Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury

Xin Xin Yu , Vimala Bondada , Colin Rogers , Carolyn A. Meyer , Chen Guang Yu

Front. Biol. ›› 2015, Vol. 10 ›› Issue (5) : 427 -438.

PDF (1394KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (5) : 427 -438. DOI: 10.1007/s11515-015-1373-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury

Author information +
History +
PDF (1394KB)

Abstract

Neuronal damage, glial inflammation, and astrogliosis/astroglial scar formation are major secondary injury mechanisms that are significant contributors to functional deficits after spinal cord injury (SCI). The objectives of the study were to evaluate the distinct roles of ERK2 vs. ERK1/2 and ERK1/2-calpain 1−NF-κB signal transduction in the tissue damage and astrogliosis/astroglial scar formation following SCI in rats. RNAi approaches, pharmacological intervention (U0126), Western blot analysis, immunofluorescence analysis, and histological assessment were used to target ERK1/2-calpain 1-NF-κB signal transduction pathway for neuroprotection. Histological staining analysis demonstrated that selectively reducing pERK2 using ERK2 siRNA, but not inhibition of pERK1/2 with U0126, significantly reduced lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing in spinal cord two weeks after contusive SCI. An ERK1/2-calpain 1-NF-κB signal transduction pathway was involved in the astroglial scar formation after SCI. Blockade of ERK1/2 by U0126 decreased calpain 1 expression 4 h following SCI. Selective calpain 1 reduction by lentiviral shRNA attenuated astroglial NF-κB activity and astroglial scar formation after SCI in rats. Taken together, these results demonstrate the involvement of individual ERK2 and calpain 1 signaling pathways in tissue damage and astrogliosis/astroglial scar formation in animal models of SCI. Therefore, targeting individual ERK and its downstream signal transduction of calpain 1-NF-κB may provide greater potential as novel therapeutics for minimizing tissue damage and astroglial scar formation following SCI.

Keywords

calpain 1 / ERK1/2 / RNAi / neurodegeneration / astrogliosis / spinal cord injury

Cite this article

Download citation ▾
Xin Xin Yu, Vimala Bondada, Colin Rogers, Carolyn A. Meyer, Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. Front. Biol., 2015, 10(5): 427-438 DOI:10.1007/s11515-015-1373-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrawal ADillon SDenning T LPulendran B (2006). ERK1−/− mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis. J Immunol176(10): 5788–5796

[2]

Aigner A (2006). Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol124(1): 12–25

[3]

Borgens R BLiu-Snyder P (2012). Understanding secondary injury. Q Rev Biol87(2): 89–127

[4]

Brambilla RHurtado APersaud TEsham KPearse D DOudega MBethea J R (2009). Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem110(2): 765–778

[5]

Bramlett H MDietrich W D (2007). Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res161: 125–141

[6]

Cargnello MRoux P P (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev75(1): 50–83

[7]

Colak AKaya MKaraoğlan ASağmanligil AAkdemir OSahan ECelik O (2009). Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats. Neurocirugia (Astur)20(3): 245–254

[8]

Doshi SLynch D R (2009). Calpain and the glutamatergic synapse. Front Biosci (Schol Ed)1(1): 466–476

[9]

Drake C RAissaoui AArgyros OSerginson J MMonnery B DThanou MSteinke J HMiller A D (2010). Bioresponsive small molecule polyamines as noncytotoxic alternative to polyethylenimine. Mol Pharm7(6): 2040–2055

[10]

Geddes J WSaatman K E (2010). Targeting individual calpain isoforms for neuroprotection. Exp Neurol226(1): 6–7

[11]

Hetman MGozdz A (2004). Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem271(11): 2050–2055

[12]

Ishikawa TSuzuki HIshikawa KYasuda SMatsui TYamamoto MKakeda TYamamoto SOwada YYaksh T L (2014). Spinal cord ischemia/injury. Curr Pharm Des20(36): 5738–5743

[13]

Karimi-Abdolrezaee SBillakanti R (2012). Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol46(2): 251–264

[14]

Kim J YPark K JKim G HJeong E ALee D YLee S SKim D JRoh G SSong JKi S HKim W H (2013). In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β-cell dysfunction during the progression of type-2 diabetes. Cell Signal25(12): 2348–2361

[15]

Kuchay S MChishti A H (2007). Calpain-mediated regulation of platelet signaling pathways. Curr Opin Hematol14(3): 249–254

[16]

Kwon B KSekhon L HFehlings M G (2010). Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine35(21 Suppl): S263–S270

[17]

Li LWu YWang CZhang W (2012). Inhibition of PAX2 gene expression by siRNA (polyethylenimine) in experimental model of obstructive nephropathy. Ren Fail34(10): 1288–1296

[18]

Liu JLiu M CWang K K (2008). Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal1(14): re1

[19]

Liu LZhang RLiu KZhou HTang YSu JYu XYang XTang MDong Q (2009). Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res87(16): 3576–3590

[20]

Lu P YWoodle M C (2008). Delivering small interfering RNA for novel therapeutics. Methods Mol Biol437: 93–107

[21]

Luo  M  C Zhang  D  Q Ma  S  W Huang  Y  Y Shuster  S  J Porreca F Lai  J  (2005).  An  efficient  intrathecal  delivery  of  small interfering RNA to the spinal cord and peripheral neurons. Mol Pain1(1): 29

[22]

Nakazawa TShimura MRyu MNishida KPagès GPouysségur JEndo S (2008). ERK1 plays a critical protective role against N-methyl-D-aspartate-induced retinal injury. J Neurosci Res86(1): 136–144

[23]

Rabchevsky A GFugaccia ISullivan P GBlades D AScheff S W (2002). Efficacy of methylprednisolone therapy for the injured rat spinal cord. J Neurosci Res68(1): 7–18

[24]

Ray S KHogan E LBanik N L (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev42(2): 169–185

[25]

Saatman K ECreed JRaghupathi R (2010). Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics7(1): 31–42

[26]

Schumacher P ASiman R GFehlings M G (2000). Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem74(4): 1646–1655

[27]

Springer J EAzbill R DKennedy S EGeorge JGeddes J W (1997). Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem69(4): 1592–1600

[28]

Sribnick E ASamantaray SDas ASmith JMatzelle D DRay S KBanik N L (2010). Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res88(8): 1738–1750

[29]

Tian D SYu Z YXie M JBu B TWitte O WWang W (2006). Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res84(5): 1053–1063

[30]

Wall E AZavzavadjian J RChang M SRandhawa BZhu XHsueh R CLiu JDriver ABao X RSternweis P CSimon M IFraser I D (2009). Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal2(75): ra28

[31]

Wittrup ALieberman J (2015). Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet16(9): 543–552

[32]

Wu JPajoohesh-Ganji AStoica B ADinizo MGuanciale KFaden A I (2012). Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. J Neuroinflammation9(1): 169

[33]

Yiu GHe Z (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci7(8): 617–627

[34]

Yu C G (2012). Distinct roles for ERK1 and ERK2 in pathophysiology of CNS. Front Biol7 (3): 267–276

[35]

Yu C GGeddes J W (2007). Sustained calpain inhibition improves locomotor function and tissue sparing following contusive spinal cord injury. Neurochem Res32(12): 2046–2053

[36]

Yu C GLi YRaza KYu X XGhoshal SGeddes J W (2013). Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. J Neurotrauma30(6): 427–433

[37]

Yu C GSingh RCrowdus CRaza KKincer JGeddes J W (2014). Fenbendazole improves pathological and functional recovery following  traumatic  spinal  cord  injury.  Neuroscience 256: 163–169

[38]

Yu C GYezierski R P (2005). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res138(2): 244–255

[39]

Yu C GYezierski R PJoshi ARaza KLi YGeddes J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem113(1): 131–142

[40]

Yuan Y MHe C (2013). The glial scar in spinal cord injury and repair. Neurosci Bull29(4): 421–435

[41]

Zhang S XUnderwood MLandfield AHuang F FGison SGeddes J W (2000). Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol59(4): 287–296

[42]

Zhao PWaxman S GHains B C (2007). Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci27(9): 2357–2368

[43]

Zhuang SSchnellmann R G (2006). A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther319(3): 991–997

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1394KB)

1359

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/