New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease
The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson’s disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.
cognition / D1DR / dopamine D1 receptor / dyskinesia
1 | Ariano M A, Sibley D R (1994). Dopamine receptor distribution in the rat CNS: elucidation using anti-peptide antisera directed against D1A and D3 subtypes. Brain Res, 649(1–2): 95–110 |
2 | Arnsten A F, Cai J X, Murphy B L, Goldman-Rakic P S (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl), 116(2): 143–151 |
3 | Aubert I, Guigoni C, H?kansson K, Li Q, Dovero S, Barthe N, Bioulac B H, Gross C E, Fisone G, Bloch B, Bezard E (2005). Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol, 57(1): 17–26 |
4 | Bartus R T, Baumann T L, Siffert J, Herzog C D, Alterman R, Boulis N, Turner D A, Stacy M, Lang A E, Lozano A M, Olanow C W (2013). Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology, 80(18): 1698–1701 |
5 | Bergson C, Mrzljak L, Smiley J F, Pappy M, Levenson R, Goldman-Rakic P S (1995). Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci, 15(12): 7821–7836 |
6 | Berthet A, Porras G, Doudnikoff E, Stark H, Cador M, Bezard E, Bloch B (2009). Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci, 29(15): 4829–4835 |
7 | Blanchet P J, Konitsiotis S, Chase T N (1998). Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord, 13(5): 798–802 |
8 | Boyden E S, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8(9): 1263–1268 |
9 | Calabresi P, Di Filippo M, Ghiglieri V, Picconi B (2008). Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord, 23(Suppl 3): S570–S579 |
10 | Carter M E, de Lecea L (2011). Optogenetic investigation of neural circuits in vivo. Trends Mol Med, 17(4): 197–206 |
11 | Castner S A, Goldman-Rakic P S (2004). Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci, 24(6): 1446–1450 |
12 | Castner S A, Williams G V, Goldman-Rakic P S (2000). Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science, 287(5460): 2020–2022 |
13 | Cavanagh J F, Frank M J (2014). Frontal theta as a mechanism for cognitive control. Trends Cogn Sci, 18(8): 414–421 |
14 | Charifson P S, Bowen J P, Wyrick S D, Hoffman A J, Cory M, McPhail A T, Mailman R B (1989). Conformational analysis and molecular modeling of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as D1 dopamine receptor ligands. J Med Chem, 32(9): 2050–2058 |
15 | Cools R, Barker R A, Sahakian B J, Robbins T W (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex, 11(12): 1136–1143 |
16 | Cools R, D’Esposito M (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry, 69(12): e113–e125 |
17 | Cools R, Stefanova E, Barker R A, Robbins T W, Owen A M (2002). Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain, 125(Pt 3): 584–594 |
18 | Costa A, Peppe A, Dell’Agnello G, Caltagirone C, Carlesimo G A (2009). Dopamine and cognitive functioning in de novo subjects with Parkinson’s disease: effects of pramipexole and pergolide on working memory. Neuropsychologia, 47(5): 1374–1381 |
19 | Creese I, Burt D R, Snyder S H (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238): 481–483 3854 |
20 | Cui G, Jun S B, Jin X, Pham M D, Vogel S S, Lovinger D M, Costa R M (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436): 238–242 |
21 | Darmopil S, Martín A B, De Diego I R, Ares S, Moratalla R (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry, 66(6): 603–613 |
22 | Farrell M S, Pei Y, Wan Y, Yadav P N, Daigle T L, Urban D J, Lee H M, Sciaky N, Simmons A, Nonneman R J, Huang X P, Hufeisen S J, Guettier J M, Moy S S, Wess J, Caron M G, Calakos N, Roth B L (2013). A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology, 38(5): 854–862 |
23 | Fawzi A B, Macdonald D, Benbow L L, Smith-Torhan A, Zhang H, Weig B C, Ho G, Tulshian D, Linder M E, Graziano M P (2001). SCH-202676: An allosteric modulator of both agonist and antagonist binding to G protein-coupled receptors. Mol Pharmacol, 59(1): 30–37 |
24 | Feenstra M G, Teske G, Botterblom M H, De Bruin J P (1999). Dopamine and noradrenaline release in the prefrontal cortex of rats during classical aversive and appetitive conditioning to a contextual stimulus: interference by novelty effects. Neurosci Lett, 272(3): 179–182 |
25 | Feenstra M G, Vogel M, Botterblom M H, Joosten R N, de Bruin J P (2001). Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci, 13(5): 1051–1054 |
26 | Fienberg A A, Hiroi N, Mermelstein P G, Song W, Snyder G L, Nishi A, Cheramy A, O’Callaghan J P, Miller D B, Cole D G, Corbett R, Haile C N, Cooper D C, Onn S P, Grace A A, Ouimet C C, White F J, Hyman S E, Surmeier D J, Girault J, Nestler E J, Greengard P (1998). DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science, 281(5378): 838–842 |
27 | Flores-Hernández J, Cepeda C, Hernández-Echeagaray E, Calvert C R, Jokel E S, Fienberg A A, Greengard P, Levine M S (2002). Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol, 88(6): 3010–3020 |
28 | Frederick A L, Yano H, Trifilieff P, Vishwasrao H D, Biezonski D, Mészáros J, Urizar E, Sibley D R, Kellendonk C, Sonntag K C, Graham D L, Colbran R J, Stanwood G D, Javitch J A (2015). Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry, doi: 10.1038/mp.2014.166 |
29 | Friedman J H, Lannon M C (1989). Clozapine in the treatment of psychosis in Parkinson’s disease. Neurology, 39(9): 1219–1221 |
30 | Fuster J (2008) The Prefrontal Cortex, 4th Edition. Academic Press, New York, NY |
31 | Gangarossa G, Longueville S, De Bundel D, Perroy J, Hervé D, Girault J A, Valjent E (2012). Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus, 22(12): 2199–2207 |
32 | Gerfen C R, Miyachi S, Paletzki R, Brown P (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci, 22(12): 5042–5054 |
33 | Goldman-Rakic P S (1998). The cortical dopamine system: role in memory and cognition. Adv Pharmacol, 42: 707–711 |
34 | Goldman-Rakic P S, Castner S A, Svensson T H, Siever L J, Williams G V (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl), 174(1): 3–16 |
35 | Goldman-Rakic P S, Muly E C 3rd, Williams G V (2000). D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev, 31(2–3): 295–301 |
36 | Grace A A, Floresco S B, Goto Y, Lodge D J (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci, 30(5): 220–227 |
37 | Green M F, Harvey P D (2014). Cognition in schizophrenia: Past, present, and future. Schizophr Res Cogn, 1(1): e1–e9 |
38 | Guttman M, Seeman P (1985). L-dopa reverses the elevated density of D2 dopamine receptors in Parkinson’s diseased striatum. J Neural Transm, 64(2): 93–103 |
39 | Ha C M, Park D, Han J K, Jang J I, Park J Y, Hwang E M, Seok H, Chang S (2012). Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem, 287(38): 31813–31822 |
40 | Hagger C, Buckley P, Kenny J T, Friedman L, Ubogy D, Meltzer H Y (1993). Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry, 34(10): 702–712 |
41 | Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology, 11(4): 245–256 |
42 | Hanrieder J, Ljungdahl A, F?lth M, Mammo SE, Bergquist J, Andersson M (2011) L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics MCP 10:M111.009308 |
43 | Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier D J (2000). D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci, 20(24): 8987–8995 |
44 | Hoare S R, Coldwell M C, Armstrong D, Strange P G (2000). Regulation of human D(1), d(2(long)), d(2(short)), D(3) and D(4) dopamine receptors by amiloride and amiloride analogues. Br J Pharmacol, 130(5): 1045–1059 |
45 | Hoffman B, Cho S J, Zheng W, Wyrick S, Nichols D E, Mailman R B, Tropsha A (1999). Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. J Med Chem, 42(17): 3217–3226 |
46 | Jenner P (2008). Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci, 9(9): 665–677 |
47 | Karlsson P, Smith L, Farde L, H?rnryd C, Sedvall G, Wiesel F A (1995). Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl), 121(3): 309–316 |
48 | K?tzel D, Nicholson E, Schorge S, Walker M C, Kullmann D M (2014). Chemical-genetic attenuation of focal neocortical seizures. Nat Commun, 5: 3847 |
49 | Kemppainen N, Ruottinen H, Nagren K, Rinne J O (2000). PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology, 55(2): 205–209 |
50 | Khor S P, Hsu A (2007). The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol, 2(3): 234–243 |
51 | Klein C, Gordon J, Pollak L, Rabey J M (2003). Clozapine in Parkinson’s disease psychosis: 5-year follow-up review. Clin Neuropharmacol, 26(1): 8–11 |
52 | Kravitz A V, Freeze B S, Parker P R L, Kay K, Thwin M T, Deisseroth K, Kreitzer A C (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622–626 |
53 | LaHoste G J, Henry B L, Marshall J F (2000). Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J Neurosci, 20(17): 6666–6671 |
54 | Land B B, Narayanan N S, Liu R J, Gianessi C A, Brayton C E, Grimaldi D M, Sarhan M, Guarnieri D J, Deisseroth K, Aghajanian G K, DiLeone R J (2014). Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci, 17(2): 248–253 |
55 | Lapish C C, Kroener S, Durstewitz D, Lavin A, Seamans J K (2007). The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology (Berl), 191(3): 609–625 |
56 | Lee S P, Xie Z, Varghese G, Nguyen T, O’Dowd B F, George S R (2000). Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology, 23(4 Suppl): S32–S40 |
57 | Lemberger T, Parlato R, Dassesse D, Westphal M, Casanova E, Turiault M, Tronche F, Schiffmann S N, Schütz G (2007). Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci, 8(1): 4 |
58 | LeWitt P A, Rezai A R, Leehey M A, Ojemann S G, Flaherty A W, Eskandar E N, Kostyk S K, Thomas K, Sarkar A, Siddiqui M S, Tatter S B, Schwalb J M, Poston K L, Henderson J M, Kurlan R M, Richard I H, Van Meter L, Sapan C V, During M J, Kaplitt M G, Feigin A (2011). AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol, 10(4): 309–319 |
59 | Lidow M S, Goldman-Rakic P S, Gallager D W, Rakic P (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience, 40(3): 657–671 |
60 | Mailman R B, Murthy V (2010). Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des, 16(5): 488–501 |
61 | Mattila P M, R?ytt? M, L?nnberg P, Marjam?ki P, Helenius H, Rinne J O (2001). Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol, 102(2): 160–166 |
62 | Narayanan N S, Guarnieri D J, DiLeone R J (2010). Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol, 31(1): 104–112 |
63 | Narayanan N S, Land B B, Solder J E, Deisseroth K, DiLeone R J (2012). Prefrontal D1 dopamine signaling is required for temporal control. Proc Natl Acad Sci USA, 109(50): 20726–20731 |
64 | Narayanan N S, Rodnitzky R L, Uc E Y (2013). Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci, 24(3): 267–278 |
65 | Neumeyer J L, Kula N S, Bergman J, Baldessarini R J (2003). Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. Eur J Pharmacol, 474(2–3): 137–140 |
66 | Parker K L, Alberico S L, Miller A D, Narayanan N S (2013a). Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance. Neuroscience, 255: 246–254 |
67 | Parker K L, Chen K H, Kingyon J R, Cavanagh J F, Narayanan N S (2014). D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. J Neurosci, 34(50): 16774–16783 |
68 | Parker K L, Lamichhane D, Caetano M S, Narayanan N S (2013b). Executive dysfunction in Parkinson’s disease and timing deficits. Front Integr Neurosci, 7: 75 |
69 | Perreault M L, Hasbi A, O’Dowd B F, George S R (2011). The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat, 5: 31 |
70 | Phillips A G, Ahn S, Floresco S B (2004). Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci, 24(2): 547–553 |
71 | Pifl C, Nanoff C, Schingnitz G, Schütz W, Hornykiewicz O (1992). Sensitization of dopamine-stimulated adenylyl cyclase in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys and patients with idiopathic Parkinson’s disease. J Neurochem, 58(6): 1997–2004 |
72 | Pisani A, Shen J (2009). Levodopa-induced dyskinesia and striatal signaling pathways. Proc Natl Acad Sci USA, 106(9): 2973–2974 |
73 | Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996). Reduced striatal dopamine receptors in Alzheimer’s disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology, 47(4): 1065–1068 |
74 | Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Négrier M L, Chuan Q, Bloch B, Choquet D, Boué-Grabot E, Groc L, Bezard E (2012). PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest, 122(11): 3977–3989 |
75 | Rashid A J, So C H, Kong M M C, Furtak T, El-Ghundi M, Cheng R, O’Dowd B F, George S R (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA, 104(2): 654–659 |
76 | Rektorová I, Rektor I, Bares M, Dostál V, Ehler E, Fanfrdlová Z, Fiedler J, Klajblová H, Kulist’ák P, Ressner P, Svátová J, Urbánek K, Velísková J (2005). Cognitive performance in people with Parkinson’s disease and mild or moderate depression: effects of dopamine agonists in an add-on to L-dopa therapy. Eur J Neurol, 12(1): 9–15 |
77 | Roberts B M, Seymour P A, Schmidt C J, Williams G V, Castner S A (2010). Amelioration of ketamine-induced working memory deficits by dopamine D1 receptor agonists. Psychopharmacology (Berl), 210(3): 407–418 |
78 | Rodnitzky R L, Narayanan N S (2014). Amantadine’s role in the treatment of levodopa-induced dyskinesia. Neurology, 82(4): 288–289 |
79 | Rossetti Z L, Carboni S (2005). Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci, 25(9): 2322–2329 |
80 | Santana N, Mengod G, Artigas F (2009). Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex, 19(4): 849–860 |
81 | Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault J A, Hervé D, Greengard P, Fisone G (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci, 27(26): 6995–7005 |
82 | Sawaguchi T, Goldman-Rakic P S (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251(4996): 947–950 |
83 | Sawaguchi T, Goldman-Rakic P S (1994). The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol, 71(2): 515–528 |
84 | Schultz W (1997). Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol, 7(2): 191–197 |
85 | Schultz W (2001). Reward signaling by dopamine neurons. Neuroscientist, 7(4): 293–302 |
86 | Seeman P (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse, 1(2): 133–152 |
87 | Seeman P, Chau-Wong M, Tedesco J, Wong K (1975). Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA, 72(11): 4376–4380 |
88 | Sesack S R, Carr D B, Omelchenko N, Pinto A (2003). Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci, 1003(1): 36–52 |
89 | Shuen J A, Chen M, Gloss B, Calakos N (2008). Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci, 28(11): 2681–2685 |
90 | Soriano A, Vendrell M, Gonzalez S, Mallol J, Albericio F, Royo M, Lluís C, Canela E I, Franco R, Cortés A, Casadó V (2010). A hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors. J Pharmacol Exp Ther, 332(3): 876–885 |
91 | Sun P, Wang J, Gu W, Cheng W, Jin G Z, Friedman E, Zheng J, Zhen X (2009). PSD-95 regulates D1 dopamine receptor resensitization, but not receptor-mediated Gs-protein activation. Cell Res, 19(5): 612–624 |
92 | Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T, Kodaka F, Hayashi M, Okubo Y, Ito H, Suhara T (2008). Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. J Neurosci, 28(46): 12032–12038 |
93 | Taylor J L, Bishop C, Walker P D (2005). Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav, 81(4): 887–893 |
94 | Taymans J M, Kia H K, Groenewegen H J, Leysen J E, Langlois X (2005). Bilateral control of brain activity by dopamine D1 receptors: evidence from induction patterns of regulator of G protein signaling 2 and c-fos mRNA in D1-challenged hemiparkinsonian rats. Neuroscience, 134(2): 643–656 |
95 | Ungless M A, Magill P J, Bolam J P (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303(5666): 2040–2042 |
96 | Vijayraghavan S, Wang M, Birnbaum S G, Williams G V, Arnsten A F T (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci, 10(3): 376–384 |
97 | Watanabe M, Kodama T, Hikosaka K (1997). Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol, 78(5): 2795–2798 |
98 | Westin J E, Vercammen L, Strome E M, Konradi C, Cenci M A (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry, 62(7): 800–810 |
99 | Wilkinson L S, Humby T, Killcross A S, Torres E M, Everitt B J, Robbins T W (1998). Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur J Neurosci, 10(3): 1019–1026 |
100 | Williams G V, Goldman-Rakic P S (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376(6541): 572–575 |
101 | Yoshioka M, Matsumoto M, Togashi H, Saito H (1996). Effect of conditioned fear stress on dopamine release in the rat prefrontal cortex. Neurosci Lett, 209(3): 201–203 |
102 | Zahrt J, Taylor J R, Mathew R G, Arnsten A F T (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 17(21): 8528–8535 |
/
〈 | 〉 |