Emerging roles of autophagy in metabolism and metabolic disorders

Altea Rocchi, Congcong He

PDF(762 KB)
PDF(762 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (2) : 154-164. DOI: 10.1007/s11515-015-1354-2
REVIEW
REVIEW

Emerging roles of autophagy in metabolism and metabolic disorders

Author information +
History +

Abstract

The global prevalence of metabolic disorders is an immediate threat to human health. Genetic features, environmental aspects and lifestyle changes are the major risk factors determining metabolic dysfunction in the body. Autophagy is a housekeeping stress-induced lysosomal degradation pathway, which recycles macromolecules and metabolites for new protein synthesis and energy production and regulates cellular homeostasis by clearance of damaged protein or organelles. Recently, a dramatically increasing number of literatures has shown that defects of the autophagic machinery is associated with dysfunction of multiple metabolic tissues including pancreatic β cells, liver, adipose tissue and muscle, and is implicated in metabolic disorders such as obesity and insulin resistance. Here in this review, we summarize the representative works on these topics and discuss the versatile roles of autophagy in the regulation of cellular metabolism and its possible implication in metabolic diseases.

Keywords

autophagy / selective autophagy / metabolism / metabolic disease / obesity / diabetes

Cite this article

Download citation ▾
Altea Rocchi, Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders. Front. Biol., 2015, 10(2): 154‒164 https://doi.org/10.1007/s11515-015-1354-2

References

[1]
Axe E L, Walker S A, Manifava M, Chandra P, Roderick H L, Habermann A, Griffiths G, Ktistakis N T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701
CrossRef Pubmed Google scholar
[2]
Baerga R, Zhang Y, Chen P H, Goldman S, Jin S (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy, 5(8): 1118–1130
CrossRef Pubmed Google scholar
[3]
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
CrossRef Pubmed Google scholar
[4]
Boyle K B, Randow F (2013). The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol, 16(3): 339–348
CrossRef Pubmed Google scholar
[5]
Burman C, Ktistakis N T (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett, 584(7): 1302–1312
CrossRef Pubmed Google scholar
[6]
Campello S, Strappazzon F, Cecconi F (2014). Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta, 1837(4): 451–460
CrossRef Pubmed Google scholar
[7]
Cebollero E, Reggiori F, Kraft C (2012). Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol, 2012: 182834
Pubmed
[8]
Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell, 15(3): 344–357
CrossRef Pubmed Google scholar
[9]
Coupé B, Ishii Y, Dietrich M O, Komatsu M, Horvath T L, Bouret S G (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab, 15(2): 247–255
CrossRef Pubmed Google scholar
[10]
De Duve C, Wattiaux R (1966). Functions of lysosomes. Annu Rev Physiol, 28(1): 435–492
CrossRef Pubmed Google scholar
[11]
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab, 8(4): 325–332
CrossRef Pubmed Google scholar
[12]
Elzinga B M, Nyhan M J, Crowley L C, O’Donovan T R, Cahill M R, McKenna S L (2013). Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol, 88(6): 455–462
CrossRef Pubmed Google scholar
[13]
Geisler S, Holmström K M, Skujat D, Fiesel F C, Rothfuss O C, Kahle P J, Springer W (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2): 119–131
CrossRef Pubmed Google scholar
[14]
Geng J, Klionsky D J (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9): 859–864
CrossRef Pubmed Google scholar
[15]
Goldman S, Zhang Y, Jin S (2010). Autophagy and adipogenesis: implications in obesity and type II diabetes. Autophagy, 6(1): 179–181
CrossRef Pubmed Google scholar
[16]
Gonzalez C D, Lee M S, Marchetti P, Pietropaolo M, Towns R, Vaccaro M I, Watada H, Wiley J W (2011). The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 7(1): 2–11
CrossRef Pubmed Google scholar
[17]
Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P (2011). Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 7(12): 1415–1423
CrossRef Pubmed Google scholar
[18]
Guariguata L, Whiting D R, Hambleton I, Beagley J, Linnenkamp U, Shaw J E (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 103(2): 137–149
CrossRef Pubmed Google scholar
[19]
Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 282(52): 37298–37302
CrossRef Pubmed Google scholar
[20]
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3): 497–510
CrossRef Pubmed Google scholar
[21]
He C, Bassik M C, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May H I, Hill J A, Virgin H W, Gilpin C, Xiao G, Bassel-Duby R, Scherer P E, Levine B (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382): 511–515
CrossRef Pubmed Google scholar
[22]
He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch L N, Khan S, Sinha S, Xavier R J, Grishin N V, Xiao G, Eskelinen E L, Scherer P E, Whistler J L, Levine B (2013). Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 154(5): 1085–1099
CrossRef Pubmed Google scholar
[23]
Ichimura Y, Waguri S, Sou Y S, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee M S, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell, 51(5): 618–631
CrossRef Pubmed Google scholar
[24]
Jaber N, Dou Z, Chen J S, Catanzaro J, Jiang Y P, Ballou L M, Selinger E, Ouyang X, Lin R Z, Zhang J, Zong W X (2012). Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA, 109(6): 2003–2008
CrossRef Pubmed Google scholar
[25]
Jeong H, Then F, Melia T J Jr, Mazzulli J R, Cui L, Savas J N, Voisine C, Paganetti P, Tanese N, Hart A C, Yamamoto A, Krainc D (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72
CrossRef Pubmed Google scholar
[26]
Jiang S, Heller B, Tagliabracci V S, Zhai L, Irimia J M, DePaoli-Roach A A, Wells C D, Skurat A V, Roach P J (2010). Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem, 285(45): 34960–34971
CrossRef Pubmed Google scholar
[27]
Jiang S, Wells C D, Roach P J (2011). Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun, 413(3): 420–425
CrossRef Pubmed Google scholar
[28]
Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J (2014). Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci, 10(3): 268–277
CrossRef Pubmed Google scholar
[29]
Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3): 279–296
CrossRef Pubmed Google scholar
[30]
Jung C H, Jun C B, Ro S H, Kim Y M, Otto N M, Cao J, Kundu M, Kim D H (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20(7): 1992–2003
CrossRef Pubmed Google scholar
[31]
Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295
CrossRef Pubmed Google scholar
[32]
Jung H S, Chung K W, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen Y H, Kang T M, Yoon K H, Kim J W, Jeong Y T, Han M S, Lee M K, Kim K W, Shin J, Lee M S (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab, 8(4): 318–324
CrossRef Pubmed Google scholar
[33]
Jung H S, Lee M S (2010). Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci, 1201(1): 79–83
CrossRef Pubmed Google scholar
[34]
Kageyama S, Sou Y S, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer R J, Lee M S, Yamamoto M, Waguri S, Tanaka K, Komatsu M (2014). Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem, 289(36): 24944–24955
CrossRef Pubmed Google scholar
[35]
Kahn S E, Hull R L, Utzschneider K M (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121): 840–846
CrossRef Pubmed Google scholar
[36]
Kalender A, Selvaraj A, Kim S Y, Gulati P, Brûlé S, Viollet B, Kemp B E, Bardeesy N, Dennis P, Schlager J J, Marette A, Kozma S C, Thomas G (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab, 11(5): 390–401
CrossRef Pubmed Google scholar
[37]
Kane L A, Lazarou M, Fogel A I, Li Y, Yamano K, Sarraf S A, Banerjee S, Youle R J (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205(2): 143–153
Pubmed
[38]
Kaushik S, Arias E, Kwon H, Lopez N M, Athonvarangkul D, Sahu S, Schwartz G J, Pessin J E, Singh R (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep, 13(3): 258–265
CrossRef Pubmed Google scholar
[39]
Kaushik S, Cuervo A M (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol, 22(8): 407–417
CrossRef Pubmed Google scholar
[40]
Kaushik S, Rodriguez-Navarro J A, Arias E, Kiffin R, Sahu S, Schwartz G J, Cuervo A M, Singh R (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab, 14(2): 173–183
CrossRef Pubmed Google scholar
[41]
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell D G, Ritorto M S, Hofmann K, Alessi D R, Knebel A, Trost M, Muqit M M (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J, 460(1): 127–139
CrossRef Pubmed Google scholar
[42]
Kim K H, Jeong Y T, Oh H, Kim S H, Cho J M, Kim Y N, Kim S S, Kim H, Hur K Y, Kim H K, Ko T, Han J, Kim H L, Kim J, Back S H, Komatsu M, Chen H, Chan D C, Konishi M, Itoh N, Choi C S, Lee M S (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 19(1): 83–92
CrossRef Pubmed Google scholar
[43]
Kim K H, Lee M S (2014). Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol, 10(6): 322–337
CrossRef Pubmed Google scholar
[44]
Kirkin V, Lamark T, Sou Y S, Bjørkøy G, Nunn J L, Bruun J A, Shvets E, McEwan D G, Clausen T H, Wild P, Bilusic I, Theurillat J P, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33(4): 505–516
Pubmed
[45]
Knaevelsrud H, Simonsen A (2010). Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett, 584(12): 2635–2645
CrossRef Pubmed Google scholar
[46]
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
Pubmed
[47]
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3): 425–434
CrossRef Pubmed Google scholar
[48]
Korac J, Schaeffer V, Kovacevic I, Clement A M, Jungblut B, Behl C, Terzic J, Dikic I (2013). Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci, 126(Pt 2): 580–592
CrossRef Pubmed Google scholar
[49]
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E A, Trempe J F, Saeki Y, Tanaka K, Matsuda N (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503): 162–166
Pubmed
[50]
Kraft C, Deplazes A, Sohrmann M, Peter M (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610
CrossRef Pubmed Google scholar
[51]
Kroemer G, Mariño G, Levine B (2010). Autophagy and the integrated stress response. Mol Cell, 40(2): 280–293
CrossRef Pubmed Google scholar
[52]
Kuma A, Mizushima N (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21(7): 683–690
CrossRef Pubmed Google scholar
[53]
Le Guezennec X, Brichkina A, Huang Y F, Kostromina E, Han W, Bulavin D V (2012). Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab, 16(1): 68–80
CrossRef Pubmed Google scholar
[54]
Lee J M, Wagner M, Xiao R, Kim K H, Feng D, Lazar M A, Moore D D (2014). Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 516(7529): 112–115
Pubmed
[55]
Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4): 463–477
CrossRef Pubmed Google scholar
[56]
Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell, 132(1): 27–42
CrossRef Pubmed Google scholar
[57]
Lim Y M, Lim H, Hur K Y, Quan W, Lee H Y, Cheon H, Ryu D, Koo S H, Kim H L, Kim J, Komatsu M, Lee M S (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun, 5: 4934
CrossRef Pubmed Google scholar
[58]
Lira V A, Okutsu M, Zhang M, Greene N P, Laker R C, Breen D S, Hoehn K L, Yan Z (2013). Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J, 27: 4184–4193
[59]
Liu H Y, Han J, Cao S Y, Hong T, Zhuo D, Shi J, Liu Z, Cao W (2009). Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem, 284(45): 31484–31492
CrossRef Pubmed Google scholar
[60]
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden S J, Di Lisi R, Sandri C, Zhao J, Goldberg A L, Schiaffino S, Sandri M (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 6(6): 458–471
CrossRef Pubmed Google scholar
[61]
Marselli L, Bugliani M, Suleiman M, Olimpico F, Masini M, Petrini M, Boggi U, Filipponi F, Syed F, Marchetti P (2013). β-Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes Obes Metab, 15(Suppl 3): 130–136
CrossRef Pubmed Google scholar
[62]
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009). Autophagy is required to maintain muscle mass. Cell Metab, 10(6): 507–515
CrossRef Pubmed Google scholar
[63]
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396
CrossRef Pubmed Google scholar
[64]
Mizushima N (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol, 22(2): 132–139
CrossRef Pubmed Google scholar
[65]
Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell, 147(4): 728–741
CrossRef Pubmed Google scholar
[66]
Mizushima N, Yoshimori T, Ohsumi Y (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132
CrossRef Pubmed Google scholar
[67]
Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803
Pubmed
[68]
Newgard C B, An J, Bain J R, Muehlbauer M J, Stevens R D, Lien L F, Haqq A M, Shah S H, Arlotto M, Slentz C A, Rochon J, Gallup D, Ilkayeva O, Wenner B R, Yancy W S Jr, Eisenson H, Musante G, Surwit R S, Millington D S, Butler M D, Svetkey L P (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab, 9(4): 311–326
CrossRef Pubmed Google scholar
[69]
Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, Koyama T, Goto Y, Nagatake T, Nagai S, Kiyono H, Kawalec M, Reichhart J M, Sasakawa C (2011). A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe, 9(5): 376–389
CrossRef Pubmed Google scholar
[70]
Ossareh-Nazari B, Niño C A, Bengtson M H, Lee J W, Joazeiro C A, Dargemont C (2014). Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol, 204(6): 909–917
CrossRef Pubmed Google scholar
[71]
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel Y L (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab, 13(6): 655–667
CrossRef Pubmed Google scholar
[72]
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145
CrossRef Pubmed Google scholar
[73]
Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6): 927–939
CrossRef Pubmed Google scholar
[74]
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325
CrossRef Pubmed Google scholar
[75]
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan R N, Gilpin C, Levine B (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5): 931–946
CrossRef Pubmed Google scholar
[76]
Quan W, Kim H K, Moon E Y, Kim S S, Choi C S, Komatsu M, Jeong Y T, Lee M K, Kim K W, Kim M S, Lee M S (2012a). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153(4): 1817–1826
CrossRef Pubmed Google scholar
[77]
Quan W, Lim Y M, Lee M S (2012b). Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med, 44(2): 81–88
CrossRef Pubmed Google scholar
[78]
Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E, Plotz P (2008). Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet, 17(24): 3897–3908
CrossRef Pubmed Google scholar
[79]
Rabinowitz J D, White E (2010). Autophagy and metabolism. Science, 330(6009): 1344–1348
CrossRef Pubmed Google scholar
[80]
Ravikumar B, Duden R, Rubinsztein D C (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet, 11(9): 1107–1117
CrossRef Pubmed Google scholar
[81]
Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222
CrossRef Pubmed Google scholar
[82]
Ryter S W, Cloonan S M, Choi A M K (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells, 36(1): 7–16
CrossRef Pubmed Google scholar
[83]
Santambrogio L, Cuervo A M (2011). Chasing the elusive mammalian microautophagy. Autophagy, 7(6): 652–654
CrossRef Pubmed Google scholar
[84]
Sengupta A, Molkentin J D, Yutzey K E (2009). FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem, 284(41): 28319–28331
CrossRef Pubmed Google scholar
[85]
Seok S, Fu T, Choi S E, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper J K (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516(7529): 108–111
Pubmed
[86]
Settembre C, De Cegli R, Mansueto G, Saha P K, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch T J, Wollenberg A C, Di Bernardo D, Chan L, Irazoqui J E, Ballabio A (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol, 15(6): 647–658
CrossRef Pubmed Google scholar
[87]
Settembre C, Di Malta C, Polito V A, Garcia Arencibia M, Vetrini F, Erdin S, Erdin S U, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein D C, Ballabio A (2011). TFEB links autophagy to lysosomal biogenesis. Science, 332(6036): 1429–1433
CrossRef Pubmed Google scholar
[88]
Shaid S, Brandts C H, Serve H, Dikic I (2013). Ubiquitination and selective autophagy. Cell Death Differ, 20(1): 21–30
CrossRef Pubmed Google scholar
[89]
Shang L, Wang X (2011). AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy, 7(8): 924–926
CrossRef Pubmed Google scholar
[90]
Simonsen A, Birkeland H C, Gillooly D J, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H (2004). Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci, 117(Pt 18): 4239–4251
CrossRef Pubmed Google scholar
[91]
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo A M, Czaja M J (2009a). Autophagy regulates lipid metabolism. Nature, 458(7242): 1131–1135
CrossRef Pubmed Google scholar
[92]
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo A M, Luu Y K, Tang Y, Pessin J E, Schwartz G J, Czaja M J (2009b). Autophagy regulates adipose mass and differentiation in mice. J Clin Invest, 119(11): 3329–3339
Pubmed
[93]
Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218
CrossRef Pubmed Google scholar
[94]
Warr M R, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494(7437): 323–327
CrossRef Pubmed Google scholar
[95]
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell, 30(6): 678–688
CrossRef Pubmed Google scholar
[96]
Wong E, Bejarano E, Rakshit M, Lee K, Hanson H H, Zaarur N, Phillips G R, Sherman M Y, Cuervo A M (2012). Molecular determinants of selective clearance of protein inclusions by autophagy. Nat Commun, 3: 1240
CrossRef Pubmed Google scholar
[97]
Yang L, Li P, Fu S, Calay E S, Hotamisligil G S (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab, 11(6): 467–478
CrossRef Pubmed Google scholar
[98]
Zhang C, He Y, Okutsu M, Ong L C, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z (2013). Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradation. Am J Physiol Endocrinol Metab, 305(4): E530–E539
CrossRef Pubmed Google scholar
[99]
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA, 106(47): 19860–19865
CrossRef Pubmed Google scholar
[100]
Zhao J, Brault J J, Schild A, Cao P, Sandri M, Schiaffino S, Lecker S H, Goldberg A L (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab, 6(6): 472–483
CrossRef Pubmed Google scholar
[101]
Zheng Y T, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell J H (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol, 183(9): 5909–5916
CrossRef Pubmed Google scholar
[102]
Zhong Y, Wang Q J, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476
CrossRef Pubmed Google scholar
[103]
Zhou G, Sebhat I K, Zhang B B (2009). AMPK activators—potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf), 196(1): 175–190
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the NIH Pathway to Independence Award R00 DK094980 to C.H.
Altea Rocchi and Congcong He declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(762 KB)

Accesses

Citations

Detail

Sections
Recommended

/