Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury

Xin Xin Yu, Vimala Bondada, Colin Rogers, Carolyn A. Meyer, Chen Guang Yu

PDF(1394 KB)
PDF(1394 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (5) : 427-438. DOI: 10.1007/s11515-015-1373-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury

Author information +
History +

Abstract

Neuronal damage, glial inflammation, and astrogliosis/astroglial scar formation are major secondary injury mechanisms that are significant contributors to functional deficits after spinal cord injury (SCI). The objectives of the study were to evaluate the distinct roles of ERK2 vs. ERK1/2 and ERK1/2-calpain 1−NF-κB signal transduction in the tissue damage and astrogliosis/astroglial scar formation following SCI in rats. RNAi approaches, pharmacological intervention (U0126), Western blot analysis, immunofluorescence analysis, and histological assessment were used to target ERK1/2-calpain 1-NF-κB signal transduction pathway for neuroprotection. Histological staining analysis demonstrated that selectively reducing pERK2 using ERK2 siRNA, but not inhibition of pERK1/2 with U0126, significantly reduced lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing in spinal cord two weeks after contusive SCI. An ERK1/2-calpain 1-NF-κB signal transduction pathway was involved in the astroglial scar formation after SCI. Blockade of ERK1/2 by U0126 decreased calpain 1 expression 4 h following SCI. Selective calpain 1 reduction by lentiviral shRNA attenuated astroglial NF-κB activity and astroglial scar formation after SCI in rats. Taken together, these results demonstrate the involvement of individual ERK2 and calpain 1 signaling pathways in tissue damage and astrogliosis/astroglial scar formation in animal models of SCI. Therefore, targeting individual ERK and its downstream signal transduction of calpain 1-NF-κB may provide greater potential as novel therapeutics for minimizing tissue damage and astroglial scar formation following SCI.

Keywords

calpain 1 / ERK1/2 / RNAi / neurodegeneration / astrogliosis / spinal cord injury

Cite this article

Download citation ▾
Xin Xin Yu, Vimala Bondada, Colin Rogers, Carolyn A. Meyer, Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. Front. Biol., 2015, 10(5): 427‒438 https://doi.org/10.1007/s11515-015-1373-z

References

[1]
Agrawal A, Dillon S, Denning T L, Pulendran B (2006). ERK1−/− mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis. J Immunol, 176(10): 5788–5796
CrossRef Pubmed Google scholar
[2]
Aigner A (2006). Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol, 124(1): 12–25
CrossRef Pubmed Google scholar
[3]
Borgens R B, Liu-Snyder P (2012). Understanding secondary injury. Q Rev Biol, 87(2): 89–127
CrossRef Pubmed Google scholar
[4]
Brambilla R, Hurtado A, Persaud T, Esham K, Pearse D D, Oudega M, Bethea J R (2009). Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem, 110(2): 765–778
CrossRef Pubmed Google scholar
[5]
Bramlett H M, Dietrich W D (2007). Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res, 161: 125–141
CrossRef Pubmed Google scholar
[6]
Cargnello M, Roux P P (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev, 75(1): 50–83
CrossRef Pubmed Google scholar
[7]
Colak A, Kaya M, Karaoğlan A, Sağmanligil A, Akdemir O, Sahan E, Celik O (2009). Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats. Neurocirugia (Astur), 20(3): 245–254
CrossRef Pubmed Google scholar
[8]
Doshi S, Lynch D R (2009). Calpain and the glutamatergic synapse. Front Biosci (Schol Ed), 1(1): 466–476
CrossRef Pubmed Google scholar
[9]
Drake C R, Aissaoui A, Argyros O, Serginson J M, Monnery B D, Thanou M, Steinke J H, Miller A D (2010). Bioresponsive small molecule polyamines as noncytotoxic alternative to polyethylenimine. Mol Pharm, 7(6): 2040–2055
CrossRef Pubmed Google scholar
[10]
Geddes J W, Saatman K E (2010). Targeting individual calpain isoforms for neuroprotection. Exp Neurol, 226(1): 6–7
CrossRef Pubmed Google scholar
[11]
Hetman M, Gozdz A (2004). Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem, 271(11): 2050–2055
CrossRef Pubmed Google scholar
[12]
Ishikawa T, Suzuki H, Ishikawa K, Yasuda S, Matsui T, Yamamoto M, Kakeda T, Yamamoto S, Owada Y, Yaksh T L (2014). Spinal cord ischemia/injury. Curr Pharm Des, 20(36): 5738–5743
CrossRef Pubmed Google scholar
[13]
Karimi-Abdolrezaee S, Billakanti R (2012). Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol, 46(2): 251–264
CrossRef Pubmed Google scholar
[14]
Kim J Y, Park K J, Kim G H, Jeong E A, Lee D Y, Lee S S, Kim D J, Roh G S, Song J, Ki S H, Kim W H (2013). In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β-cell dysfunction during the progression of type-2 diabetes. Cell Signal, 25(12): 2348–2361
CrossRef Pubmed Google scholar
[15]
Kuchay S M, Chishti A H (2007). Calpain-mediated regulation of platelet signaling pathways. Curr Opin Hematol, 14(3): 249–254
CrossRef Pubmed Google scholar
[16]
Kwon B K, Sekhon L H, Fehlings M G (2010). Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine, 35(21 Suppl): S263–S270
CrossRef Pubmed Google scholar
[17]
Li L, Wu Y, Wang C, Zhang W (2012). Inhibition of PAX2 gene expression by siRNA (polyethylenimine) in experimental model of obstructive nephropathy. Ren Fail, 34(10): 1288–1296
CrossRef Pubmed Google scholar
[18]
Liu J, Liu M C, Wang K K (2008). Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal, 1(14): re1
CrossRef Pubmed Google scholar
[19]
Liu L, Zhang R, Liu K, Zhou H, Tang Y, Su J, Yu X, Yang X, Tang M, Dong Q (2009). Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res, 87(16): 3576–3590
CrossRef Pubmed Google scholar
[20]
Lu P Y, Woodle M C (2008). Delivering small interfering RNA for novel therapeutics. Methods Mol Biol, 437: 93–107
CrossRef Pubmed Google scholar
[21]
Luo  M  C,  Zhang  D  Q,  Ma  S  W,  Huang  Y  Y,  Shuster  S  J,  Porreca F,  Lai  J  (2005).  An  efficient  intrathecal  delivery  of  small interfering RNA to the spinal cord and peripheral neurons. Mol Pain, 1(1): 29
CrossRef Pubmed Google scholar
[22]
Nakazawa T, Shimura M, Ryu M, Nishida K, Pagès G, Pouysségur J, Endo S (2008). ERK1 plays a critical protective role against N-methyl-D-aspartate-induced retinal injury. J Neurosci Res, 86(1): 136–144
CrossRef Pubmed Google scholar
[23]
Rabchevsky A G, Fugaccia I, Sullivan P G, Blades D A, Scheff S W (2002). Efficacy of methylprednisolone therapy for the injured rat spinal cord. J Neurosci Res, 68(1): 7–18
CrossRef Pubmed Google scholar
[24]
Ray S K, Hogan E L, Banik N L (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev, 42(2): 169–185
CrossRef Pubmed Google scholar
[25]
Saatman K E, Creed J, Raghupathi R (2010). Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 7(1): 31–42
CrossRef Pubmed Google scholar
[26]
Schumacher P A, Siman R G, Fehlings M G (2000). Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem, 74(4): 1646–1655
CrossRef Pubmed Google scholar
[27]
Springer J E, Azbill R D, Kennedy S E, George J, Geddes J W (1997). Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem, 69(4): 1592–1600
CrossRef Pubmed Google scholar
[28]
Sribnick E A, Samantaray S, Das A, Smith J, Matzelle D D, Ray S K, Banik N L (2010). Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res, 88(8): 1738–1750
Pubmed
[29]
Tian D S, Yu Z Y, Xie M J, Bu B T, Witte O W, Wang W (2006). Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res, 84(5): 1053–1063
CrossRef Pubmed Google scholar
[30]
Wall E A, Zavzavadjian J R, Chang M S, Randhawa B, Zhu X, Hsueh R C, Liu J, Driver A, Bao X R, Sternweis P C, Simon M I, Fraser I D (2009). Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal, 2(75): ra28
CrossRef Pubmed Google scholar
[31]
Wittrup A, Lieberman J (2015). Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet, 16(9): 543–552
CrossRef Pubmed Google scholar
[32]
Wu J, Pajoohesh-Ganji A, Stoica B A, Dinizo M, Guanciale K, Faden A I (2012). Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. J Neuroinflammation, 9(1): 169
CrossRef Pubmed Google scholar
[33]
Yiu G, He Z (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci, 7(8): 617–627
CrossRef Pubmed Google scholar
[34]
Yu C G (2012). Distinct roles for ERK1 and ERK2 in pathophysiology of CNS. Front Biol, 7 (3): 267–276
[35]
Yu C G, Geddes J W (2007). Sustained calpain inhibition improves locomotor function and tissue sparing following contusive spinal cord injury. Neurochem Res, 32(12): 2046–2053
CrossRef Pubmed Google scholar
[36]
Yu C G, Li Y, Raza K, Yu X X, Ghoshal S, Geddes J W (2013). Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. J Neurotrauma, 30(6): 427–433
CrossRef Pubmed Google scholar
[37]
Yu C G, Singh R, Crowdus C, Raza K, Kincer J, Geddes J W (2014). Fenbendazole improves pathological and functional recovery following  traumatic  spinal  cord  injury.  Neuroscience,  256: 163–169
CrossRef Pubmed Google scholar
[38]
Yu C G, Yezierski R P (2005). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res, 138(2): 244–255
CrossRef Pubmed Google scholar
[39]
Yu C G, Yezierski R P, Joshi A, Raza K, Li Y, Geddes J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem, 113(1): 131–142
CrossRef Pubmed Google scholar
[40]
Yuan Y M, He C (2013). The glial scar in spinal cord injury and repair. Neurosci Bull, 29(4): 421–435
CrossRef Pubmed Google scholar
[41]
Zhang S X, Underwood M, Landfield A, Huang F F, Gison S, Geddes J W (2000). Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol, 59(4): 287–296
Pubmed
[42]
Zhao P, Waxman S G, Hains B C (2007). Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci, 27(9): 2357–2368
CrossRef Pubmed Google scholar
[43]
Zhuang S, Schnellmann R G (2006). A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther, 319(3): 991–997
CrossRef Pubmed Google scholar

Acknowledgements

This research was support by grants from KSCHIRT #7-6A and 11-19A, and NIH p30 NS051220 and NIH CTSA UL1TR000117. We thank Dr. James Geddes for reviewing the paper and his kind comments. We also thank Linda Simmerman for expert assistance with microscopy and imaging.
All authors (Xin Xin Yu, Vimala Bondada, Colin Rogers, Carolyn A. Meyer, and Chen Guang Yu) declare that they have no conflict of interest.
‚‚The article does not contain any studies with human subjects performed by any of the authors.
‚‚All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1394 KB)

Accesses

Citations

Detail

Sections
Recommended

/