Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases

Claudia A. BERTUCCIO , Daniel C. DEVOR

Front. Biol. ›› 2015, Vol. 10 ›› Issue (1) : 52 -60.

PDF (181KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (1) : 52 -60. DOI: 10.1007/s11515-014-1339-6
REVIEW
REVIEW

Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases

Author information +
History +
PDF (181KB)

Abstract

Renal failure is a medical condition in which the kidneys are not working properly. There are two types of kidney failure: 1) acute kidney failure, which is sudden and often reversible with adequate treatment; and 2) chronic renal failure, which develops slowly and often is not reversible. The last stage of chronic renal failure is fatal without dialysis or kidney transplant. The treatment for chronic renal failure is focusing on slowing the progression of kidney damage. Several reports have described a promising approach to slow the loss of renal function through inhibition of the basolateral membrane, Ca2+-activated K+ (KCa3.1) channel with a selective and nontoxic blocker TRAM-34. This review summarizes pathophysiological studies that describe the role of KCa3.1 in kidney diseases.

Keywords

Ca2+-activated K+ channels / KCa3.1 / renal fibrosis / polycystic kidney disease / diabetes nephropathy / transplant / cell proliferation / Cl- secretion / renal failure

Cite this article

Download citation ▾
Claudia A. BERTUCCIO, Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases. Front. Biol., 2015, 10(1): 52-60 DOI:10.1007/s11515-014-1339-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albaqumi M, Srivastava S, Li Z, Zhdnova O, Wulff H, Itani O, Wallace D P, Skolnik E Y (2008). KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int, 74(6): 740-749

[2]

Amann B, Tinzmann R, Angelkort B (2003). ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care, 26(8): 2421-2425

[3]

Ataga K I, Smith W R, De Castro L M, Swerdlow P, Saunthararajah Y, Castro O, Vichinsky E, Kutlar A, Orringer E P, Rigdon G C, Stocker J W, the ICA-17043-05 Investigators (2008). Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood, 111(8): 3991-3997

[4]

Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K (2000). Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int, 58(2): 684-690

[5]

Barmeyer C, Rahner C, Yang Y, Sigworth F J, Binder H J, Rajendran V M (2010). Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol, 299(2): C251-C263

[6]

Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan M D, Chandy K G, Béraud E (2001). Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A, 98(24): 13942-13947

[7]

Beeton C, Wulff H, Singh S, Botsko S, Crossley G, Gutman G A, Cahalan M D, Pennington M, Chandy K G (2003). A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem, 278(11): 9928-9937

[8]

Beeton C, Wulff H, Standifer N E, Azam P, Mullen K M, Pennington M W, Kolski-Andreaco A, Wei E, Grino A, Counts D R, Wang P H, LeeHealey C J, S Andrews B, Sankaranarayanan A, Homerick D, Roeck W W, Tehranzadeh J, Stanhope K L, Zimin P, Havel P J, Griffey S, Knaus H G, Nepom G T, Gutman G A, Calabresi P A, Chandy K G (2006). Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 103(46): 17414-17419

[9]

Bertuccio C A, Lee S L, Wu G, Butterworth M B, Hamilton K L, Devor D C (2014). Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent. PLoS One, 9(3): e92013

[10]

Biernacka A, Dobaczewski M, Frangogiannis N G (2011). TGF-β signaling in fibrosis. Growth Factors, 29(5): 196-202

[11]

Border W A, Noble N A (1994). Transforming growth factor beta in tissue fibrosis. N Engl J Med, 331(19): 1286-1292

[12]

Bradding P, Wulff H (2009). The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol, 157(8): 1330-1339

[13]

Brähler S, Kaistha A, Schmidt V J, Wölfle S E, Busch C, Kaistha B P, Kacik M, Hasenau A L, Grgic I, Si H, Bond C T, Adelman J P, Wulff H, de Wit C, Hoyer J, Köhler R (2009). Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation, 119(17): 2323-2332

[14]

Cahalan M D, Chandy K G, DeCoursey T E, Gupta S (1985). A voltage-gated potassium channel in human T lymphocytes. J Physiol, 358: 197-237

[15]

Centers for Disease Control and Prevention (CDC) (2005). Incidence of end-stage renal disease among persons with diabetes—United States, 1990-2002. MMWR Morb Mortal Wkly Rep, 54(43): 1097-1100

[16]

Chen M X, Gorman S A, Benson B, Singh K, Hieble J P, Michel M C, Tate S N, Trezise D J (2004). Small and intermediate conductance Ca(2+)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch Pharmacol, 369(6): 602-615

[17]

Cruse G, Duffy S M, Brightling C E, Bradding P (2006). Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax, 61(10): 880-885

[18]

Davidow C J, Maser R L, Rome L A, Calvet J P, Grantham J J (1996). The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int, 50(1): 208-218

[19]

DeCoursey T E, Chandy K G, Gupta S, Cahalan M D (1984). Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature, 307(5950): 465-468

[20]

Devor D C, Bridges R J, Pilewski J M (2000). Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol, 279(2): C461-C479

[21]

Devor D C, Singh A K, Frizzell R A, Bridges R J (1996). Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol, 271(5 Pt 1): L775-L784

[22]

Devor D C, Singh A K, Lambert L C, DeLuca A, Frizzell R A, Bridges R J (1999). Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol, 113(5): 743-760

[23]

Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik E Y (2010). Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A, 107(4): 1541-1546

[24]

Dieu-Nosjean M C, Massacrier C, Homey B, Vanbervliet B, Pin J J, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C (2000). Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med, 192(5): 705-718

[25]

Eitner F, Ostendorf T, Kretzler M, Cohen C D, Eriksson U, Gröne H J, Floege J, and the ERCB-Consortium (2003). PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J Am Soc Nephrol, 14(5): 1145-1153

[26]

Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H, Nishimura M, Roberts A B, Saito Y, Mori S (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun, 305(4): 1002-1007

[27]

Gewin L, Zent R (2012). How does TGF-β mediate tubulointerstitial fibrosis? Semin Nephrol, 32(3): 228-235

[28]

Ghanshani S, Wulff H, Miller M J, Rohm H, Neben A, Gutman G A, Cahalan M D, Chandy K G (2000). Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem, 275(47): 37137-37149

[29]

Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene E L, Grotendorst G, Trojanowska M (2002). TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol, 283(4): F707-F716

[30]

Grantham J J, Chapman A B, Torres V E (2006). Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol, 1(1): 148-157

[31]

Grantham J J, Cook L T, Torres V E, Bost J E, Chapman A B, Harris P C, Guay-Woodford L M, Bae K T (2008). Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int, 73(1): 108-116

[32]

Grantham J J, Geiser J L, Evan A P (1987). Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int, 31(5): 1145-1152

[33]

Grantham J J, Torres V E, Chapman A B, Guay-Woodford L M, Bae K T, King B F Jr, Wetzel L H, Baumgarten D A, Kenney P J, Harris P C, Klahr S, Bennett W M, Hirschman G N, Meyers C M, Zhang X, Zhu F, Miller J P, and the CRISP Investigators (2006). Volume progression in polycystic kidney disease. N Engl J Med, 354(20): 2122-2130

[34]

Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti V S, Ichimura T, Humphreys B D, Bonventre J V (2012). Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int, 82(2): 172-183

[35]

Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Köhler R (2005). Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol, 25(4): 704-709

[36]

Grgic I, Kiss E, Kaistha B P, Busch C, Kloss M, Sautter J, Müller A, Kaistha A, Schmidt C, Raman G, Wulff H, Strutz F, Gröne H J, Köhler R, Hoyer J (2009). Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci U S A, 106(34): 14518-14523

[37]

Grgic I, Wulff H, Eichler I, Flothmann C, Köhler R, Hoyer J (2009). Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplant Proc, 41(6): 2601-2606

[38]

Grissmer S, Dethlefs B, Wasmuth J J, Goldin A L, Gutman G A, Cahalan M D, Chandy K G (1990). Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci U S A, 87(23): 9411-9415

[39]

Homey B, Dieu-Nosjean M C, Wiesenborn A, Massacrier C, Pin J J, Oldham E, Catron D, Buchanan M E, Müller A, deWaal Malefyt R, Deng G, Orozco R, Ruzicka T, Lehmann P, Lebecque S, Caux C, Zlotnik A (2000). Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol, 164(12): 6621-6632

[40]

Huang C, Day M L, Poronnik P, Pollock C A, Chen X M (2014). Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. Int J Biochem Cell Biol, 47: 1-10

[41]

Huang C, Pollock CA, Chen XM (2014) High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One, 9(4): e95173

[42]

Huang C, Shen S, Ma Q, Chen J, Gill A, Pollock C A, Chen X M (2013). Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes, 62(8): 2923-2934

[43]

Huang X R, Chung A C, Yang F, Yue W, Deng C, Lau C P, Tse H F, Lan H Y (2010). Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension, 55(5): 1165-1171

[44]

Ishii T M, Silvia C, Hirschberg B, Bond C T, Adelman J P, Maylie J (1997). A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A, 94(21): 11651-11656

[45]

Isono M, Chen S, Hong S W, Iglesias-de la Cruz M C, Ziyadeh F N (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun, 296(5): 1356-1365

[46]

Iwano M, Kubo A, Nishino T, Sato H, Nishioka H, Akai Y, Kurioka H, Fujii Y, Kanauchi M, Shiiki H, Dohi K (1996). Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int, 49(4): 1120-1126

[47]

Iwano M, Neilson E G (2004). Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens, 13(3): 279-284

[48]

Izu L T, McCulle S L, Ferreri-Jacobia M T, Devor D C, Duffey M E (2002). Vasoactive intestinal peptide-stimulated Cl- secretion: activation of cAMP-dependent K+ channels. J Membr Biol, 186(3): 145-157

[49]

Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004). Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol, 65(3): 630-638

[50]

Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski H D, Reusch H P, Paul M, Chandy K G, Hoyer J (2003). Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation, 108(9): 1119-1125

[51]

Lambert P P (1947). Polycystic disease of the kidney; a review. Arch Pathol (Chic), 44(1): 34-58

[52]

Leichtman A B (2007). Balancing efficacy and toxicity in kidney-transplant immunosuppression. N Engl J Med, 357(25): 2625-2627

[53]

Li H, Findlay I A, Sheppard D N (2004). The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int, 66(5): 1926-1938

[54]

Li J, Qu X, Yao J, Caruana G, Ricardo S D, Yamamoto Y, Yamamoto H, Bertram J F (2010). Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes, 59(10): 2612-2624

[55]

Logsdon N J, Kang J, Togo J A, Christian E P, Aiyar J (1997). A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem, 272(52): 32723-32726

[56]

López-Hernández F J, López-Novoa J M (2012). Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res, 347(1): 141-154

[57]

Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz H H, Kuehr J, Brandis M, Kunzelmann K (2003). Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res, 53(4): 608-618

[58]

Mangos S, Lam P Y, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond I A (2010). The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech, 3(5-6): 354-365

[59]

Matteson D R, Deutsch C (1984). K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature, 307(5950): 468-471

[60]

Mezzano S, Aros C, Droguett A, Burgos M E, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J (2004). NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant, 19(10): 2505-2512

[61]

Morii T, Fujita H, Narita T, Shimotomai T, Fujishima H, Yoshioka N, Imai H, Kakei M, Ito S (2003). Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications, 17(1): 11-15

[62]

Nakayama T, Fujisawa R, Yamada H, Horikawa T, Kawasaki H, Hieshima K, Izawa D, Fujiie S, Tezuka T, Yoshie O (2001). Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3 alpha/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int Immunol, 13(1): 95-103

[63]

Neilson E G (2006). Mechanisms of disease: Fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol, 2(2): 101-108

[64]

Neylon C B, Lang R J, Fu Y, Bobik A, Reinhart P H (1999). Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res, 85(9): e33-e43

[65]

Nilius B, Droogmans G (2001). Ion channels and their functional role in vascular endothelium. Physiol Rev, 81(4): 1415-1459

[66]

O’Sullivan D A, Torres V E, Gabow P A, Thibodeau S N, King B F, Bergstralh E J (1998). Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis, 32(6): 976-983

[67]

Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H (2007). Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol, 292(4): F1141-F1150

[68]

Pankewycz O G, Guan J X, Bolton W K, Gomez A, Benedict J F (1994). Renal TGF-beta regulation in spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int, 46(3): 748-758

[69]

Park I S, Kiyomoto H, Abboud S L, Abboud H E (1997). Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes, 46(3): 473-480

[70]

Peña T L, Chen S H, Konieczny S F, Rane S G (2000). Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem, 275(18): 13677-13682

[71]

Peña T L, Rane S G (1999). The fibroblast intermediate conductance K(Ca) channel, FIK, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol, 172(3): 249-257

[72]

Qi W, Chen X, Polhill T S, Sumual S, Twigg S, Gilbert R E, Pollock C A (2006). TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol, 290(3): F703-F709

[73]

Qi W, Chen X, Zhang Y, Holian J, Mreich E, Gilbert R E, Kelly D J, Pollock C A (2007). High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism. Nephrol Dial Transplant, 22(11): 3147-3153

[74]

Qi W, Holian J, Tan C Y, Kelly D J, Chen X M, Pollock C A (2011). The roles of Kruppel-like factor 6 and peroxisome proliferator-activated receptor-γ in the regulation of macrophage inflammatory protein-3α at early onset of diabetes. Int J Biochem Cell Biol, 43(3): 383-392

[75]

Reddy G R, Kotlyarevska K, Ransom R F, Menon R K (2008). The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr Opin Nephrol Hypertens, 17(1): 32-36

[76]

Robinette L, Abraham W M, Bradding P, Krajewski J, Antonio B, Shelton T, Bannon A W, Rigdon G, Krafte D, Wagoner K, Castle N A (2008) Senicapoc® (ICA-17043), a potent and selective KCa 3.1 K+ channel blocker, attenuates allergen-induced asthma in sheep. 15th International Conference of the Inflammation Research Association

[77]

Rosolowsky E T, Skupien J, Smiles A M, Niewczas M, Roshan B, Stanton R, Eckfeldt J H, Warram J H, Krolewski A S (2011). Risk for ESRD in type 1 diabetes remains high despite renoprotection. J Am Soc Nephrol, 22(3): 545-553

[78]

Rufo P A, Jiang L, Moe S J, Brugnara C, Alper S L, Lencer W I (1996). The antifungal antibiotic, clotrimazole, inhibits Cl- secretion by polarized monolayers of human colonic epithelial cells. J Clin Invest, 98(9): 2066-2075

[79]

Ruiz-Ortega M, Rupérez M, Esteban V, Rodríguez-Vita J, Sánchez-López E, Carvajal G, Egido J (2006). Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant, 21(1): 16-20

[80]

Rus H, Pardo C A, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen K M, Allie R, Guo L, Wulff H, Beeton C, Judge S I, Kerr D A, Knaus H G, Chandy K G, Calabresi P A (2005). The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A, 102(31): 11094-11099

[81]

Schlichter L, Sidell N, Hagiwara S (1986). K channels are expressed early in human T-cell development. Proc Natl Acad Sci U S A, 83(15): 5625-5629

[82]

Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gröne H J, Nelson P J, Schlöndorff D, Cohen C D, Kretzler M, and the European Renal cDNA Bank (ERCB) Consortium (2006). Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes, 55(11): 2993-3003

[83]

Sharma K, McGowan T A (2000). TGF-beta in diabetic kidney disease: role of novel signaling pathways. Cytokine Growth Factor Rev, 11(1-2): 115-123

[84]

Sharma K, Ziyadeh F N, Alzahabi B, McGowan T A, Kapoor S, Kurnik B R, Kurnik P B, Weisberg L S (1997). Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes, 46(5): 854-859

[85]

Si H, Grgic I, Heyken W T, Maier T, Hoyer J, Reusch H P, Köhler R (2006). Mitogenic modulation of Ca2+ -activated K+ channels in proliferating A7r5 vascular smooth muscle cells. Br J Pharmacol, 148(7): 909-917

[86]

Si H, Heyken W T, Wöllfle S E, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Köhler R (2006). Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res, 99(5): 537-544

[87]

Singh S, Syme C A, Singh A K, Devor D C, Bridges R J (2001). Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther, 296(2): 600-611

[88]

Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Müler G A (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int, 57(4): 1521-1538

[89]

Sugita S, Kohno T, Yamamoto K, Imaizumi Y, Nakajima H, Ishimaru T, Matsuyama T (2002). Induction of macrophage-inflammatory protein-3alpha gene expression by TNF-dependent NF-kappaB activation. J Immunol, 168(11): 5621-5628

[90]

Sullivan L P, Wallace D P, Grantham J J (1998). Epithelial transport in polycystic kidney disease. Physiol Rev, 78(4): 1165-1191

[91]

Terryn S, Ho A, Beauwens R, Devuyst O (2011). Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta, 1812(10): 1314-1321

[92]

Tharp D L, Wamhoff B R, Turk J R, Bowles D K (2006). Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol, 291(5): H2493-H2503

[93]

Tharp D L, Wamhoff B R, Wulff H, Raman G, Cheong A, Bowles D K (2008). Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol, 28(6): 1084-1089

[94]

Torres V E, Harris P C (2009). Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int, 76(2): 149-168

[95]

Torres V E, Harris P C, Pirson Y (2007). Autosomal dominant polycystic kidney disease. Lancet, 369(9569): 1287-1301

[96]

Toyama K, Wulff H, Chandy K G, Azam P, Raman G, Saito T, Fujiwara Y, Mattson D L, Das S, Melvin J E, Pratt P F, Hatoum O A, Gutterman D D, Harder D R, Miura H (2008). The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest, 118(9): 3025-3037

[97]

Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda S I, Takasawa K, Yoshimura M, Kida H, Kobayashi K I, Mukaida N, Naito T, Matsushima K, Yokoyama H (2000). Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int, 58(4): 1492-1499

[98]

Wallace D P, Grantham J J, Sullivan L P (1996). Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int, 50(4): 1327-1336

[99]

Wang L P, Wang Y, Zhao L M, Li G R, Deng X L (2013). Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts. Biochem Pharmacol, 85(10): 1486-1494

[100]

Wang Z H, Shen B, Yao H L, Jia Y C, Ren J, Feng Y J, Wang Y Z (2007). Blockage of intermediate-conductance-Ca2+ -activated K+ channels inhibits progression of human endometrial cancer. Oncogene, 26(35): 5107-5114

[101]

Wojtulewski J A, Gow P J, Walter J, Grahame R, Gibson T, Panayi G S, Mason J (1980). Clotrimazole in rheumatoid arthritis. Ann Rheum Dis, 39(5): 469-472

[102]

Wolf G (2003). Growth factors and the development of diabetic nephropathy. Curr Diab Rep, 3(6): 485-490

[103]

Wolf G, Ziyadeh F N (1999). Molecular mechanisms of diabetic renal hypertrophy. Kidney Int, 56(2): 393-405

[104]

Wulff H, Calabresi P A, Allie R, Yun S, Pennington M, Beeton C, Chandy K G (2003). The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest, 111(11): 1703-1713

[105]

Xu N, Glockner J F, Rossetti S, Babovich-Vuksanovic D, Harris P C, Torres V E (2006). Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J Nephrol, 19(4): 529-534

[106]

Yamamoto T, Nakamura T, Noble N A, Ruoslahti E, Border W A (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A, 90(5): 1814-1818

[107]

Ye M, Grantham J J (1993). The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med, 329(5): 310-313

[108]

Yoshie O, Imai T, Nomiyama H (2001). Chemokines in immunity. Adv Immunol, 78: 57-110

[109]

Yu L, Border W A, Huang Y, Noble N A (2003). TGF-β isoforms in renal fibrogenesis. Kidney Int, 64(3): 844-856

[110]

Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003). BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med, 9(7): 964-968

[111]

Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent K C (2009). Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem, 284(26): 17564-17574

[112]

Zhao L M, Zhang W, Wang L P, Li G R, Deng X L (2012). Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. Pflugers Arch, 464(6): 613-621

[113]

Zheng H, Whitman S A, Wu W, Wondrak G T, Wong P K, Fang D, Zhang D D (2011). Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes, 60(11): 3055-3066

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (181KB)

1350

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/