Bioreactor technology for clonal propagation of plants and metabolite production

Nazmul H. A. Mamun, Ulrika Egertsdotter, Cyrus K. Aidun

PDF(803 KB)
PDF(803 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (2) : 177-193. DOI: 10.1007/s11515-015-1355-1
REVIEW
REVIEW

Bioreactor technology for clonal propagation of plants and metabolite production

Author information +
History +

Abstract

Plant cell culture in bioreactors is an enabling tool for large scale production of clonal elite plants in agriculture, horticulture, forestry, pharmaceutical sectors, and for biofuel production. Advantages of bioreactors for plant cell culture have resulted in various types of bioreactors differing in design, operating technologies, instrumentations, and construction of culture vessels. In this review, different types of bioreactors for clonal propagation of plants and secondary metabolites production are discussed. Mechanical and biochemical parameters associated with bioreactor design, such as aeration, flow rate, mixing, dissolved oxygen, composition of built-up gas in the headspace, and pH of the medium, are pivotal for cell morphology, growth, and development of cells within tissues, embryos, and organs. The differences in such parameters for different bioreactor designs are described here, and correlated to the plant materials that have been successfully cultured in different types of bioreactors.

Keywords

bioreactor types / mechanical and biochemical parameters / plant cell culture / plant clonal propagation / secondary metabolite production

Cite this article

Download citation ▾
Nazmul H. A. Mamun, Ulrika Egertsdotter, Cyrus K. Aidun. Bioreactor technology for clonal propagation of plants and metabolite production. Front. Biol., 2015, 10(2): 177‒193 https://doi.org/10.1007/s11515-015-1355-1

References

[1]
Akita M, Shigeoka T, Koizumi Y, Kawamura M (1994). Mass propagation of shoots of Stevia rebaudiana using a large scale bioreactor. Plant Cell Rep, 13: 180–183
[2]
Alvard D, Cote F, Teisson C (1993). Comparison of methods of liquid medium culture for banana micropropagation: effects of temporary immersion of explants. Plant Cell Tissue Organ Cult, 32(1): 55–60
CrossRef Google scholar
[3]
Amanullah A, Serrano-Carreon L, Castro B, Galindo E, Nienow A W (1998). The influence of impeller type in pilot scale Xanthan fermentations. Biotechnol Bioeng, 57(1): 95–108
CrossRef Google scholar
[4]
Arcuri E J, Nichols J R, Brix T S, Santamarina V G, Buckland B C, Drew S W (1983). Thienamycin production by immobilized cells of Streptomyces cattleya in a bubble column. Biotechnol Bioeng, 15(10): 2399–2411
CrossRef Google scholar
[5]
Attree S M, Pomeroy M K, Fowke L C (1994). Production of vigorous, desiccation tolerant white spruce (Picea glauca [Moench.]Voss.)synthetic seeds in a bioreactor. Plant Cell Rep, 13(11): 601–606
CrossRef Google scholar
[6]
Atwell B J, Greenway H (1987). The relationship between growth and oxygen uptake in hypoxic rice seedlings. J Exp Bot, 38(3): 454–465
CrossRef Google scholar
[7]
Ballica R, Ryu D Y (1993). Effects of rheological properties and mass transfer on plant cell bioreactor performance: production of tropane alkaloids. Biotechnol Bioeng, 42(10): 1181–1189
CrossRef Google scholar
[8]
Barry-Etienne D, Bertrand B, Schlonvoigt A, Etienne H (2002). The morphological variability within a population of coffee somatic embryos produced in a bioreactor affects the regeneration and the development of plants in the nursery. Plant Cell Tissue Organ Cult, 68(2): 153–162
CrossRef Google scholar
[9]
Biddington N L, Robinson T H (1991). Ethylene production during anther culture of Brussel sprouts (Brassica oleracea var. gemmifera) and its relationship with factors that affect embryo production. Plant Cell Tissue Organ Cult, 25: 169–177
[10]
Bieniek M E, Harrell R C, Cantliffe D J (1995). Enhancement of somatic embryogenesis of Ipomoea batatas in solid cultures and production of mature somatic embryos in liquid cultures for application to a bioreactor production system. Plant Cell Tissue Organ Cult, 41(1): 1–8
CrossRef Google scholar
[11]
Bramble J L, Graves D J, Brodelius P (1990). Calcium and phosphate effects on growth and alkaloid production in Coffea arabica experimental results and mathematical model. Biotechnol Bioeng, 37(9): 859–868
CrossRef Google scholar
[12]
Burg S P (1973). Ethylene in plant growth. Proc Nat Acad Sci, USA, 70(2): 591–597
[13]
Cardillo A B, Otálvaro A Á M, Busto V D, Talou J R, Velásquez L M E, Giulietti A M (2010). Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem, 45(9): 1577–1581
CrossRef Google scholar
[14]
Chen H B, Kao P M, Huang H C, Shieh C J, Chen C I, Liu Y C (2010). Effects of using various bioreactors on chitinolytic enzymes productin by Paenibacillus taichungensis. Biochem Eng J, 49(3): 337–342
CrossRef Google scholar
[15]
Chen S Y, Huang S Y (2000). Shear stress effects on cell growth and L-DOPA production by suspension culture of Stizolobium hassjoo cells in an agitated bioreactor. Bioprocess Eng, 22(1): 5–12
CrossRef Google scholar
[16]
Cho J M, Kwon J Y, Lim J A, Kim D I (2007). Increased hGM-CSF production and secretion with pluronic F-68 in transgenic Nicotiana tabacum suspension cell cultures. Biotechnol Bioprocess Eng., 12(6): 594–600
CrossRef Google scholar
[17]
Choi H J, Tao B Y, Okos M R (1995). Enhancement of secondary metabolite production by immobilized Gossypium arboreum cells. Biotechnol Prog, 11(3): 306–311
CrossRef Google scholar
[18]
Choi Y S, Lee S Y, Kim D I (1999). Cultivation of Digitalis lanata cell suspension in an aqueous two-phase system. J Microbiol Biotechnol, 9(5): 589–592
[19]
Curtis W R (2005). Application of bioreactor design principles to plant micropropagation. Plant Cell Tissue Organ Cult, 81(3): 255–264
CrossRef Google scholar
[20]
De Dobbeleer C, Cloutier M, Fouilland M, Legros R, Jolicoeur M (2006). A high-rate perfusion bioreactor for plant cells. Biotechnol Bioeng, 95(6): 1126–1137
CrossRef Google scholar
[21]
Debergh P, Aitken-Christie J, Cohen D, Grout B, Arnold S, Zimmerman R, Ziv M (1992). Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tissue Organ Cult, 30(2): 135–140
CrossRef Google scholar
[22]
Debergh P, Harbaoui Y, Lemeur R (1981). Mass propagation of globe artichoke (Cynara scolymus): evaluation of different hypotheses to overcome vitrification with special reference to water potential. Physiol Plant, 53(2): 181–187
CrossRef Google scholar
[23]
Domínguez A, Rivela I, Couto S R, Sanromán M A (2001). Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem, 37(5): 549–554
CrossRef Google scholar
[24]
Doran P M (1999). Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog, 15(3): 319–335
CrossRef Google scholar
[25]
Egertsdotter U, Mo L H, von Arnold S (1993). Extracellular proteins in embryogenic suspension cultures of Norway spruce (Picea abies). Physiol Plant, 88(2): 315–321
CrossRef Google scholar
[26]
Egertsdotter U, von Arnold S (1995). Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant, 93(2): 334–345
CrossRef Google scholar
[27]
Egertsdotter U, von Arnold S (1998). Development of somatic embryos in Norway spruce. J Exp Bot, 49(319): 155–162
CrossRef Google scholar
[28]
Eibl R, Kaiser S, Lombriser R, Eibl D (2010). Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol, 86(1): 41–49
CrossRef Google scholar
[29]
El-Sayed A H M M, Rehm H J (1987). Continuous penicillin production by Penicilliumchrysogenum immobilized in calcium alginate beads. Appl Microbiol Biotechnol, 26(3): 215–218
CrossRef Google scholar
[30]
Escalona M, Lorenzo J C, Gonzales B L, Daquinta M, Borroto C G, Gonzales J I, Desjardine Y (1999). Pineapple (Ananas cosmos L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep, 18: 743–748
CrossRef Google scholar
[31]
Fischer U, Santore U J, Husemann W, Barz W, Alfermann A W (1994). Semicontinuous cultivation of photoautotrophic cell-suspension cultures in a 20-L airlift-reactor. Plant Cell Tissue Organ Cult, 38(2—3): 123–134
CrossRef Google scholar
[32]
Fu C C, Wu W T, Lu S Y (2003). Performance of airlift bioreactors with net draft tube. Enzyme Microb Technol, 33(4): 332–342
CrossRef Google scholar
[33]
Fujimura M, Kato J, Tosa T, Chibata I (1984). Continuous production of L-arginine using immobilized growing Serratia marcescens cells: Effectiveness of supply of oxygen gas. Appl Microbiol Biotechnol, 19(2): 79–84
CrossRef Google scholar
[34]
Fung C J, Metchell D A (1995). Baffles increase performance of solid-state fermentation in rotating drum bioreactors. Biotechnol Tech, 9(4): 295–298
CrossRef Google scholar
[35]
Gagnon H, Thibault J, Cormier F, Do C B (1999). Vitis vinifera culture in a non-conventional bioreactor: the reciprocating plate bioreactor. Bioprocess Eng, 21(5): 405–413
[36]
Gaspar T (1991). Vitrification in micropropagation. In: Bajaj Y P S (Ed). Biotechnology in Agriculture and Forestry (vol.17). Berlin: Springer-Verlag, 117–126
[37]
Gaspar T, Kevers C, Debergh P, Maene L, Paques M, Boxus P (1987). Vitrification: morphological, physiological, and ecological aspects. In: Bonga J M, Durzan D J (Eds). Cell and Tissue Culture in Forestry (vol. 1). Dordrecht, Holland: Martinus Nijhoff Publishing, 152–166
[38]
Gaspar T, Kevers C, Franck T, Bisbis B, Billar J P, Huault C, Dily F L, Petit-Paly G, Rideau M, Penel C, Crevecoeur M, Greppin H (1995). Paradoxical results in the analysis of hyperhydric tissues considered as being under stress: questions for a debate. Bulg J Plant Physiol., 21(2—3): 80–97
[39]
Han J, Zhong J J (2003). Effects of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme Microb Technol, 32(3—4): 498–503
CrossRef Google scholar
[40]
Hohe A, Winkelmann T, Schwenkel H G (1999). CO2 accumulation in bioreactor suspension cultures of Cyclamen persicum Mill. and its effect on cell growth and regeneration of somatic embryos. Plant Cell Rep, 18(10): 863–867
CrossRef Google scholar
[41]
Honda H, Hiraoka K, Nagamori E, Omote M, Kato Y, Hiraoka S, Hobayashi T (2002). Enhanced anthocyanin production from grape callus in an air-lift type bioreactor using a viscous additive-supplemented medium. J Biosci Bioeng, 94(2): 135–139
CrossRef Google scholar
[42]
Hooker B S, Lee J M, An G (1990). Cultivation of plant cells in a stirred vessel: effect of impeller design. Biotechnol Bioeng, 35(3): 296–304
CrossRef Google scholar
[43]
Hu W W, Yao H, Zhong J J (2001). Improvement of Panax notoginseng cell culture for production of ginseng saponin and polysaccharide by high density cultivation in pneumatically agitated bioreactors. Biotechnol Prog, 17(5): 838–846
CrossRef Google scholar
[44]
Hu W W, Zhong J J (2001). Effect of bottom clearance on performance of airlift bioreactor in high-density culture of Panax notoginseng cells. J Biosci Bioeng, 92(4): 389–392
CrossRef Google scholar
[45]
Huang S Y, Shen Y W, Chan H S (2002). Development of a bioreactor operation strategy for L-DOPA production using Stizolobium hassjoo suspension culture. Enzyme Microb Technol, 30(6): 779–791
CrossRef Google scholar
[46]
Huang T K, McDonald K A (2009). Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J, 45(3): 168–184
CrossRef Google scholar
[47]
Hvoslef-Eide A K, Olsen O A S, Lyngved R, Munster C, Heyerdahl P H (2005). Bioreactor design for propagation of somatic embryos. Plant Cell Tissue Organ Cult, 81(3): 265–276
CrossRef Google scholar
[48]
Illing S, Harrison S T L (1999). The kinetics and mechanism of Corynebacterium glutamicum aggregate breakup in bioreactors. Chem Eng Sci, 54(4): 441–454
CrossRef Google scholar
[49]
Ingram B, Mavituna F (2000). Effect of bioreactor configuration on the growth and maturation of Picea sitchensis somatic embryo cultures. Plant Cell Tissue Organ Cult, 61(2): 87–96
CrossRef Google scholar
[50]
Jackson M B, Fenning T M, Drew M C, Saker L R (1985). Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta, 165(4): 486–492
CrossRef Google scholar
[51]
Jay V, Genestier S, Courduroux J C (1992). Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Rep, 11(12): 605–608
CrossRef Google scholar
[52]
Jay V, Genestier S, Courduroux J C (1994). Bioreactor studies on the effect of medium pH on carrot (Daucus carota L.) somatic embryogenesis. Plant Cell Tissue Organ Cult, 36(2): 205–209
CrossRef Google scholar
[53]
Jianfeng X, Jian X, Aiming H, Pusun F, Zhiguo S (1998). Kinetic and technical studies on large-scale culture of Rhodiola sachalinensis compact callus aggregates with air-lift reactors. J Chem Technol Biotechnol, 72(3): 227–234
[54]
Jiménez E, Pérez N, de Feria M, Barbón R, Capote A, Chavez M, Quiala E, Pérez J C (1999). Improved production of potato microtubers using a temporary immersion system. Plant Cell Tissue Organ Cult, 59(1): 19–23
[55]
Jolicoeur M, Chavarie C, Carreau P J, Archambault J (1992). Development of a helical-ribbon impeller bioreactor for high-density plant cell suspension culture. Biotechnol Bioeng, 39(5): 511–521
CrossRef Google scholar
[56]
Kantarci N, Borak F, Ulgen K O (2005). Bubble column reactors. Process Biochem, 40(7): 2263–2283
CrossRef Google scholar
[57]
Kessell R H J, Carr A H (1972). The effect of dissolved oxygen concentration on growth and differentiation of carrot (Daucus carota) tissue. J Exp Bot, 23(4): 996–1007
CrossRef Google scholar
[58]
Keßler M, ten Hoopen J G, Furusaki S (1999). The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzyme Microb Technol, 24(5—6): 308–315
CrossRef Google scholar
[59]
Kevers C, Coumans M, Coumans-Gilles M F, Gasper T (1984). Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol Plant, 61(1): 69–74
CrossRef Google scholar
[60]
Kim J H, Yoo Y J (2002). Optimization of SOD biosynthesis by controlling sucrose concentration in the culture of carrot hairy root. J Microbiol Biotechnol, 12(4): 617–621
[61]
Kino-Oka R, Hitaka Y, Taya M, Tone S (1999). High-density culture of red beet hairy roots by considering medium flow condition in a bioreactor. Chem Eng Sci, 54(15—16): 3179–3186
CrossRef Google scholar
[62]
Klvana M, Legros R, Jolicoeur M (2005). In situ extraction strategy affects benzophenanthridine alkaloid production fluxes in suspension cultures of Eschscholtzia californica. Biotechnol Bioeng, 89(3): 280–289
CrossRef Google scholar
[63]
Kurata H, Furusaki S (1993). Immobilized Coffea arabica cell culture using a bubble-column reactor with controlled light intensity. Biotechnol Bioeng, 42(4): 494–502
CrossRef Google scholar
[64]
Langer E S (2011). Trends in perfusion bioreactors- the next revolution in bioprocessing. BioProcess Int., 9(10): 18–22
[65]
Lee-Parsons C W, Shuler M L (2002). The effect of ajmalicine spiking and resin addition timing on the production of indole alkaloids from Catharanthus roseus cell cultures. Biotechnol Bioeng, 79(4): 408–415
CrossRef Google scholar
[66]
Loc N H, Tuan C V, Binh D H N, Phuong T T B, Kim T G, Yang M S (2009). Accumulation of sesquiterpenes and polysaccharides in cells of zedoary (Curcuma zedoaria Roscoe) cultured in a 10 L bioreactor. Biotechnol Bioprocess Eng., 14(5): 619–624
CrossRef Google scholar
[67]
Lorenzo J C, Gonzalez B L, Escalona M, Teisson C, Espinosa P, Borroto C (1998). Suggarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult, 54(3): 197–200
CrossRef Google scholar
[68]
Luo J, Mei X G, Liu L, Hu D W (2002). Improved paclitaxel production by fed-batch suspension cultures of Taxus chinensis in bioreactors. Biotechnol Lett, 24(7): 561–565
CrossRef Google scholar
[69]
Luttman R, Florek P, Preil W (1994). Silicone-tubing aerated bioreactors for somatic embryo production. Plant Cell Tissue Organ Cult, 39(2): 157–170
CrossRef Google scholar
[70]
Mandels M (1972). The culture of plant cells. Adv Biochem Eng, 2: 201–215
CrossRef Google scholar
[71]
McAlister B, Finnie J, Watt M P, Blakeway F (2005). Use of the temporary immersion bioreactor system (RITA (R)) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tissue Organ Cult, 81(3): 347–358
CrossRef Google scholar
[72]
McDonald K A, Hong L M, Trombly D M, Xie Q, Jackman A P (2005). Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol Prog, 21(3): 728–734
CrossRef Google scholar
[73]
Molle F, Fressinet G (1992). Les semences artificielles. Phytoma., 441: 39–44
[74]
Mordocco A M, Brumbley J A, Lakshmanan P (2009). Development of a temporary immersion system (RITAA (R)) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant, 45(4): 450–457
CrossRef Google scholar
[75]
Mostafa S S, Gu X S (2003). Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog, 19(1): 45–51
CrossRef Google scholar
[76]
Namdev P K, Dunlop E H (1995). Shear sensitivity of plant cells in suspnesions- present and future. Appl Biochem Biotechnol, 54(1-3): 109–131
CrossRef Google scholar
[77]
Niemenak N, Saare-Surminski K, Rohsius C, Ndoumou D O, Lieberei R (2008). Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep, 27(4): 667–676
CrossRef Google scholar
[78]
Ogbonna J C, Mashima H, Tanaka H (2001). Scale up of fuel ethanol production form sugar beet juice using loofa sponge immobilized bioreactor. Bioresour Technol, 76(1): 1–8
CrossRef Google scholar
[79]
Pal S, Das S, Dey S (2003). Peroxidase and arabinogalactan protein as by-products during somatic embryo cultivation in air-lift bioreactor. Process Biochem, 38(10): 1471–1477
CrossRef Google scholar
[80]
Pan Z W, Wang H Q, Zhong J J (2000). Scale-up study on suspension cultures of Taxus chinensis cells for production of taxanediterpene. Enzyme Microb Technol, 27(9): 714–723
CrossRef Google scholar
[81]
Pandey A (1992). Recent process developments in solid-state fermentation. Process Biochem, 27(2): 109–117
CrossRef Google scholar
[82]
Paques M, Boxus P (1987). Vitrification: review of literature. Acta Hortic, 212: 155–166
[83]
Perata P, Alpi A (1991). Ethanol-induced injuries to carrot cells- the role of acetaldehyde. Plant Physiol, 95(3): 748–752
CrossRef Google scholar
[84]
Pérez A, Nápoles L, Carvajal C, Hernandez M, Lorenzo J C (2004). Effect of sucrose, inorganic salts, inositol, and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors. In Vitro Cell Dev Biol Plant, 40(3): 311–316
CrossRef Google scholar
[85]
Piehl G W, Berlin J, Mollenschott C, Lehmann J (1988). Growth and alkaloid production of a cell suspension culture of Thalictrum rugosum in shake flasks and membrane-stirrer reactors with bubble free aeration. Appl Microbiol Biotechnol, 29(5): 456–461
CrossRef Google scholar
[86]
Prakash G, Srivastava A K (2008). Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochem Eng J, 40(2): 218–226
CrossRef Google scholar
[87]
Preil W (1991). Application of bioreactors in plant micropropagation. In: Debergh P C, Zimmerman R H (Eds). Micropropagation, technology and application. Dordrecht, Netherlands: Kluwer Academic Publishers, 425–455
[88]
Preil W, Florek P, Wix U, Beck A (1988). Towards mass propagation by use of bioreactors. Acta Hortic, 226: 99–106
[89]
Rosensweig R E (1979). Fluidization: Hydrodynamic stabilization with a magnetic field. Science, 204(6): 57–60
CrossRef Google scholar
[90]
Rout G R, Mohapatra A, Jain S M (2006). Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnol Adv, 24(6): 531–560
CrossRef Google scholar
[91]
Rout G R, Samantaray S, Das P (2000). In vitro manipulation and propagation of medicinal plants. Biotechnol Adv, 18(2): 91–120
CrossRef Google scholar
[92]
Sajc L, Vunjak-Novakovic G, Grubisic D, Kovačević N, Vuković D, Bugarski B (1995). Production of anthraquinones by immobilized Frangula alnus Mill. plant cells in a four-phase air-lift bioreactor. Appl Microbiol Biotechnol, 43(3): 416–423
CrossRef Google scholar
[93]
Schlatmann J E, Nuutila A M, van Gulik W M, ten Hoopen H J G, Verpoorte R, Heijnen J J (1993). Scaleup of ajmalicine production by plant cell cultures of Catharanthus roseus. Biotechnol Bioeng, 41(2): 253–262
CrossRef Google scholar
[94]
Schubert S, Schubert E, Mengel K (1990). Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil, 124(2): 239–244
CrossRef Google scholar
[95]
Scragg A H (1995). The problems associated with high biomass levels in plant cell suspensions. Plant Cell Tissue Organ Cult, 43(2): 163–170
CrossRef Google scholar
[96]
Seki M, Ohzora C, Takeda M, Furusaki S (1997). Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidate. Biotechnol Bioeng, 53(2): 214–219
CrossRef Google scholar
[97]
Seydel P, Christian W, Heike D (2009). Scale-up of Oldenlandia affinis suspension cultures in photobioreactors for cyclotide production. Eng Life Sci, 9(3): 219–226
CrossRef Google scholar
[98]
Shi Z D, Yuan Y J, Wu J C, Shang G M (2003). Biological responses of suspension cultures of Taxus chinensis var. mairei to shear stresses in the short term. Appl Biochem Biotechnol, 110(2): 61–74
CrossRef Google scholar
[99]
Sim S J, Chang H N (1993). Increased shikonin production by hairy roots of Lithospermum erythrorhizon in 2 phase bubble column reactor. Biotechnol Lett, 15(2): 145–150
CrossRef Google scholar
[100]
Singh V (1999). Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology, 30(1/3): 149–158
CrossRef Google scholar
[101]
Small J G, Potgiether G P, Botha F C (1989). Anoxic seed germination of Erythrina caffra: Ethanol fermentation and response to metabolic inhibitors. J Exp Bot, 40(3): 375–381
CrossRef Google scholar
[102]
Smart N J, Fowler M W (1984). Mass cultivation of Catharanthus roseus cells using a nonmechanically agitated bioreactor. Appl Biochem Biotechnol, 9(3): 209–216
CrossRef Google scholar
[103]
Su W W, Arias R (2003). Continuous plant cell perfusion culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng, 95(1): 13–20
CrossRef Google scholar
[104]
Su W W, He B J, Liang H, Sun S (1996). A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J Biotechnol, 50(2—3): 225–233
[105]
Su W W, Lei F, Kao N P (1995). High density cultivation of Anchusaofficinalis in a stirred-tank bioreactor with in situ filtration. Appl Microbiol Biotechnol, 44(3—4): 293–299
CrossRef Google scholar
[106]
Sun H (2010). The effect of hydrodynamic stress on plant embryo development. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA
[107]
Sun X, Linden J C (1999). Shear stress effects on plant cell suspension cultures in a rotating wall vessel bioreactor. J Ind Microbiol Biotechnol, 22(1): 44–47
CrossRef Google scholar
[108]
Tanaka H, Nishijima F, Suwa M, Iwamoto T (1983). Rotating drum fermentor for plant cell suspension cultures. Biotechnol Bioeng, 25(10): 2359–2370
CrossRef Google scholar
[109]
Teng W L, Liu Y J, Tsai Y C, Soong T S (1994). Somatic embryogenesis of carrot in bioreactor culture systems. HortScience, 29(11): 1349–1352
[110]
Terashima M, Ejirim Y, Hashikawa N, Yoshida H (2000). Effects of sugar concentration on recombinant human alpha(1)-antitrypsin production by genetically engineered rice cell. Biochem Eng J, 6(3): 201–205
CrossRef Google scholar
[111]
Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007). Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng, 96(5): 914–923
CrossRef Google scholar
[112]
Thanh N T, Murthy H N, Pandey D M, Yu K W, Hahn E J, Paek K Y (2006b). Effect of carbon dioxide on cell gwowth and saponin production in suspension cultures of Panax ginseng. Biol Plant, 50(4): 752–754
CrossRef Google scholar
[113]
Thomas D S, Murashige T (1979). Volatile emissions of plant tissue cultures. I. Identification of the major components. In Vitro, 15(9): 654–658
CrossRef Google scholar
[114]
Tikhomiroff C, Allais S, Klvana M, Hisiger S, Jolicoeur M (2002). Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnol Prog, 18(5): 1003–1009
CrossRef Google scholar
[115]
Tisserat B, Murashige T (1977). Effects of ethephon, ethylene, and 2,4-Dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiol, 60(3): 437–439
CrossRef Google scholar
[116]
Tisserat B, Vandercook C E (1985). Development of an automated plant culture system. Plant Cell Tissue Organ Cult, 5(2): 107–117
CrossRef Google scholar
[117]
Tokashiki M, Arai T, Hamamoto K, Ishimaru K (1990). High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnology, 3(3): 239–244
CrossRef Google scholar
[118]
Townsley P M, Webster F, Kutney J P, Salisbury P, Hewitt G, Kawamura N, Choi L, Kurihara T, Jacoli G G (1983). The recycling air lift transfer fermenter for plant cell. Biotechnol Lett, 5(1): 13–18
CrossRef Google scholar
[119]
Treat W J, Engler C R, Soltes E J (1989). Culture of photomixotrophic soybean and pine in a modified fermenter using a novel impeller. Biotechnol Bioeng, 34(9): 1191–1202
CrossRef Google scholar
[120]
Vinocur B, Carmi T, Altman A, Ziv M (2000). Enhanced bud regeneration in aspen (Populus tremula L.) roots cultured in liquid media. Plant Cell Rep, 19(12): 1146–1154
CrossRef Google scholar
[121]
von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Högberg K A, Ingouff M, Wiweger M (2005). Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult, 81: 323–329
CrossRef Google scholar
[122]
Wang G R, Qi N M, Wang Z M (2010). Application of stir-tank bioreactor for perfusion culture and continuous harvest of Glycyrrhiza inflate suspension cells. Afr J Biotechnol, 9(3): 347–351
[123]
Wang S J, Zhong J J (1996). A novel centrifugal impeller bioreactor I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol Bioeng, 51(5): 511–519
CrossRef Google scholar
[124]
Wang Z Y, Zhong J J (2002). Combination of conditioned medium and elicitation enhances taxoid production in bioreactor cultures of Taxus chinensis cells. Biochem Eng J, 12(2): 93–97
CrossRef Google scholar
[125]
Williams R D, Chauret N, Bédard C, Archambault J (1992). Effect of polymeric adsorbents on the production of sanguinarine by Papaver somniferum cell-cultures. Biotechnol Bioeng, 40: 971–977
CrossRef Google scholar
[126]
Wongsamuth R, Doran P M (1997). The filtration properties of Atropa belladonna plant cell suspensions; effects of hydrodynamic shear and elevated carbon dioxide levels on culture and filtration parameters. J Chem Technol Biotechnol, 69(1): 15–26
CrossRef Google scholar
[127]
Yang R Y K, Bayraktar O, Pu H T (2003). Plant-cell bioreactors with simultaneous electropermeabilization and electrophoresis. J Biotechnol, 100(1): 13–22
CrossRef Google scholar
[128]
Zhong C, Yuan Y J (2009). Responses of Taxus cuspidatato hydrodynamics in bubble column bioreactors with different sparging nozzle sizes. Biochem Eng J, 45(2): 100–106
CrossRef Google scholar
[129]
Zhong J J, Fujiyama K, Seki T, Yoshida T (1994). A quantitative analysis of shear effects on cell suspension and cell culture of Perilla frutescens in bioreactors. Biotechnol Bioeng, 44(5): 649–654
CrossRef Google scholar
[130]
Ziv M (1991). Vitrification: Morphological and physiological disorders of in vitro plants. In: Debergh P G, Zimmerman R H, (Eds). Micorpropagation: Technology and Application. Dordrecht, The Netherlands: Kluwer Academic Publishers, 45–69
[131]
Ziv M (2005). Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ Cult, 81(3): 277–285
CrossRef Google scholar
[132]
Zobayed S M A, Saxena P K (2003). In vitro-grown roots: a superior explant for prolific shoot regeneration of St. Johnʼs wort (Hypericum perforatum L. cv ʻNew Stemʼ) in a temporary immersion bioreactor. Plant Sci, 165(3): 463–470
CrossRef Google scholar

Compliance with ethics guidelines

Nazmul H. A. Mamun, Ulrika Egertsdotter, and Cyrus K. Aidun declare that they have no conflict of interest.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(803 KB)

Accesses

Citations

Detail

Sections
Recommended

/