens D J, van der Kooy D (2005). p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev, 19(6): 756–767
CrossRef
Pubmed
Google scholar
|
[23] |
Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob H G, Ergün S (2011). Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS ONE, 6(5): e20540
CrossRef
Pubmed
Google scholar
|
[24] |
Li L, Bhatia R (2011). Stem cell quiescence. Clin Cancer Res, 17(15): 4936–4941
CrossRef
Pubmed
Google scholar
|
[25] |
Liu C, Wang S, Metharom P, Caplice N M (2009). Myeloid lineage of human endothelial outgrowth cells circulating in blood and vasculogenic endothelial-like cells in the diseased vessel wall. J Vasc Res, 46(6): 581–591
CrossRef
Pubmed
Google scholar
|
[26] |
Liu Y, Elf S E, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee J M, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer S D (2009). p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell, 4(1): 37–48
CrossRef
Pubmed
Google scholar
|
[27] |
Majesky M W, Dong X R, Hoglund V, Mahoney W M Jr, Daum G (2011). The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol, 31(7): 1530–1539
CrossRef
Pubmed
Google scholar
|
[28] |
Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N (2012). Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J, 31(4): 842–855
CrossRef
Pubmed
Google scholar
|
[29] |
Orlandi A, Bennett M (2010). Progenitor cell-derived smooth muscle cells in vascular disease. Biochem Pharmacol, 79(12): 1706–1713
CrossRef
Pubmed
Google scholar
|
[30] |
Owens G K, Kumar M S, Wamhoff B R (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 84(3): 767–801
CrossRef
Pubmed
Google scholar
|
[31] |
Pasquinelli G, Pacilli A, Alviano F, Foroni L, Ricci F, Valente S, Orrico C, Lanzoni G, Buzzi M, Luigi Tazzari P, Pagliaro P, Stella A, Paolo Bagnara G (2010). Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy, 12(3): 275–287
CrossRef
Pubmed
Google scholar
|
[32] |
Pasquinelli G, Tazzari P L, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafè M, Orrico C, Bagnara G P, Stella A, Conte R (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25(7): 1627–1634
CrossRef
Pubmed
Google scholar
|
[33] |
Passman J N, Dong X R, Wu S P, Maguire C T, Hogan K A, Bautch V L, Majesky M W (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA, 105(27): 9349–9354
CrossRef
Pubmed
Google scholar
|
[34] |
Porter D C, Farmaki E, Altilia S, Schools G P, West D K, Chen M, Chang B D, Puzyrev A T, Lim C, Rokow-Kittell R, Friedhoff L T, Papavassiliou A G, Kalurupalle S, Hurteau G, Shi J, Baran P S, Gyorffy B, Wentland M P, Broude E V, Kiaris H, RRoninson I B (2012). Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci USA, 109(34): 13799–13804
|
[35] |
Psaltis P J, Harbuzariu A, Delacroix S, Holroyd E W, Simari R D (2011). Resident vascular progenitor cells—diverse origins, phenotype, and function. J Cardiovasc Transl Res, 4(2): 161–176
CrossRef
Pubmed
Google scholar
|
[36] |
Psaltis P J, Simari R D (2015). Vascular wall progenitor cells in health and disease. Circ Res, 116(8): 1392–1412
CrossRef
Pubmed
Google scholar
|
[37] |
Ross J J, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee E H, Reyes M, Keirstead S A, Weir E K, Tranquillo R T, Verfaillie C M (2006). Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest, 116(12): 3139–3149
CrossRef
Pubmed
Google scholar
|
[38] |
Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A (2006). Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol, 26(2): 281–286
CrossRef
Pubmed
Google scholar
|
[39] |
Song H, Wang H, Wu W, Qi L, Shao L, Wang F, Lai Y, Leach D, Mathis B, Janicki J S, Wang X L, Tang D, Cui T (2015). Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res, 362(1): 97–113
CrossRef
Pubmed
Google scholar
|
[40] |
Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu J S, Helms J A, Li S (2012). Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun, 3: 875
CrossRef
Pubmed
Google scholar
|
[41] |
Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A (2015). Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. J Exp Med, 212(4): 525–538
CrossRef
Pubmed
Google scholar
|
[42] |
Tom H, Cheung T A R (2012). Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol, 29(6): 997–1003
|
[43] |
Torsney E, Mandal K, Halliday A, Jahangiri M, Xu Q (2007). Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 191(2): 259–264
CrossRef
Pubmed
Google scholar
|
[44] |
Torsney E, Xu Q (2011). Resident vascular progenitor cells. J Mol Cell Cardiol, 50(2): 304–311
CrossRef
Pubmed
Google scholar
|
[45] |
Tsai T N, Kirton J P, Campagnolo P, Zhang L, Xiao Q, Zhang Z, Wang W, Hu Y, Xu Q (2012). Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. Am J Pathol, 181(1): 362–373
CrossRef
Pubmed
Google scholar
|
[46] |
Tsaousi A, Williams H, Lyon C A, Taylor V, Swain A, Johnson J L, George S J (2011). Wnt4/β-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res, 108(4): 427–436
CrossRef
Pubmed
Google scholar
|
[47] |
van Os R, de Haan G, Dykstra B J (2009). Hematopoietic stem cell quiescence: yet another role for p53. Cell Stem Cell, 4(1): 7–8
CrossRef
Pubmed
Google scholar
|
[48] |
Wabik A, Jones P H (2015). Switching roles: the functional plasticity of adult tissue stem cells. EMBO J, 34(9): 1164–1179
|
[49] |
Wang Y Z, Plane J M, Jiang P, Zhou C J, Deng W (2011). Concise review: Quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells, 29(6): 907–912
CrossRef
Pubmed
Google scholar
|
[50] |
Wong M M, Winkler B, Karamariti E, Wang X, Yu B, Simpson R, Chen T, Margariti A, Xu Q (2013). Sirolimus stimulates vascular stem/progenitor cell migration and differentiation into smooth muscle cells via epidermal growth factor receptor/extracellular signal-regulated kinase/β-catenin signaling pathway. Arterioscler Thromb Vasc Biol, 33(10): 2397–2406
CrossRef
Pubmed
Google scholar
|
[51] |
Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007). Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1(6): 685–697
CrossRef
Pubmed
Google scholar
|
[52] |
Zengin E, Chalajour F, Gehling U M, Ito W D, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8): 1543–1551
CrossRef
Pubmed
Google scholar
|
[53] |
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960): 836–841
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |