The complete mitogenome of Lamproptera curia (Lepidoptera: Papilionidae) and phylogenetic analyses of Lepidoptera
Xin-Min Qin, Qing-Xin Guan, Hui-Min Li, Yu Zhang, Yu-Ji Liu, Dan-Ni Guo
The complete mitogenome of Lamproptera curia (Lepidoptera: Papilionidae) and phylogenetic analyses of Lepidoptera
The complete mitochondrial genome sequence of Lamproptera curia was determined in the present study. Our findings showed that the mtDNA of L. curia had a typical organization of insect mitochrondrial DNA − being 15277 base pairs in length, it contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region(CR). The newly determined sequence was used for phylogenetic analyses, together with those of 45 species of Lepidoptera published elsewhere, including sequences of three species of Diptera as outgroups. The phylogenetic trees were constructed using the concatenated amino acid and nucleotide sequences of the 13 protein-coding genes (PCGs) based on the maximum likelihood (ML) and Bayesian inference (BI) methods. Both BI and ML trees revealed a similar topology structure: (((((Bombycoidea+ Geometroidea) + Noctuoide) + Pyraloidea) + (Papilionoidea+ Hesperioidea)) + Tortricoidea). Furthermore, the phylogenetic analyses demonstrated that each of the 16 families belonged to a monophyletic group respectively. The results of molecular phylogeny from the present study were congruent with traditional classification based on morphology but failed to demonstrate the monophyly of Hesperiidae.
Lamproptera curia / phylogeny / mitochondrial genome
[1] |
Abascal F, Posada D, Zardoya R (2007). MtArt: a new model of amino acid replacement for arthropoda. Mol Biol Evol, 1: 1–5
|
[2] |
Ackery P R, De Jong R, Vane-Wright R I (1999). The butterflies: Hedyloidea, Hesperoidea, and Papilionoidea. In: Kristensen NP (Ed.), The butterflies: Hedyloidea, Hesperoidea, and Pilionoidea. De Gruyter, Berlin, 263–300
|
[3] |
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 3(3): 403–410
CrossRef
Google scholar
|
[4] |
Anderson S, Bankier A T, Barrell B G, de Bruijn M H, Coulson A R, Drouin J, Eperon I C, Nierlich D P, Roe B A, Sanger F, Schreier P H, Smith A J, Staden R, Young I G (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806): 457–465
CrossRef
Google scholar
|
[5] |
Bae J S, Kim I, Sohn H D, Jin B R (2004). The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol, 3(3): 978–985
CrossRef
Google scholar
|
[6] |
Boore J L (1999). Animal mitochondrial genomes. Nucleic Acids Res, 8(8): 1767–1780
CrossRef
Google scholar
|
[7] |
Clary D O, Wolstenholme D R (1985). The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol, 22(3): 252–271
CrossRef
Google scholar
|
[8] |
Clayton D A (1992). Transcription and replication of animal mitochondrial DNA. Int Rev Cytol, 141: 217–232
CrossRef
Google scholar
|
[9] |
Feng X, Liu D F, Wang N X, Zhu C D, Jiang G F (2010). The mitochondrial genome of the butterfly Papilio xuthus (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mol Biol Rep, 8(8): 3877–3888
CrossRef
Google scholar
|
[10] |
Flook P K, Rowell C H F, Grellissen G (1995). The sequence organisation, and evolution of the Louocsta migratoria mitochondrial genome. J Mol Evol, 6: 928–941
|
[11] |
Guindon S, Lethiec F, Duroux P, Gascuel O (2005). PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res, 33(Web Server): W557–W559
CrossRef
Google scholar
|
[12] |
Harvey D J (1991). Higher classification of the Nymphalidae [A], Appendix B. In: Nijhout HF. Higher classification of the Nymphalidae. Washington DC: Smithsonian Institution Press, pp 200–273
|
[13] |
Hong M Y, Lee E M, Jo Y H, Park H C, Kim S R, Hwang J S, Jin B R, Kang P D, Kim K G, Han Y S, Kim I (2008). Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene, 413(1−2): 49–57
CrossRef
Google scholar
|
[14] |
Horak M (1999). The Tortricoidea. In: Kristensen N P. Lepidoptera: Motha and Butterflies. 1. Evolution,Systematics, and Biogegraphy. Handbook of Zoology Vo1.IV, Part 35: 199–215
|
[15] |
Hu J, Zhang D X, Hao J S, Huang D Y, Cameron S, Zhu C D (2010). The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini):sequence, gene organization and a unique tRNA translocation event. Mol Biol Rep, 7(7): 3431–3438
CrossRef
Google scholar
|
[16] |
Jiang S T, Hong G Y, Yu M, Li N, Yang Y, Liu Y Q, Wei Z J (2009). Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera:Saturniidae). Int J Biol Sci, 4: 351–365
CrossRef
Google scholar
|
[17] |
Kawahara A Y, Mignault A A, Regier J C, Kitching I J, Mitter C (2009). Phylogeny and Biogeography of Hawk moths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes. PLoS ONE, 5: 1–11
|
[18] |
Kim M I, Beak J Y, Kim M J (2009). Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol Cell, 4(4): 347–363
CrossRef
Google scholar
|
[19] |
Kim M J, Kang A R, Jeong H C, Kim K G, Kim I (2011). Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phy Evol, 2(2): 436–445
CrossRef
Google scholar
|
[20] |
Kim M J, Wan X L, Kim K G, Hwang J S, Kim I (2010). Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). Afr J Biotechnol, 5: 735–754
|
[21] |
Kristensen N P (1976). Remarks on the family-level phylogeny of butterflies (Insecta Lepidoptera, Rhopalocera). Zeit Zool Syst Evol Forsch, 14(1): 25–33
CrossRef
Google scholar
|
[22] |
Kristensen N P (1999). 11 Evolution, Systematics, and Biogeography, Vol IV. In: Kristensen NP. Lepidoptera: Moths and Butterflies. Berlin and New York: DeGruyter, pp: 491.
|
[23] |
Kristensen N P, Skalski A W (1999). Phylogeny and palaeontology. In: Kristensen N P (Ed.), Handbuch der Zoologie, vol. IV, Arthropoda: Insecta, Part 35, Lepidoptera, Moths and Butterflies, vol. 1: Evolution, Systematics, and Biogeography. Walter de Gruyter, Berlin & New York, pp. 7–25
|
[24] |
Lavrov D V, Brown W M, Boore J L (2000). A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA, 25(25): 13738–13742
CrossRef
Google scholar
|
[25] |
Lee E S, Shin K S, Kim M S, Park H, Cho S, Kim C B (2006). The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidse). Gene, 373: 52–57
CrossRef
Google scholar
|
[26] |
Liao F, Wang L, Wu S, Li Y P, Zhao L, Huang G M, Niu C J, Liu Y Q, Li M G (2010). The mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Int J Biol Sci, 2: 172–186
CrossRef
Google scholar
|
[27] |
Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z (2008). The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Acta Biochim Biophys Sin (Shanghai), 8(8): 693–703
CrossRef
Google scholar
|
[28] |
Lowe T M, Eddy S R (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 5(5): 955–964
CrossRef
Google scholar
|
[29] |
Minet J (1991). Tentative Reconstruction of the ditrysian phylogeny (Lepidiptera, Gloassata). Entomol Scand, 1(1): 69–95
CrossRef
Google scholar
|
[30] |
Munroe E, Solis M A (1999). The Pyraloidea. In: Kristensen NP. Lepidoptera: Moths and Butterflies. I. Evolution, Systematics, and Biogeography. Handbook of Zoology, 35: 233–256(Vol IV. In: Kristensen NP. Lepidoptera: Moths and Butterflies. Berlin and New York: DeGruyter, pp: 233–256
|
[31] |
Mutanen M, Wahlerg N, Kaila L (2010). Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc Biol Sci, 277(1695): 2839–2848
CrossRef
Google scholar
|
[32] |
Nielsen E S (1989) Phylogeny of major lepidopteran groups. In: (eds) The Hierarchy of Life. Amsterdam, Elsevier. pp. 281–294
|
[33] |
Ojala D, Montoya J, Attardi G (1981). tRNA punctuation model of RNA proeessing in Human mitochondria. Nature, 290(5806): 470–474
CrossRef
Google scholar
|
[34] |
Razowski J (1976). Phylogeny and system of Tortricidae (Lepidoptera). Acta zool Cracov, 5: 73–120
|
[35] |
Regier J C, Cook C, Mitter C, Hussey A (2008). A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Syst Entomol, 33(1): 175–189
CrossRef
Google scholar
|
[36] |
Regier J C, Zwick A, Cummings M P, Kawahara A, Cho S, Weller S, Roe A, Baixeras J, Brown J W, Parr C, Davis D R, Epstein M, Hallwachs W, Hausmann A, Janzen D H, Kitching I J, Solis M A, Yen S H, Bazinet A L, Mitter C (2009). Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol Biol, 9(1): 280
CrossRef
Google scholar
|
[37] |
Ronquist F, Huelsenbeck J P (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 12(12): 1572–1574
CrossRef
Google scholar
|
[38] |
Simon C, Frati F, Bekenbach A (1994). Evolution, weighting, and phylogenetic utility of mitochondrialgene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am, 6(6): 651–701
CrossRef
Google scholar
|
[39] |
Singh V K, Mangalam A K, Dwivedi S, Naik S (1998). Primer premier:Program for design of degenerate primers from a protein sequence. Biotechniques, 2: 318–319
|
[40] |
Smart P (1989). The illustrated encyclopedia of the butterfly world (New York, USA: Chartwell Books
|
[41] |
Thao M L, Baumann L, Baumann P(2004). Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol, 4: 25–37
|
[42] |
Wahlberg N, Braby M F, Brower A V Z, de Jong R, Lee M M, Nylin S, Pierce N E, Sperling F A H, Vila R, Warren A D, Zakharov E (2005). Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc Biol Sci, 272(1572): 1577–1586
CrossRef
Google scholar
|
[43] |
Weller S J, Pashely D P (1995). In search of butterfly origins. Mol Phylogenet Evol, 3(3): 235–246
CrossRef
Google scholar
|
[44] |
Wolstenholme D R (1992). Animal mitochondrial DNA: structure and evolution. Int Rev Cytol, 141: 173–216
CrossRef
Google scholar
|
[45] |
Xia X, Xie Z (2001). DAMBE: Data analysis in molecular biology and evolution. J Hered, 4(4): 371–373
CrossRef
Google scholar
|
[46] |
Yang Z, Rannala B (1997). Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. Mol Biol Evol, 7(7): 717–724
CrossRef
Google scholar
|
[47] |
Yin W Y, Song D X, Yang X K (2008). Study on phylogeny of the Hexapoda (Insect). Beijing, Science Press, pp:193–194
|
[48] |
Zhou Z J, Huang Y, Shi F M (2007). The mitochondrial genome of the Ruspolia dubia (Orthoptera: Conocephalidae): a short A+T-rich region with 70 bp in length Genome. Genome, 50(9): 855–866
CrossRef
Google scholar
|
/
〈 | 〉 |