Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms

Gary R. HIME, Nicole SIDDALL, Katja HORVAY, Helen E. ABUD

PDF(614 KB)
PDF(614 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (1) : 1-10. DOI: 10.1007/s11515-015-1347-1
REVIEW
REVIEW

Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms

Author information +
History +

Abstract

Regeneration of many cell types found in adult organs relies upon the presence of relatively small pools of undifferentiated stem cells. Initial studies that attempted to isolate stem cells and propagate them in vitro have been complemented by analysis of stem cells in their endogenous tissues where they are subject to a variety of regulatory cues. This has been facilitated by the advent of new methods for lineage tracing and genetic manipulation of stem cells and their associated niche cells. The picture that is emerging is that different stem cell populations utilize diverse processes to ensure maintenance of the stem cell pool accompanied by production of cells committed to regenerate differentiated cells.

Keywords

stem cells / Drosophila / mouse / testis / intestine / lineage tracing

Cite this article

Download citation ▾
Gary R. HIME, Nicole SIDDALL, Katja HORVAY, Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms. Front. Biol., 2015, 10(1): 1‒10 https://doi.org/10.1007/s11515-015-1347-1

References

[1]
Abud H E, Lock P, Heath J K (2004). Efficient gene transfer into the epithelial cell layer of embryonic mouse intestine using low-voltage electroporation. Gastroenterology, 126(7): 1779-1787
CrossRef Pubmed Google scholar
[2]
Abud H E, Watson N, Heath J K (2005). Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res, 303(2): 252-262
CrossRef Pubmed Google scholar
[3]
Amoyel M, Sanny J, Burel M, Bach E A (2013). Hedgehog is required for CySC self-renewal but does not contribute to the GSC niche in the Drosophila testis. Development, 140(1): 56-65
CrossRef Pubmed Google scholar
[4]
Barker N, van Es J H, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters P J, Clevers H (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003-1007
CrossRef Pubmed Google scholar
[5]
Becker A J, McCULLOCH E A, Till J E (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197(4866): 452-454
CrossRef Pubmed Google scholar
[6]
Boyer L A, Plath K, Zeitlinger J, Brambrink T, Medeiros L A, Lee T I, Levine S S, Wernig M, Tajonar A, Ray M K, Bell G W, Otte A P, Vidal M, Gifford D K, Young R A, Jaenisch R (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441(7091): 349-353
CrossRef Pubmed Google scholar
[7]
Boyle M, Wong C, Rocha M, Jones D L (2007). Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell, 1(4): 470-478
CrossRef Pubmed Google scholar
[8]
Brand A H, Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2): 401-415
Pubmed
[9]
Bunt S M, Hime G R (2004). Ectopic activation of Dpp signalling in the male Drosophila germline inhibits germ cell differentiation. Genesis, 39(2): 84-93
CrossRef Pubmed Google scholar
[10]
Bunt S M, Monk A C, Siddall N A, Johnston N L, Hime G R (2012). GAL4 enhancer traps that can be used to drive gene expression in developing Drosophila spermatocytes. Genesis, 50(12): 914-920
CrossRef Pubmed Google scholar
[11]
Carmon K S, Lin Q, Gong X, Thomas A, Liu Q (2012). LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/β-catenin signaling. Mol Cell Biol, 32(11): 2054-2064PMID:22473993
CrossRef Google scholar
[12]
Cheasley D, Pereira L, Lightowler S, Vincan E, Malaterre J, Ramsay R G (2011). Myb controls intestinal stem cell genes and self-renewal. Stem Cells, 29(12): 2042-2050
CrossRef Pubmed Google scholar
[13]
Cheng H, Leblond C P (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat, 141(4): 537-561
CrossRef Pubmed Google scholar
[14]
Cheng J, Tiyaboonchai A, Yamashita Y M, Hunt A J (2011). Asymmetric division of cyst stem cells in Drosophila testis is ensured by anaphase spindle repositioning. Development, 138(5): 831-837
CrossRef Pubmed Google scholar
[15]
Clevers H (2013). The intestinal crypt, a prototype stem cell compartment. Cell, 154(2): 274-284
CrossRef Pubmed Google scholar
[16]
Conklin E G (1905). The organization and cell lineage of the ascidian egg. J Acad Nat Sci Phila, 12: 1-19
[17]
Coulombel L (2004). Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene, 23(43): 7210-7222
CrossRef Pubmed Google scholar
[18]
de Lau W, Barker N, Clevers H (2007). WNT signaling in the normal intestine and colorectal cancer. Front Biosci, 12(1): 471-491
CrossRef Pubmed Google scholar
[19]
Evans C J, Olson J M, Ngo K T, Kim E, Lee N E, Kuoy E, Patananan A N, Sitz D, Tran P, Do M T, Yackle K, Cespedes A, Hartenstein V, Call G B, Banerjee U (2009). G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods, 6(8): 603-605
CrossRef Pubmed Google scholar
[20]
Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005). Notch signals control the fate of immature progenitor cells in the intestine. Nature, 435(7044): 964-968
CrossRef Pubmed Google scholar
[21]
Fuller M T (1993). Spermatogenesis. The Development of Drosophila melanogaster. C. S. Harbour. NY, Cold Spring Harbour Laboratory Press: 71-147
[22]
Haramis A P, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus G J, Clevers H (2004). De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science, 303(5664): 1684-1686
CrossRef Pubmed Google scholar
[23]
Hardy R W, Tokuyasu K T, Lindsley D L, Garavito M (1979). The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res, 69(2): 180-190
CrossRef Pubmed Google scholar
[24]
He X C, Zhang J, Tong W G, Tawfik O, Ross J, Scoville D H, Tian Q, Zeng X, He X, Wiedemann L M, Mishina Y, Li L (2004). BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet, 36(10): 1117-1121
CrossRef Pubmed Google scholar
[25]
Hime G R, Loveland K L, Abud H E (2007). Drosophila spermatogenesis: insights into testicular cancer. Int J Androl, 30(4): 265-274, discussion 274
CrossRef Pubmed Google scholar
[26]
Holmberg J, Genander M, Halford M M, Annerén C, Sondell M, Chumley M J, Silvany R E, Henkemeyer M, Frisén J (2006). EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell, 125(6): 1151-1163
CrossRef Pubmed Google scholar
[27]
Horvay K, Casagranda F, Gany A, Hime G R, Abud H E (2011). Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev, 20(4): 737-745
CrossRef Pubmed Google scholar
[28]
Insco M L, Leon A, Tam C H, McKearin D M, Fuller M T (2009). Accumulation of a differentiation regulator specifies transit amplifying division number in an adult stem cell lineage. Proc Natl Acad Sci USA, 106(52): 22311-22316
CrossRef Pubmed Google scholar
[29]
Jaks V, Barker N, Kasper M, van Es J H, Snippert H J, Clevers H, Toftgård R (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet, 40(11): 1291-1299
CrossRef Pubmed Google scholar
[30]
Kaur P, Li A, Redvers R, Bertoncello I (2004). Keratinocyte stem cell assays: an evolving science. J Investig Dermatol Symp Proc, 9(3): 238-247
CrossRef Pubmed Google scholar
[31]
Kawase E, Wong M D, Ding B C, Xie T (2004). Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development, 131(6): 1365-1375
CrossRef Pubmed Google scholar
[32]
Kiger A A, Jones D L, Schulz C, Rogers M B, Fuller M T (2001). Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 294(5551): 2542-2545
CrossRef Pubmed Google scholar
[33]
Kiger A A, White-Cooper H, Fuller M T (2000). Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature, 407(6805): 750-754
CrossRef Pubmed Google scholar
[34]
Kretzschmar K, Watt F M (2012). Lineage tracing. Cell, 148(1-2): 33-45
CrossRef Pubmed Google scholar
[35]
Leatherman J L, DiNardo S (2008). Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis, and non-autonomously influences germline stem cell self-renewal. Dev Biol, 319(2): 548
CrossRef Google scholar
[36]
Leatherman J L, Dinardo S (2010). Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol, 12(8): 806-811
CrossRef Pubmed Google scholar
[37]
Lee T I, Jenner R G, Boyer L A, Guenther M G, Levine S S, Kumar R M, Chevalier B, Johnstone S E, Cole M F, Isono K, Koseki H, Fuchikami T, Abe K, Murray H L, Zucker J P, Yuan B, Bell G W, Herbolsheimer E, Hannett N M, Sun K, Odom D T, Otte A P, Volkert T L, Bartel D P, Melton D A, Gifford D K, Jaenisch R, Young R A (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125(2): 301-313
Pubmed
[38]
Li Y, Ma Q, Cherry C M, Matunis E L (2014). Steroid signaling promotes stem cell maintenance in the Drosophila testis. Dev Biol, 394(1): 129-141
CrossRef Pubmed Google scholar
[39]
Lindsley D L, Tokuyasu K T (1980). Spermatogenesis. The genetics and biology of Drosophila. M. Ashburner and T. R. F. Wright. London, Academic Press, 20: 225-294
[40]
Livet J, Weissman T A, Kang H, Draft R W, Lu J, Bennis R A, Sanes J R, Lichtman J W (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166): 56-62
CrossRef Pubmed Google scholar
[41]
Matunis E, Tran J, Gönczy P, Caldwell K, DiNardo S (1997). punt and schnurri regulate a somatically derived signal that restricts proliferation of committed progenitors in the germline. Development, 124(21): 4383-4391
Pubmed
[42]
Maximow A (1909). The lymphocyte as a stem cell common to different blood elements in embryonic development and during the post-fetal life of mammals. Originally in German. Folia Haematol (Frankf), 8: 125-143 (English translation (2009) Cell Ther Transplant , 2001(2003): 2014-2018)
[43]
Monk A C, Siddall N A, Volk T, Fraser B, Quinn L M, McLaughlin E A, Hime G R (2010). HOW is required for stem cell maintenance in the Drosophila testis and for the onset of transit-amplifying divisions. Cell Stem Cell, 6(4): 348-360
CrossRef Pubmed Google scholar
[44]
Montgomery R K, Carlone D L, Richmond C A, Farilla L, Kranendonk M E, Henderson D E, Baffour-Awuah N Y, Ambruzs D M, Fogli L K, Algra S, Breault D T (2011). Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA, 108(1): 179-184
CrossRef Pubmed Google scholar
[45]
Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G (2004). Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 22(4): 411-417
CrossRef Pubmed Google scholar
[46]
O’Brien C A, Pollett A, Gallinger S, Dick J E (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123): 106-110
CrossRef Pubmed Google scholar
[47]
Oatley J M, Brinster R L (2012). The germline stem cell niche unit in mammalian testes. Physiol Rev, 92(2): 577-595
CrossRef Pubmed Google scholar
[48]
Ootani A, Li X, Sangiorgi E, Ho Q T, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman I L, Capecchi M R, Kuo C J (2009). Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med, 15(6): 701-706
CrossRef Pubmed Google scholar
[49]
Osawa M, Hanada K, Hamada H, Nakauchi H (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273(5272): 242-245
CrossRef Pubmed Google scholar
[50]
Paoli P, Giannoni E, Chiarugi P (2013). Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta, 1833(12): 3481-3498
CrossRef Pubmed Google scholar
[51]
Qian Y, Dominado N, Zoller R, Ng C, Kudyba K, Siddall N A, Hime G R, Schulz C (2014). Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster. Dev Biol, 394(2): 217-227
CrossRef Pubmed Google scholar
[52]
Reynolds B A, Weiss S (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052): 1707-1710
CrossRef Pubmed Google scholar
[53]
Ricci-Vitiani L, Lombardi D G, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123): 111-115
CrossRef Pubmed Google scholar
[54]
Rios A C, Fu N Y, Lindeman G J, Visvader J E (2014). In situ identification of bipotent stem cells in the mammary gland. Nature, 506(7488): 322-327
CrossRef Pubmed Google scholar
[55]
Rothenberg M E, Nusse Y, Kalisky T, Lee J J, Dalerba P, Scheeren F, Lobo N, Kulkarni S, Sim S, Qian D, Beachy P A, Pasricha P J, Quake S R,Clarke M F (2012). Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology, 142(5): 1195-1205 e1196
[56]
Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau H M (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456(7221): 502-506
CrossRef Pubmed Google scholar
[57]
Sancho E, Batlle E, Clevers H (2003). Live and let die in the intestinal epithelium. Curr Opin Cell Biol, 15(6): 763-770
CrossRef Pubmed Google scholar
[58]
Sangiorgi E, Capecchi M R (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet, 40(7): 915-920
CrossRef Pubmed Google scholar
[59]
Sato T, Clevers H (2013). Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 340(6137): 1190-1194
CrossRef Pubmed Google scholar
[60]
Sato T, Stange D E, Ferrante M, Vries R G, Van Es J H, Van den Brink S, Van Houdt W J, Pronk A, Van Gorp J, Siersema P D, Clevers H (2011a). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141(5): 1762-1772
CrossRef Pubmed Google scholar
[61]
Sato T, van Es J H, Snippert H J, Stange D E, Vries R G, van den Born M, Barker N, Shroyer N F, van de Wetering M, Clevers H (2011b). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330): 415-418
CrossRef Pubmed Google scholar
[62]
Sato T, Vries R G, Snippert H J, van de Wetering M, Barker N, Stange D E, van Es J H, Abo A, Kujala P, Peters P J, Clevers H (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244): 262-265
CrossRef Pubmed Google scholar
[63]
Schofield R (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1-2): 7-25
Pubmed
[64]
Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr W R, Kalhs P, Marian B, Wrba F, Zielinski C C, Valent P (2006). Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer, 107(10): 2512-2520
CrossRef Pubmed Google scholar
[65]
Schulz C, Kiger A A, Tazuke S I, Yamashita Y M, Pantalena-Filho L C, Jones D L, Wood C G, Fuller M T (2004). A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage. Genetics, 167(2): 707-723
CrossRef Pubmed Google scholar
[66]
Schwank G, Andersson-Rolf A, Koo B K, Sasaki N, Clevers H (2013a). Generation of BAC transgenic epithelial organoids. PLoS ONE, 8(10): e76871
CrossRef Pubmed Google scholar
[67]
Schwank G, Koo B K, Sasselli V, Dekkers J F, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent C K, Nieuwenhuis E E, Beekman J M, Clevers H (2013b). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6): 653-658
CrossRef Pubmed Google scholar
[68]
Shackleton M, Vaillant F, Simpson K J, Stingl J, Smyth G K, Asselin-Labat M L, Wu L, Lindeman G J, Visvader J E (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072): 84-88
CrossRef Pubmed Google scholar
[69]
Shivdasani A A, Ingham P W (2003). Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis. Curr Biol, 13(23): 2065-2072
CrossRef Pubmed Google scholar
[70]
Siddall N A, McLaughlin E A, Marriner N L, Hime G R (2006). The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc Natl Acad Sci USA, 103(22): 8402-8407
CrossRef Pubmed Google scholar
[71]
Singh S R, Zhen W, Zheng Z, Wang H, Oh S W, Liu W, Zbar B, Schmidt L S, Hou S X (2006). The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene, 25(44): 5933-5941
CrossRef Pubmed Google scholar
[72]
Snippert H J, van der Flier L G, Sato T, van Es J H, van den Born M, Kroon-Veenboer C, Barker N, Klein A M, van Rheenen J, Simons B D, Clevers H (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143(1): 134-144
CrossRef Pubmed Google scholar
[73]
Spradling A, Drummond-Barbosa D, Kai T (2001). Stem cells find their niche. Nature, 414(6859): 98-104
CrossRef Pubmed Google scholar
[74]
Tetteh P W, Farin H F, Clevers H (2014). Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol,
CrossRef Pubmed Google scholar
[75]
Tian H, Biehs B, Warming S, Leong K G, Rangell L, Klein O D, de Sauvage F J (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 478(7368): 255-259
CrossRef Pubmed Google scholar
[76]
Tran J, Brenner T J, DiNardo S (2000). Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature, 407(6805): 754-757
CrossRef Pubmed Google scholar
[77]
Tulina N, Matunis E (2001). Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science, 294(5551): 2546-2549
CrossRef Pubmed Google scholar
[78]
van Amerongen R, Bowman A N, Nusse R (2012). Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell, 11(3): 387-400
CrossRef Pubmed Google scholar
[79]
van der Flier L G, Haegebarth A, Stange D E, van de Wetering M, Clevers H (2009). OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology, 137(1): 15-17
CrossRef Pubmed Google scholar
[80]
van Es J H, van Gijn M E, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton D J, Radtke F, Clevers H (2005). Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, 435(7044): 959-963
CrossRef Pubmed Google scholar
[81]
Visvader J E, Stingl J (2014). Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev, 28(11): 1143-1158
CrossRef Pubmed Google scholar
[82]
Xie T, Spradling A C (2000). A niche maintaining germ line stem cells in the Drosophila ovary. Science, 290(5490): 328-330
CrossRef Pubmed Google scholar
[83]
Xu T, Harrison S D (1994). Mosaic analysis using FLP recombinase. Methods Cell Biol, 44: 655-681
CrossRef Pubmed Google scholar
[84]
Yamashita Y M, Fuller M T (2005). Asymmetric stem cell division and function of the niche in the Drosophila male germ line. Int J Hematol, 82(5): 377-380
CrossRef Pubmed Google scholar
[85]
Yamashita Y M, Jones D L, Fuller M T (2003). Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science, 301(5639): 1547-1550
CrossRef Pubmed Google scholar
[86]
Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012). Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell. Nat Med, 18(4): 618-623
CrossRef Pubmed Google scholar

Acknowledgments

The authors would like to acknowledge the assistance of the Bloomington Drosophila Stock Center and the Australian Drosophila Biomedical Research Support Facility. GRH and HEA received funding from NHMRC(the National Medical Research Council of Australia) Grants APP1048110 and APP1011187, and GRH is also supported by Discovery Project Grant 120100224 from the Australian Research Council.
Compliance with ethics guidelines
Gary Hime, Nicole Siddall, Katja Horvay and Helen Abud declare that they have no conflict of interest.
All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(614 KB)

Accesses

Citations

Detail

Sections
Recommended

/