Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression

Gahana Advani1,Anderly C. Chueh2,Ya Chee Lim1,Amardeep Dhillon3,Heung-Chin Cheng1,*()

PDF(925 KB)
PDF(925 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (3) : 195-202. DOI: 10.1007/s11515-015-1352-4
REVIEW

Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression

  • Gahana Advani1,Anderly C. Chueh2,Ya Chee Lim1,Amardeep Dhillon3,Heung-Chin Cheng1,*()
Author information +
History +

Abstract

Aberrant activation of Src-family tyrosine kinases (SFKs) directs initiation of metastasis and development of drug resistance in multiple solid tumors and hematological cancers. Since oncogenic mutations of SFKs are rare events, aberrant activation of SFKs in cancer is likely due to dysregulation of the two major upstream inhibitors: C-terminal Src kinase (Csk) and its homolog Csk-homologous kinase (Chk/Matk). Csk and Chk/Matk inhibit SFKs by selectively phosphorylating the inhibitory tyrosine residue at their C-terminal tail. Additionally, Chk/Matk can also employ a non-catalytic inhibitory mechanism to inhibit multiple active forms of SFKs, suggesting that Chk/Matk is a versatile inhibitor capable of constraining the activity of multiple active forms of SFKs. Mounting evidence suggests that Chk/Matk is a potential tumor suppressor downregulated by epigenetic silencing and/or missense mutations in several cancers such as colorectal and lung carcinoma. In spite of the potential significance of Chk/Matk in cancer, little is known about its structure and regulation. This review focuses on the mechanisms by which Chk/Matk expression and activity is downregulated in cancers. Specifically, we assessed the evidence demonstrating downregulation of Chk/Matk by epigenetic silencing and missense mutations in cancers. The other focus is the tumor suppressive mechanism of Chk/Matk. The final focus of the review is on the clinical applications of the investigations into the mechanism of epigenetic silencing of Chk/Matk expression and the tumor suppressive mechanism of Chk/Matk; specifically we discussed how they can benefit the development of biomarkers for early diagnosis of cancers and specific SFK inhibitors for use as cancer therapeutics.

Keywords

tumour suppressor / protein tyrosine kinase / Src-family kinases / CSK / CHK/Matk / colon cancer

Cite this article

Download citation ▾
Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression. Front. Biol., 2015, 10(3): 195‒202 https://doi.org/10.1007/s11515-015-1352-4

References

1 Avraham S, Jiang S, Ota S, Fu Y, Deng B, Dowler L L, White R A, Avraham H (1995). Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product. J Biol Chem, 270(4): 1833–1842
2 Barkho S, Pierce L C, McGlone M L, Li S, Woods V L Jr, Walker R C, Adams J A, Jennings P A (2013). Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). PLOS Comput Biol, 9(9): e1003188
3 Bennett B D, Cowley S, Jiang S, London R, Deng B, Grabarek J, Groopman J E, Goeddel D V, Avraham H (1994). Identification and characterization of a novel tyrosine kinase from megakaryocytes. J Biol Chem, 269(2): 1068–1074
4 Bhattacharjee A, Richards W G, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark E J, Lander E S, Wong W, Johnson B E, Golub T R, Sugarbaker D J, Meyerson M (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA, 98(24): 13790–13795
5 Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene, 19(49): 5620–5635
6 Cance W G, Craven R J, Bergman M, Xu L, Alitalo K, Liu E T (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell Growth Differ, 5(12): 1347–1355
7 Chan K C, Lio D S, Dobson R C, Jarasrassamee B, Hossain M I, Roslee A K, Ia K K, Perugini M A, Cheng H C (2010). Development of the procedures for high-yield expression and rapid purification of active recombinant Csk-homologous kinase (CHK): comparison of the catalytic activities of CHK and CSK. Protein Expr Purif, 74(2): 139–147
8 Cho J Y, Lim J Y, Cheong J H, Park Y Y, Yoon S L, Kim S M, Kim S B, Kim H, Hong S W, Park Y N, Noh S H, Park E S, Chu I S, Hong W K, Ajani J A, Lee J S(2011). Gene expression signature-based prognostic risk score in gastric cancer, Clin Cancer Res, 17: 1850–1857
9 Chong Y P, Chan A S, Chan K C, Williamson N A, Lerner E C, Smithgall T E, Bjorge J D, Fujita D J, Purcell A W, Scholz G, Mulhern T D, Cheng H C (2006). C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. J Biol Chem, 281(44): 32988–32999
10 Chong Y P, Mulhern T D, Cheng H C (2005). C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)—endogenous negative regulators of Src-family protein kinases. Growth Factors, 23(3): 233–244
11 Chong Y P, Mulhern T D, Zhu H J, Fujita D J, Bjorge J D, Tantiongco J P, Sotirellis N, Lio D S, Scholz G, Cheng H C (2004). A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity. J Biol Chem, 279(20): 20752–20766
12 Chow L M, Davidson D, Fournel M, Gosselin P, Lemieux S, Lyu M S, Kozak C A, Matis L A, Veillette A (1994). Two distinct protein isoforms are encoded by ntk, a csk-related tyrosine protein kinase gene. Oncogene, 9(12): 3437–3448
13 Cordero J B, Ridgway R A, Valeri N, Nixon C, Frame M C, Muller W J, Vidal M, Sansom O J (2014). c-Src drives intestinal regeneration and transformation. EMBO J, 33(13): 1474–1491
14 Davidson D, Chow L M, Veillette A (1997). Chk, a Csk family tyrosine protein kinase, exhibits Csk-like activity in fibroblasts, but not in an antigen-specific T-cell line. J Biol Chem, 272(2): 1355–1362
15 Han N M, Curley S A, Gallick G E(1996). Differential activation of pp60(c-src) and pp62(c-yes) in human colorectal carcinoma liver metastases, Clin Cancer Res, 2 (8): 1397–1404
16 Hinoue T, Weisenberger D J, Lange C P, Shen H, Byun H M, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk C M, Tollenaar R A, Laird P W (2012). Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res, 22(2): 271–282
17 Hirao A, Huang X L, Suda T, Yamaguchi N (1998). Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading. J Biol Chem, 273(16): 10004–10010
18 Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li S S (2008). Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics, 7(4): 768–784
19 Huang K, Wang Y H, Brown A, Sun G (2009). Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. J Mol Biol, 386(4): 1066–1077
20 Ia K K, Jeschke G R, Deng Y, Kamaruddin M A, Williamson N A, Scanlon D B, Culvenor J G, Hossain M I, Purcell A W, Liu S, Zhu H J, Catimel B, Turk B E, Cheng H C (2011). Defining the substrate specificity determinants recognized by the active site of C-terminal Src kinase-homologous kinase (CHK) and identification of β-synuclein as a potential CHK physiological substrate. Biochemistry, 50(31): 6667–6677
21 Ia K K, Mills R D, Hossain M I, Chan K C, Jarasrassamee B, Jorissen R N, Cheng H C (2010). Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth Factors, 28(5): 329–350
22 Jamros M A, Oliveira L C, Whitford P C, Onuchic J N, Adams J A, Jennings P A (2012). Substrate-specific reorganization of the conformational ensemble of CSK implicates novel modes of kinase function. PLOS Comput Biol, 8(9): e1002695
23 Kim S O, Avraham S, Jiang S, Zagozdzon R, Fu Y, Avraham H K (2004). Differential expression of Csk homologous kinase (CHK) in normal brain and brain tumors. Cancer, 101(5): 1018–1027
24 Klages S, Adam D, Class K, Fargnoli J, Bolen J B, Penhallow R C (1994). Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family. Proc Natl Acad Sci USA, 91(7): 2597–2601
25 Kuang S Q, Tong W G, Yang H, Lin W, Lee M K, Fang Z H, Wei Y, Jelinek J, Issa J P, Garcia-Manero G (2008). Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia, 22(8): 1529–1538
26 Kuo S S, Armanini M P, Phillips H S, Caras I W (1997). Csk and BatK show opposite temporal expression in the rat CNS: consistent with its late expression in development, BatK induces differentiation of PC12 cells. Eur J Neurosci, 9(11): 2383–2393
27 Kuo S S, Moran P, Gripp J, Armanini M, Phillips H S, Goddard A, Caras I W (1994). Identification and characterization of Batk, a predominantly brain-specific non-receptor protein tyrosine kinase related to Csk. J Neurosci Res, 38(6): 705–715
28 Laffaire J, Everhard S, Idbaih A, Crinière E, Marie Y, de Reyniès A, Schiappa R, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre J Y, Thillet J, Ducray F (2011). Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro-oncol, 13(1): 84–98
29 Le X F, Bast R C Jr (2011). Src family kinases and paclitaxel sensitivity. Cancer Biol Ther, 12(4): 260–269
30 Lee S, Ayrapetov M K, Kemble D J, Parang K, Sun G (2006). Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk). J Biol Chem, 281(12): 8183–8189
31 Lerner E C, Smithgall T E (2002). SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat Struct Biol, 9(5): 365–369
32 Lerner E C, Trible R P, Schiavone A P, Hochrein J M, Engen J R, Smithgall T E (2005). Activation of the Src family kinase Hck without SH3-linker release. J Biol Chem, 280(49): 40832–40837
33 Levinson N M, Seeliger M A, Cole P A, Kuriyan J (2008). Structural basis for the recognition of c-Src by its inactivator Csk. Cell, 134(1): 124–134
34 Lieser S A, Shaffer J, Adams J A (2006). SRC tail phosphorylation is limited by structural changes in the regulatory tyrosine kinase Csk. J Biol Chem, 281(49): 38004–38012
35 Matsuoka H, Nada S, Okada M (2004). Mechanism of Csk-mediated down-regulation of Src family tyrosine kinases in epidermal growth factor signaling. J Biol Chem, 279(7): 5975–5983
36 Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee C H, Kuriyan J, Miller W T (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature, 385(6617): 650–653
37 Nakayama Y, Kawana A, Igarashi A, Yamaguchi N (2006). Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus. Exp Cell Res, 312(12): 2252–2263
38 Ogawa A, Takayama Y, Sakai H, Chong K T, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002). Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem, 277(17): 14351–14354
39 Okada M (2012). Regulation of the SRC family kinases by Csk. Int J Biol Sci, 8(10): 1385–1397
40 Rosenbluh J, Nijhawan D, Cox A G, Li X, Neal J T, Schafer E J, Zack T I, Wang X, Tsherniak A, Schinzel A C, Shao D D, Schumacher S E, Weir B A, Vazquez F, Cowley G S, Root D E, Mesirov J P, Beroukhim R, Kuo C J, Goessling W, Hahn W C (2012). β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell, 151(7): 1457–1473
41 Sicheri F, Moarefi I, Kuriyan J (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature, 385(6617): 602–609
42 Sirvent A, Benistant C, Roche S (2012a). Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer, Am J Cancer Res, 2(4): 357–371
43 Sirvent A, Vigy O, Orsetti B, Urbach S, Roche S (2012b). Analysis of SRC oncogenic signaling in colorectal cancer by stable isotope labeling with heavy amino acids in mouse xenografts. Mol Cell Proteomics, 11(12): 1937–1950
44 Summy J M, Gallick G E (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev, 22(4): 337–358
45 Sun L, Hui A M, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine H A (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 9(4): 287–300
46 Takeuchi S, Takayama Y, Ogawa A, Tamura K, Okada M (2000). Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J Biol Chem, 275(38): 29183–29186
47 Tan S Y, Chuang S S, Tang T, Tan L, Ko Y H, Chuah K L, Ng S B, Chng W J, Gatter K, Loong F, Liu Y H, Hosking P, Cheah P L, Teh B T, Tay K, Koh M, Lim S T (2013). Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8αα phenotype. Leukemia, 27(8): 1688– 1696
48 Tan S Y, Ooi A S, Ang M K, Koh M, Wong J C, Dykema K, Ngeow J, Loong S, Gatter K, Tan L, Lim L C, Furge K, Tao M, Lim S T, Loong F, Cheah P L, Teh B T (2011). Nuclear expression of MATK is a novel marker of type II enteropathy-associated T-cell lymphoma. Leukemia, 25(3): 555–557
49 Touil Y, Igoudjil W, Corvaisier M, Dessein A F, Vandomme J, Monte D, Stechly L, Skrypek N, Langlois C, Grard G, Millet G, Leteurtre E, Dumont P, Truant S, Pruvot F R, Hebbar M, Fan F, Ellis L M, Formstecher P, van Seuningen I, Gespach C, Polakowska R, Huet G (2014). Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis, Clin Cancer Res, 20 (4): 837–846
50 Wong L, Lieser S A, Miyashita O, Miller M, Tasken K, Onuchic J N, Adams J A, Woods V L Jr, Jennings P A (2005). Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. J Mol Biol, 351(1): 131–143
51 Xu W, Harrison S C, Eck M J (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature, 385(6617): 595–602
52 Zhu S, Bjorge J D, Cheng H C, Fujita D J (2008). Decreased CHK protein levels are associated with Src activation in colon cancer cells. Oncogene, 27(14): 2027–2034
PDF(925 KB)

Accesses

Citations

Detail

Sections
Recommended

/