Targeting endothelial cell metabolism: new therapeutic prospects?

Annalisa Zecchin, Aleksandra Brajic, Peter Carmeliet

PDF(957 KB)
PDF(957 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (2) : 125-140. DOI: 10.1007/s11515-015-1350-6
REVIEW
REVIEW

Targeting endothelial cell metabolism: new therapeutic prospects?

Author information +
History +

Abstract

Endothelial cells (ECs) line blood vessels and function as a vital conduit for oxygen and nutrients, but can also form vascular niches for various types of stem cells. While mostly quiescent throughout adult life, ECs can rapidly switch to a highly active state, and start to sprout in order to form new blood vessels. ECs can also become dysfunctional, as occurs in diabetes and atherosclerosis. Recent studies have demonstrated a key role for EC metabolism in the regulation of angiogenesis, and showed that EC metabolism is even capable of overriding genetic signals. In this review, we will review the basic principles of EC metabolism and focus on the metabolic alterations that accompany EC dysfunction in diabetes and vessel overgrowth in cancer. We will also highlight how EC metabolism influences EC behavior by modulating post-translational modification and epigenetic changes, and illustrate how dietary supplementation of metabolites can change EC responses. Finally, we will discuss the potential of targeting EC metabolism as a novel therapeutic strategy.

Keywords

angiogenesis / metabolism / endothelial cell dysfunction / anti-angiogenic therapy

Cite this article

Download citation ▾
Annalisa Zecchin, Aleksandra Brajic, Peter Carmeliet. Targeting endothelial cell metabolism: new therapeutic prospects?. Front. Biol., 2015, 10(2): 125‒140 https://doi.org/10.1007/s11515-015-1350-6

References

[1]
Akinyeke T, Matsumura S, Wang X, Wu Y, Schalfer E D, Saxena A, Yan W, Logan S K, Li X (2013). Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis, 34(12): 2823–2832
CrossRef Pubmed Google scholar
[2]
Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M (2011). Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene, 30(10): 1174–1182
CrossRef Pubmed Google scholar
[3]
Antonetti D A, Klein R, Gardner T W (2012). Diabetic retinopathy. N Engl J Med, 366(13): 1227–1239
CrossRef Pubmed Google scholar
[4]
Antoniades C, Bakogiannis C, Leeson P, Guzik T J, Zhang M H, Tousoulis D, Antonopoulos A S, Demosthenous M, Marinou K, Hale A, Paschalis A, Psarros C, Triantafyllou C, Bendall J, Casadei B, Stefanadis C, Channon K M (2011). Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation, 124(3): 335–345
CrossRef Pubmed Google scholar
[5]
Arany Z, Foo S Y, Ma Y, Ruas J L, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala S M, Baek K H, Rosenzweig A, Spiegelman B M (2008). HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 451(7181): 1008–1012
CrossRef Pubmed Google scholar
[6]
Arunachalam G, Samuel S M, Marei I, Ding H, Triggle C R (2014). Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol, 171(2): 523–535
CrossRef Pubmed Google scholar
[7]
Avraham-Davidi I, Ely Y, Pham V N, Castranova D, Grunspan M, Malkinson G, Gibbs-Bar L, Mayseless O, Allmog G, Lo B, Warren C M, Chen T T, Ungos J, Kidd K, Shaw K, Rogachev I, Wan W, Murphy P M, Farber S A, Carmel L, Shelness G S, Iruela-Arispe M L, Weinstein B M, Yaniv K (2012). ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat Med, 18(6): 967–973
CrossRef Pubmed Google scholar
[8]
Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R (2014). Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis, 232(1): 156–164
CrossRef Pubmed Google scholar
[9]
Beleznai T, Bagi Z (2012). Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation. Vascul Pharmacol, 56(3-4): 115–121
CrossRef Pubmed Google scholar
[10]
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams R H (2009). The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137(6): 1124–1135
CrossRef Pubmed Google scholar
[11]
Biasucci L M, Biasillo G, Stefanelli A (2010). Inflammatory markers, cholesterol and statins: pathophysiological role and clinical importance. Clin Chem Lab Med, 48: 1685–1691
[12]
Bode-Böger S M, Scalera F, Ignarro L J (2007). The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol Ther, 114(3): 295–306
CrossRef Pubmed Google scholar
[13]
Boger R H (2009). Asymmetric dimethylarginine: understanding the physiology, genetics, and clinical relevance of this novel biomarker. Proceedings of the 4th International Symposium on ADMA. Pharmacol Res, 60: 447
[14]
Brandes R P, Weissmann N, Schröder K (2014). Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J Mol Cell Cardiol, 73: 70–79
CrossRef Pubmed Google scholar
[15]
Browne C D, Hindmarsh E J, Smith J W (2006). Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J, 20: 2027–2035
[16]
Brownlee M (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865): 813–820
CrossRef Pubmed Google scholar
[17]
Brownlee M (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6): 1615–1625
CrossRef Pubmed Google scholar
[18]
Cai S, Khoo J, Channon K M (2005). Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovasc Res, 65(4): 823–831
CrossRef Pubmed Google scholar
[19]
Calder P C (2014). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta
Pubmed
[20]
Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti F O, Palozza P (2004). n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and-2 and HIF-1alpha induction pathway. Carcinogenesis, 25(12): 2303–2310
CrossRef Pubmed Google scholar
[21]
Carracedo A, Cantley L C, Pandolfi P P (2013). Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer, 13(4): 227–232
CrossRef Pubmed Google scholar
[22]
Castillo-Díaz S A, Garay-Sevilla M E, Hernández-González M A, Solís-Martínez M O, Zaina S (2010). Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med, 26(5): 691–700
Pubmed
[23]
Chan J R, Böger R H, Bode-Böger S M, Tangphao O, Tsao P S, Blaschke T F, Cooke J P (2000). Asymmetric dimethylarginine increases mononuclear cell adhesiveness in hypercholesterolemic humans. Arterioscler Thromb Vasc Biol, 20(4): 1040–1046
CrossRef Pubmed Google scholar
[24]
Cho Y E, Basu A, Dai A, Heldak M, Makino A (2013). Coronary endothelial dysfunction and mitochondrial reactive oxygen species in type 2 diabetic mice. Am J Physiol Cell Physiol, 305(10): C1033–C1040
CrossRef Pubmed Google scholar
[25]
Choudhary C, Weinert B T, Nishida Y, Verdin E, Mann M (2014). The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol, 15(8): 536–550
CrossRef Pubmed Google scholar
[26]
Chung S J, Lee S H, Lee Y J, Park H S, Bönger R, Kang Y H (2004). Pyruvate protection against endothelial cytotoxicity induced by blockade of glucose uptake. J Biochem Mol Biol, 37(2): 239–245
CrossRef Pubmed Google scholar
[27]
Cittadini A, Napoli R, Monti M G, Rea D, Longobardi S, Netti P A, Walser M, Samà M, Aimaretti G, Isgaard J, Saccà L (2012). Metformin prevents the development of chronic heart failure in the SHHF rat model. Diabetes, 61(4): 944–953
CrossRef Pubmed Google scholar
[28]
Connor K M, SanGiovanni J P, Lofqvist C, Aderman C M, Chen J, Higuchi A, Hong S, Pravda E A, Majchrzak S, Carper D, Hellstrom A, Kang J X, Chew E Y, Salem N Jr, Serhan C N, Smith L E (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med, 13(7): 868–873
CrossRef Pubmed Google scholar
[29]
Coutelle O, Hornig-Do H T, Witt A, Andree M, Schiffmann L M, Piekarek M, Brinkmann K, Seeger J M, Liwschitz M, Miwa S, Hallek M, Krönke M, Trifunovic A, Eming S A, Wiesner R J, Hacker U T, Kashkar H (2014). Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Mol Med, 6(5): 624–639
Pubmed
[30]
Crabtree M J, Tatham A L, Al-Wakeel Y, Warrick N, Hale A B, Cai S, Channon K M, Alp N J (2009). Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem, 284(2): 1136–1144
CrossRef Pubmed Google scholar
[31]
Croci D O, Cerliani J P, Dalotto-Moreno T, Méndez-Huergo S P, Mascanfroni I D, Dergan-Dylon S, Toscano M A, Caramelo J J, García-Vallejo J J, Ouyang J, Mesri E A, Junttila M R, Bais C, Shipp M A, Salatino M, Rabinovich G A (2014). Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell, 156(4): 744–758
CrossRef Pubmed Google scholar
[32]
Curtarello M, Zulato E, Nardo G, Valtorta S, Guzzo G, Rossi E, Esposito G, Msaki A, Pastò A, Rasola A, Persano L, Ciccarese F, Bertorelle R, Todde S, Plebani M, Schroer H, Walenta S, Mueller-Klieser W, Amadori A, Moresco R M, Indraccolo S (2015). VEGF-targeted therapy stably modulates the glycolytic phenotype of tumor cells. Cancer Res, 75(1): 120–133
CrossRef Pubmed Google scholar
[33]
Dagher Z, Ruderman N, Tornheim K, Ido Y (2001). Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ Res, 88(12): 1276–1282
CrossRef Pubmed Google scholar
[34]
Dallaglio K, Bruno A, Cantelmo A R, Esposito A I, Ruggiero L, Orecchioni S, Calleri A, Bertolini F, Pfeffer U, Noonan D M, Albini A (2014). Paradoxic effects of metformin on endothelial cells and angiogenesis. Carcinogenesis, 35(5): 1055–1066
CrossRef Pubmed Google scholar
[35]
Davignon J, Ganz P (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 Suppl 1): III27–III32
Pubmed
[36]
Davis B J, Xie Z, Viollet B, Zou M H (2006). Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes, 55(2): 496–505
CrossRef Pubmed Google scholar
[37]
Dawson M A, Kouzarides T (2012). Cancer epigenetics: from mechanism to therapy. Cell, 150(1): 12–27
CrossRef Pubmed Google scholar
[38]
Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson A H, Kirkpatrick C L, Wollheim C B, Eliasson L, Rönn T, Bacos K, Ling C (2014). Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet, 10(3): e1004160
CrossRef Pubmed Google scholar
[39]
De Bock K, Georgiadou M, Carmeliet P (2013a). Role of endothelial cell metabolism in vessel sprouting. Cell Metab, 18(5): 634–647
CrossRef Pubmed Google scholar
[40]
De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong B W, Cantelmo A R, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, Phng L K, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins R T, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven P P, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis R J, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013b). Role of PFKFB3-driven glycolysis in vessel sprouting. Cell, 154(3): 651–663
CrossRef Pubmed Google scholar
[41]
Dhillon B, Badiwala M V, Maitland A, Rao V, Li S H, Verma S (2003). Tetrahydrobiopterin attenuates homocysteine induced endothelial dysfunction. Mol Cell Biochem, 247(1-2): 223–227
CrossRef Pubmed Google scholar
[42]
Doddaballapur A, Michalik K M, Manavski Y, Lucas T, Houtkooper R H, You X, Chen W, Zeiher A M, Potente M, Dimmeler S, Boon R A (2015). Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol, 35(1): 137–145
CrossRef Pubmed Google scholar
[43]
Dowling R J O, Niraula S, Stambolic V, Goodwin P J (2012). Metformin in cancer: translational challenges. J Mol Endocrinol, 48(3): R31–R43
CrossRef Pubmed Google scholar
[44]
Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M (2003). Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest, 112(7): 1049–1057
CrossRef Pubmed Google scholar
[45]
Du X L, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001). Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest, 108(9): 1341–1348
CrossRef Pubmed Google scholar
[46]
Du X L, Edelstein D, Rossetti L, Fantus I G, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA, 97(22): 12222–12226
CrossRef Pubmed Google scholar
[47]
Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim C W, Jang I, Son D J, Kim D, Pan C, Fan Y, Jordan I K, Jo H (2014). Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest, 124(7): 3187–3199
CrossRef Pubmed Google scholar
[48]
Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P (2013). Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab, 24(12): 589–596
CrossRef Pubmed Google scholar
[49]
Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince T A, Kozakewich H, Bischoff J, Cataltepe S (2009), Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J, 23: 3865–3873
[50]
Eriksson L, Nyström T (2014). Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis. Cardiovasc Diabetol, 13(1): 152
CrossRef Pubmed Google scholar
[51]
Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2012). Effect of metformin on the proliferation, migration, and MMP-2 and -9 expression of human umbilical vein endothelial cells. Mol Med Rep, 5: 1068–1074
[52]
Fang L, Choi S H, Baek J S, Liu C, Almazan F, Ulrich F, Wiesner P, Taleb A, Deer E, Pattison J, Torres-Vázquez J, Li A C, Miller Y I (2013). Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature, 498(7452): 118–122
CrossRef Pubmed Google scholar
[53]
Federici M, Menghini R, Mauriello A, Hribal M L, Ferrelli F, Lauro D, Sbraccia P, Spagnoli L G, Sesti G, Lauro R (2002). Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation, 106(4): 466–472
CrossRef Pubmed Google scholar
[54]
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014). Metformin: from mechanisms of action to therapies. Cell Metab, 20(6): 953–966
CrossRef Pubmed Google scholar
[55]
Forstermann U, Sessa W C (2012). Nitric oxide synthases: regulation and function. Eur Heart J, 33: 829–837, 837a–837d
[56]
Friedmann D R, Marmorstein R (2013). Structure and mechanism of non-histone protein acetyltransferase enzymes. FEBS J, 280: 5570–5581
[57]
Funk S D, Yurdagul A Jr, Orr A W (2012). Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med, 2012: 569654
Pubmed
[58]
Ghajar C M, Peinado H, Mori H, Matei I R, Evason K J, Brazier H, Almeida D, Koller A, Hajjar K A, Stainier D Y, Chen E I, Lyden D, Bissell M J (2013). The perivascular niche regulates breast tumour dormancy. Nat Cell Biol, 15(7): 807–817
CrossRef Pubmed Google scholar
[59]
Gómez-Gaviro M V, Lovell-Badge R, Fernández-Avilés F, Lara-Pezzi E (2012). The vascular stem cell niche. J Cardiovasc Transl Res, 5(5): 618–630
CrossRef Pubmed Google scholar
[60]
Gorren A C, Bec N, Schrammel A, Werner E R, Lange R, Mayer B (2000). Low-temperature optical absorption spectra suggest a redox role for tetrahydrobiopterin in both steps of nitric oxide synthase catalysis. Biochemistry, 39(38): 11763–11770
CrossRef Pubmed Google scholar
[61]
Groschner L N, Waldeck-Weiermair M, Malli R, Graier W F (2012). Endothelial mitochondria–less respiration, more integration. Pflugers Arch, 464: 63–76
[62]
Guarani V, Deflorian G, Franco C A, Krüger M, Phng L K, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt M H, Zimmermann B, Brandes R P, Mione M, Westphal C H, Braun T, Zeiher A M, Gerhardt H, Dimmeler S, Potente M (2011). Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature, 473(7346): 234–238
CrossRef Pubmed Google scholar
[63]
Hadad S M, Hardie D G, Appleyard V, Thompson A M (2014). Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol, 16(8): 746–752
CrossRef Pubmed Google scholar
[64]
Hagberg C E, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren L A, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Ylä-Herttuala S, Lindahl P, Eriksson U (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 464(7290): 917–921
CrossRef Pubmed Google scholar
[65]
Hagberg C E, Mehlem A, Falkevall A, Muhl L, Fam B C, Ortsäter H, Scotney P, Nyqvist D, Samén E, Lu L, Stone-Elander S, Proietto J, Andrikopoulos S, Sjöholm A, Nash A, Eriksson U (2012). Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature, 490(7420): 426–430
CrossRef Pubmed Google scholar
[66]
Harjes U, Bridges E, McIntyre A, Fielding B A, Harris A L (2014). Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem, 289(33): 23168–23176
CrossRef Pubmed Google scholar
[67]
Hernandez-Mijares A, Rocha M, Rovira-Llopis S, Bañuls C, Bellod L, de Pablo C, Alvarez A, Roldan-Torres I, Sola-Izquierdo E, Victor V M (2013). Human leukocyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients and their association with silent myocardial ischemia. Diabetes Care, 36(6): 1695–1702
CrossRef Pubmed Google scholar
[68]
Hiltunen M O, Turunen M P, Häkkinen T P, Rutanen J, Hedman M, Mäkinen K, Turunen A M, Aalto-Setälä K, Ylä-Herttuala S (2002). DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med, 7(1): 5–11
CrossRef Pubmed Google scholar
[69]
Hirschhaeuser F, Sattler U G, Mueller-Klieser W (2011). Lactate: a metabolic key player in cancer. Cancer Res, 71(22): 6921–6925
CrossRef Pubmed Google scholar
[70]
Hotta N, Kawamori R, Fukuda M, Shigeta Y, Aldose Reductase Inhibitor-Diabetes Complications Trial Study G (2012). Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet Med, 29: 1529–1533
[71]
Hu J, Popp R, Frömel T, Ehling M, Awwad K, Adams R H, Hammes H P, Fleming I (2014). Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. J Exp Med, 211(2): 281–295
CrossRef Pubmed Google scholar
[72]
Jain R K (2013). Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol, 31(17): 2205–2218
CrossRef Pubmed Google scholar
[73]
Jakobsson L, Franco C A, Bentley K, Collins R T, Ponsioen B, Aspalter I M, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010). Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol, 12(10): 943–953
CrossRef Pubmed Google scholar
[74]
Jeon S M, Chandel N S, Hay N (2012). AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485(7400): 661–665
CrossRef Pubmed Google scholar
[75]
Jiang Y Z, Jiménez J M, Ou K, McCormick M E, Zhang L D, Davies P F (2014). Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo. Circ Res, 115(1): 32–43
CrossRef Pubmed Google scholar
[76]
Kaluza D, Kroll J, Gesierich S, Yao T P, Boon R A, Hergenreider E, Tjwa M, Rössig L, Seto E, Augustin H G, Zeiher A M, Dimmeler S, Urbich C (2011). Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J, 30(20): 4142–4156
CrossRef Pubmed Google scholar
[77]
Kang D H, Lee D J, Lee K W, Park Y S, Lee J Y, Lee S H, Koh Y J, Koh G Y, Choi C, Yu D Y, Kim J, Kang S W (2011). Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol Cell, 44(4): 545–558
CrossRef Pubmed Google scholar
[78]
Kawabe J, Hasebe N (2014). Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. Biomed Res Int, 2014: 701571
CrossRef Pubmed Google scholar
[79]
Keunen O, Johansson M, Oudin A, Sanzey M, Rahim S A, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh C B, Bjerkvig R, Niclou S P (2011). Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA, 108(9): 3749–3754
CrossRef Pubmed Google scholar
[80]
Kim Y R, Kim C S, Naqvi A, Kumar A, Kumar S, Hoffman T A, Irani K (2012). Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol, 303(2): H189–H196
CrossRef Pubmed Google scholar
[81]
Kizhakekuttu T J, Wang J, Dharmashankar K, Ying R, Gutterman D D, Vita J A, Widlansky M E (2012). Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus-related endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol, 32(10): 2531–2539
CrossRef Pubmed Google scholar
[82]
Kumar A, Kumar S, Vikram A, Hoffman T A, Naqvi A, Lewarchik C M, Kim Y R, Irani K (2013). Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol, 33(8): 1936–1942
CrossRef Pubmed Google scholar
[83]
Lee J V, Carrer A, Shah S, Snyder N W, Wei S, Venneti S, Worth A J, Yuan Z F, Lim H W, Liu S, Jackson E, Aiello N M, Haas N B, Rebbeck T R, Judkins A, Won K J, Chodosh L A, Garcia B A, Stanger B Z, Feldman M D, Blair I A, Wellen K E (2014). Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab, 20(2): 306–319
CrossRef Pubmed Google scholar
[84]
Lee M, Choy W C, Abid M R (2011). Direct sensing of endothelial oxidants by vascular endothelial growth factor receptor-2 and c-Src. PLoS ONE, 6(12): e28454
CrossRef Pubmed Google scholar
[85]
Leiper J, Nandi M (2011). The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nat Rev Drug Discov, 10(4): 277–291
CrossRef Pubmed Google scholar
[86]
Leopold J A, Zhang Y Y, Scribner A W, Stanton R C, Loscalzo J (2003). Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb Vasc Biol, 23(3): 411–417
CrossRef Pubmed Google scholar
[87]
Lim J H, Lee Y M, Chun Y S, Chen J, Kim J E, Park J W (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell, 38(6): 864–878
CrossRef Pubmed Google scholar
[88]
Liu H, Yu S, Zhang H, Xu J (2012). Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2. PLoS ONE, 7(10): e46720
CrossRef Pubmed Google scholar
[89]
Locasale J W (2013). Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer, 13(8): 572–583
CrossRef Pubmed Google scholar
[90]
Lorenzi M (2007). The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res, 2007: 61038
CrossRef Pubmed Google scholar
[91]
Lund G, Andersson L, Lauria M, Lindholm M, Fraga M F, Villar-Garea A, Ballestar E, Esteller M, Zaina S (2004). DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem, 279(28): 29147–29154
CrossRef Pubmed Google scholar
[92]
Luo B, Soesanto Y, McClain D A (2008). Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol, 28(4): 651–657
CrossRef Pubmed Google scholar
[93]
Mackenzie R M, Salt I P, Miller W H, Logan A, Ibrahim H A, Degasperi A, Dymott J A, Hamilton C A, Murphy M P, Delles C, Dominiczak A F (2013). Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clin Sci (Lond), 124(6): 403–411
CrossRef Pubmed Google scholar
[94]
Makino A, Scott B T, Dillmann W H (2010). Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia, 53(8): 1783–1794
CrossRef Pubmed Google scholar
[95]
Manigrasso M B, Juranek J, Ramasamy R, Schmidt A M (2014). Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab, 25(1): 15–22
CrossRef Pubmed Google scholar
[96]
Martin M J, Hayward R, Viros A, Marais R (2012). Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. Cancer Discov, 2(4): 344–355
CrossRef Pubmed Google scholar
[97]
Matafome P, Sena C, Seiça R (2013). Methylglyoxal, obesity, and diabetes. Endocrine, 43(3): 472–484
CrossRef Pubmed Google scholar
[98]
Meininger C J, Cai S, Parker J L, Channon K M, Kelly K A, Becker E J, Wood M K, Wade L A, Wu G (2004). GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J, 18: 1900–1902
[99]
Meininger C J, Marinos R S, Hatakeyama K, Martinez-Zaguilan R, Rojas J D, Kelly K A, Wu G (2000). Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J, 349(Pt 1): 353–356
CrossRef Pubmed Google scholar
[100]
Mendelson A, Frenette P S (2014). Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med, 20(8): 833–846
CrossRef Pubmed Google scholar
[101]
Merchan J R, Kovács K, Railsback J W, Kurtoglu M, Jing Y, Piña Y, Gao N, Murray T G, Lehrman M A, Lampidis T J (2010). Antiangiogenic activity of 2-deoxy-D-glucose. PLoS ONE, 5(10): e13699
CrossRef Pubmed Google scholar
[102]
Mishiro K, Imai T, Sugitani S, Kitashoji A, Suzuki Y, Takagi T, Chen H, Oumi Y, Tsuruma K, Shimazawa M, Hara H (2014). Diabetes mellitus aggravates hemorrhagic transformation after ischemic stroke via mitochondrial defects leading to endothelial apoptosis. PLoS ONE, 9(8): e103818
CrossRef Pubmed Google scholar
[103]
Mitra S, Khaidakov M, Lu J, Ayyadevara S, Szwedo J, Wang X W, Chen C, Khaidakov S, Kasula S R, Stone A, Pogribny I, Mehta J L (2011). Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. Am J Physiol Heart Circ Physiol, 301(2): H506–H513
CrossRef Pubmed Google scholar
[104]
Mohammed A, Janakiram N B, Brewer M, Ritchie R L, Marya A, Lightfoot S, Steele V E, Rao C V (2013). Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol, 6(6): 649–659
CrossRef Pubmed Google scholar
[105]
Morgan P E, Sheahan P J, Davies M J (2014). Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal. PLoS ONE, 9(1): e86564
CrossRef Pubmed Google scholar
[106]
Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca A, Roccaro A M, Ghobrial I M (2014). Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta, 1846(1): 26–39
Pubmed
[107]
Mugoni V, Postel R, Catanzaro V, De Luca E, Turco E, Digilio G, Silengo L, Murphy M P, Medana C, Stainier D Y, Bakkers J, Santoro M M (2013). Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell, 152(3): 504–518
CrossRef Pubmed Google scholar
[108]
Mukutmoni-Norris M, Hubbard N E, Erickson K L (2000). Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil. Cancer Lett, 150(1): 101–109
CrossRef Pubmed Google scholar
[109]
Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003). Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA, 100(4): 2112–2116
CrossRef Pubmed Google scholar
[110]
Nazarenko M S, Markov A V, Lebedev I N, Sleptsov A A, Frolov A V, Barbash O L, Puzyrev V P (2013). DNA methylation profiling of the vascular tissues in the setting of atherosclerosis. Mol Biol (Mosk), 47(3): 398–404
Pubmed
[111]
Nazarenko M S, Puzyrev V P, Lebedev I N, Frolov A V, Barbarash O L, Barbarash L S (2011). Methylation profiling of human atherosclerotic plaques. Mol Biol (Mosk), 45(4): 610–616
Pubmed
[112]
Nef H M, Möllmann H, Joseph A, Troidl C, Voss S, Vogt A, Weber M, Hamm C W, Elsässer A (2008). Effects of 2-deoxy-D-glucose on proliferation of vascular smooth muscle cells and endothelial cells. J Int Med Res, 36(5): 986–991
CrossRef Pubmed Google scholar
[113]
Nilsson E, Jansson P A, Perfilyev A, Volkov P, Pedersen M, Svensson M K, Poulsen P, Ribel-Madsen R, Pedersen N L, Almgren P, Fadista J, Rönn T, Klarlund Pedersen B, Scheele C, Vaag A, Ling C (2014). Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes, 63(9): 2962–2976
CrossRef Pubmed Google scholar
[114]
Nishikawa T, Edelstein D, Du X L, Yamagishi S, Matsumura T, Kaneda Y, Yorek M A, Beebe D, Oates P J, Hammes H P, Giardino I, Brownlee M (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779): 787–790
CrossRef Pubmed Google scholar
[115]
Obrosova I G, Kador P F (2011). Aldose reductase / polyol inhibitors for diabetic retinopathy. Curr Pharm Biotechnol, 12(3): 373–385
CrossRef Pubmed Google scholar
[116]
Oldendorf W H, Cornford M E, Brown W J (1977). The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol, 1(5): 409–417
CrossRef Pubmed Google scholar
[117]
Orecchioni S, Reggiani F, Talarico G, Mancuso P, Calleri A, Gregato G, Labanca V, Noonan D M, Dallaglio K, Albini A, Bertolini F (2014). The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int J Cancer
Pubmed
[118]
Pangare M, Makino A (2012). Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res, 48(1): 1–26
CrossRef Pubmed Google scholar
[119]
Parra-Bonilla G, Alvarez D F, Al-Mehdi A B, Alexeyev M, Stevens T (2010). Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol, 299(4): L513–L522
CrossRef Pubmed Google scholar
[120]
Pelosi E, Castelli G, Testa U (2014). Endothelial progenitors. Blood Cells Mol Dis, 52(4): 186–194
CrossRef Pubmed Google scholar
[121]
Pernicova I, Korbonits M (2014). Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol, 10(3): 143–156
CrossRef Pubmed Google scholar
[122]
Phng L K, Gerhardt H (2009). Angiogenesis: a team effort coordinated by notch. Dev Cell, 16(2): 196–208
CrossRef Pubmed Google scholar
[123]
Pober J S, Min W, Bradley J R (2009). Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol, 4(1): 71–95
CrossRef Pubmed Google scholar
[124]
Potente M, Gerhardt H, Carmeliet P (2011). Basic and therapeutic aspects of angiogenesis. Cell, 146(6): 873–887
CrossRef Pubmed Google scholar
[125]
Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt F W, Zeiher A M, Dimmeler S (2007). SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev, 21(20): 2644–2658
CrossRef Pubmed Google scholar
[126]
Qu H, Yang X (2014). Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. Cell Biochem Biophys
Pubmed
[127]
Quintero M, Colombo S L, Godfrey A, Moncada S (2006). Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA, 103(14): 5379–5384
CrossRef Pubmed Google scholar
[128]
Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I (2013). The vascular endothelium and human diseases. Int J Biol Sci, 9(10): 1057–1069
CrossRef Pubmed Google scholar
[129]
Rask-Madsen C, King G L (2013). Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab, 17(1): 20–33
CrossRef Pubmed Google scholar
[130]
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118
CrossRef Pubmed Google scholar
[131]
Rolfe B E, Worth N F, World C J, Campbell J H, Campbell G R (2005). Rho and vascular disease. Atherosclerosis, 183(1): 1–16
CrossRef Pubmed Google scholar
[132]
Rose D P, Connolly J M (1999). Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int J Oncol, 15(5): 1011–1015
Pubmed
[133]
Saint-Geniez M, Jiang A, Abend S, Liu L, Sweigard H, Connor K M, Arany Z (2013). PGC-1α regulates normal and pathological angiogenesis in the retina. Am J Pathol, 182(1): 255–265
CrossRef Pubmed Google scholar
[134]
Santos J M, Mishra M, Kowluru R A (2014). Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon. Exp Eye Res, 121: 168–177
CrossRef Pubmed Google scholar
[135]
Sawada N, Jiang A, Takizawa F, Safdar A, Manika A, Tesmenitsky Y, Kang K T, Bischoff J, Kalwa H, Sartoretto J L, Kamei Y, Benjamin L E, Watada H, Ogawa Y, Higashikuni Y, Kessinger C W, Jaffer F A, Michel T, Sata M, Croce K, Tanaka R, Arany Z (2014). Endothelial PGC-1α mediates vascular dysfunction in diabetes. Cell Metab, 19(2): 246–258
CrossRef Pubmed Google scholar
[136]
Schoors S, Cantelmo A R, Georgiadou M, Stapor P, Wang X, Quaegebeur A, Cauwenberghs S, Wong B W, Bifari F, Decimo I, Schoonjans L, De Bock K, Dewerchin M, Carmeliet P (2014a). Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy? Cell Cycle, 13(1): 16–22
CrossRef Pubmed Google scholar
[137]
Schoors S, De Bock K, Cantelmo A R, Georgiadou M, Ghesquière B, Cauwenberghs S, Kuchnio A, Wong B W, Quaegebeur A, Goveia J, Bifari F, Wang X, Blanco R, Tembuyser B, Cornelissen I, Bouché A, Vinckier S, Diaz-Moralli S, Gerhardt H, Telang S, Cascante M, Chesney J, Dewerchin M, Carmeliet P (2014b). Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab, 19(1): 37–48
CrossRef Pubmed Google scholar
[138]
Sena C M, Matafome P, Louro T, Nunes E, Fernandes R, Seiça R M (2011). Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol, 163(2): 424–437
CrossRef Pubmed Google scholar
[139]
Sena C M, Pereira A M, Seiça R (2013). Endothelial dysfunction- a major mediator of diabetic vascular disease. Biochim Biophys Acta, 1832(12): 2216–2231
CrossRef Pubmed Google scholar
[140]
Singh M, Ferrara N (2012). Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat Biotechnol, 30(7): 648–657
CrossRef Pubmed Google scholar
[141]
Sonveaux P, Copetti T, De Saedeleer C J, Végran F, Verrax J, Kennedy K M, Moon E J, Dhup S, Danhier P, Frérart F, Gallez B, Ribeiro A, Michiels C, Dewhirst M W, Feron O (2012). Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE, 7(3): e33418
CrossRef Pubmed Google scholar
[142]
Sounni N E, Cimino J, Blacher S, Primac I, Truong A, Mazzucchelli G, Paye A, Calligaris D, Debois D, De Tullio P, Mari B, De Pauw E, Noel A (2014). Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab, 20(2): 280–294
CrossRef Pubmed Google scholar
[143]
Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014). DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun, 50: 33–37
CrossRef Pubmed Google scholar
[144]
Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Lüscher T, Rabelink T (1997). Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest, 99(1): 41–46
CrossRef Pubmed Google scholar
[145]
Struck A W, Thompson M L, Wong L S, Micklefield J (2012). S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem, 13(18): 2642–2655
CrossRef Pubmed Google scholar
[146]
Su Y, Qadri S M, Wu L, Liu L (2013). Methylglyoxal modulates endothelial nitric oxide synthase-associated functions in EA.hy926 endothelial cells. Cardiovasc Diabetol, 12(1): 134
CrossRef Pubmed Google scholar
[147]
Sudhahar V, Urao N, Oshikawa J, McKinney R D, Llanos R M, Mercer J F, Ushio-Fukai M, Fukai T (2013). Copper transporter ATP7A protects against endothelial dysfunction in type 1 diabetic mice by regulating extracellular superoxide dismutase. Diabetes, 62(11): 3839–3850
CrossRef Pubmed Google scholar
[148]
Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson T H, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis E D (2014). A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell, 158(1): 84–97
CrossRef Pubmed Google scholar
[149]
Tabe Y, Konopleva M (2014). Advances in understanding the leukaemia microenvironment. Br J Haematol, 164(6): 767–778
CrossRef Pubmed Google scholar
[150]
Takahashi N, Shibata R, Ouchi N, Sugimoto M, Murohara T, Komori K (2014). Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J Vasc Surg
Pubmed
[151]
Takahashi T, Shibuya M (1997). The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene, 14(17): 2079–2089
CrossRef Pubmed Google scholar
[152]
Takakura N (2012). Formation and regulation of the cancer stem cell niche. Cancer Sci, 103(7): 1177–1181
CrossRef Pubmed Google scholar
[153]
Takaya T, Hirata K, Yamashita T, Shinohara M, Sasaki N, Inoue N, Yada T, Goto M, Fukatsu A, Hayashi T, Alp N J, Channon K M, Yokoyama M, Kawashima S (2007). A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression. Arterioscler Thromb Vasc Biol, 27(7): 1632–1637
CrossRef Pubmed Google scholar
[154]
Tan B K, Adya R, Chen J, Farhatullah S, Heutling D, Mitchell D, Lehnert H, Randeva H S (2009). Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res, 83(3): 566–574
CrossRef Pubmed Google scholar
[155]
Tang X, Luo Y X, Chen H Z, Liu D P (2014). Mitochondria, endothelial cell function, and vascular diseases. Front Physiol, 5: 175
CrossRef Pubmed Google scholar
[156]
Tevar R, Jho D H, Babcock T, Helton W S, Espat N J (2002). Omega-3 fatty acid supplementation reduces tumor growth and vascular endothelial growth factor expression in a model of progressive non-metastasizing malignancy. JPEN J Parenter Enteral Nutr, 26(5): 285–289
CrossRef Pubmed Google scholar
[157]
Tian X Y, Wong W T, Xu A, Lu Y, Zhang Y, Wang L, Cheang W S, Wang Y, Yao X, Huang Y (2012). Uncoupling protein-2 protects endothelial function in diet-induced obese mice. Circ Res, 110(9): 1211–1216
CrossRef Pubmed Google scholar
[158]
Tousoulis D, Kampoli A M, Tentolouris C, Papageorgiou N, Stefanadis C (2012). The role of nitric oxide on endothelial function. Curr Vasc Pharmacol, 10(1): 4–18
CrossRef Pubmed Google scholar
[159]
Tsuji M, Murota S I, Morita I (2003). Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins Leukot Essent Fatty Acids, 68(5): 337–342
CrossRef Pubmed Google scholar
[160]
Tsuzuki T, Shibata A, Kawakami Y, Nakagawa K, Miyazawa T (2007). Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells. J Nutr, 137(3): 641–646
Pubmed
[161]
Unterluggauer H, Mazurek S, Lener B, Hütter E, Eigenbrodt E, Zwerschke W, Jansen-Dürr P (2008). Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology, 9(4): 247–259
CrossRef Pubmed Google scholar
[162]
Valente A J, Irimpen A M, Siebenlist U, Chandrasekar B (2014). OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med, 70: 117–128
CrossRef Pubmed Google scholar
[163]
van Beijnum J R, Dings R P, van der Linden E, Zwaans B M, Ramaekers F C, Mayo K H, Griffioen A W (2006). Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood, 108(7): 2339–2348
CrossRef Pubmed Google scholar
[164]
van Eupen M G, Schram M T, Colhoun H M, Hanssen N M, Niessen H W, Tarnow L, Parving H H, Rossing P, Stehouwer C D, Schalkwijk C G (2013). The methylglyoxal-derived AGE tetrahydropyrimidine is increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is associated with sVCAM-1. Diabetologia, 56(8): 1845–1855
CrossRef Pubmed Google scholar
[165]
Végran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011). Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res, 71(7): 2550–2560
CrossRef Pubmed Google scholar
[166]
Venkatesan B, Valente A J, Das N A, Carpenter A J, Yoshida T, Delafontaine J L, Siebenlist U, Chandrasekar B (2013). CIKS (Act1 or TRAF3IP2) mediates high glucose-induced endothelial dysfunction. Cell Signal, 25(1): 359–371
CrossRef Pubmed Google scholar
[167]
Venna V R, Li J, Hammond M D, Mancini N S, McCullough L D (2014). Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. Eur J Neurosci, 39(12): 2129–2138
CrossRef Pubmed Google scholar
[168]
Vizán P, Sánchez-Tena S, Alcarraz-Vizán G, Soler M, Messeguer R, Pujol M D, Lee W N, Cascante M (2009). Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis, 30(6): 946–952
CrossRef Pubmed Google scholar
[169]
Wang W, Zhu J, Lyu F, Panigrahy D, Ferrara K W, Hammock B, Zhang G (2014). ω-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins Other Lipid Mediat, 113-115: 13–20
CrossRef Pubmed Google scholar
[170]
Warren C M, Ziyad S, Briot A, Der A, Iruela-Arispe M L (2014). A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal, 7(307): ra1
CrossRef Pubmed Google scholar
[171]
Wautier J L, Schmidt A M (2004). Protein glycation: a firm link to endothelial cell dysfunction. Circ Res, 95(3): 233–238
CrossRef Pubmed Google scholar
[172]
Wei X, Schneider J G, Shenouda S M, Lee A, Towler D A, Chakravarthy M V, Vita J A, Semenkovich C F (2011). De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J Biol Chem, 286(4): 2933–2945
CrossRef Pubmed Google scholar
[173]
Wellen K E, Hatzivassiliou G, Sachdeva U M, Bui T V, Cross J R, Thompson C B (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324(5930): 1076–1080
CrossRef Pubmed Google scholar
[174]
Wilkinson M J, Laffin L J, Davidson M H (2014). Overcoming toxicity and side-effects of lipid-lowering therapies. Best Pract Res Clin Endocrinol Metab, 28(3): 439–452
CrossRef Pubmed Google scholar
[175]
Wu G, Haynes T E, Li H, Meininger C J (2000). Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp Biochem Physiol A Mol Integr Physiol, 126(1): 115–123
CrossRef Pubmed Google scholar
[176]
Wu G, Meininger C J (1995). Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol, 269(4 Pt 2): H1312–H1318
Pubmed
[177]
Xu Y, An X, Guo X, Habtetsion T G, Wang Y, Xu X, Kandala S, Li Q, Li H, Zhang C, Caldwell R B, Fulton D J, Su Y, Hoda M N, Zhou G, Wu C, Huo Y (2014). Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol, 34(6): 1231–1239
CrossRef Pubmed Google scholar
[178]
Yanai R, Mulki L, Hasegawa E, Takeuchi K, Sweigard H, Suzuki J, Gaissert P, Vavvas D G, Sonoda K H, Rothe M, Schunck W H, Miller J W, Connor K M (2014). Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization. Proc Natl Acad Sci USA, 111(26): 9603–9608
CrossRef Pubmed Google scholar
[179]
Yang B T, Dayeh T A, Volkov P A, Kirkpatrick C L, Malmgren S, Jing X, Renström E, Wollheim C B, Nitert M D, Ling C (2012). Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol, 26(7): 1203–1212
CrossRef Pubmed Google scholar
[180]
Yang S P, Morita I, Murota S I (1998). Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. J Cell Physiol, 176(2): 342–349
CrossRef Pubmed Google scholar
[181]
Yeh W L, Lin C J, Fu W M (2008). Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol, 73(1): 170–177
CrossRef Pubmed Google scholar
[182]
Zecchin A, Pattarini L, Gutierrez M I, Mano M, Mai A, Valente S, Myers M P, Pantano S, Giacca M (2014). Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J Mol Cell Biol, 6(2): 116–127
CrossRef Pubmed Google scholar
[183]
Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y (2014). 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett, 355(2): 176–183
CrossRef Pubmed Google scholar
[184]
Zhang G, Panigrahy D, Mahakian L M, Yang J, Liu J Y, Stephen Lee K S, Wettersten H I, Ulu A, Hu X, Tam S, Hwang S H, Ingham E S, Kieran M W, Weiss R H, Ferrara K W, Hammock B D (2013). Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA, 110(16): 6530–6535
CrossRef Pubmed Google scholar
[185]
Zhang Z, Apse K, Pang J, Stanton R C (2000). High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem, 275(51): 40042–40047
CrossRef Pubmed Google scholar
[186]
Zou M H, Shi C, Cohen R A (2002). Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest, 109(6): 817–826
CrossRef Pubmed Google scholar

Acknowledgments

We apologize for not being able to cite the work of all other studies related to this topic because of space restrictions. The authors gratefully acknowledge Guy Eelen, Jermaine Goveia and Brian Wong for valuable comments. A.B. is PhD student supported by an Erasmus Mundus Western Balkans (ERAWEB) scholarship. The work of P.C. is supported by a Federal Government Belgium grant (IUAP P7/03), long-term structural Methusalem funding by the Flemish Government, the Research Foundation Flanders (FWO), the Foundation Leducq Transatlantic Network (ARTEMIS), Foundation against cancer, an European Research Council (ERC) Advanced Research Grant (EU-ERC269073) and the AXA Research Fund.
Compliance with ethics <?Pub Caret?>guidelines
Peter Carmeliet is named as an inventor on patent application regarding subject matter related to the findings reviewed in this publication. Annalisa Zecchin and Aleksandra Brajic declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review boards or ethics committees.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(957 KB)

Accesses

Citations

Detail

Sections
Recommended

/