Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

Young Bong CHOI, Edward William HARHAJ

PDF(748 KB)
PDF(748 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (6) : 423-436. DOI: 10.1007/s11515-014-1332-0
REVIEW
REVIEW

Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

Author information +
History +

Abstract

Between 15% and 20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.

Keywords

mitochondria / mitophagy / virus / ROS / oncogenes

Cite this article

Download citation ▾
Young Bong CHOI, Edward William HARHAJ. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses. Front. Biol., 2014, 9(6): 423‒436 https://doi.org/10.1007/s11515-014-1332-0

References

[1]
Adinolfi L E, Restivo L, Zampino R, Lonardo A, Loria P (2011). Metabolic alterations and chronic hepatitis C: treatment strategies. Expert Opin Pharmacother, 12(14): 2215–2234
CrossRef Pubmed Google scholar
[2]
Anupam R, Doueiri R, Green P L (2013). The need to accessorize: molecular roles of HTLV-1 p30 and HTLV-2 p28 accessory proteins in the viral life cycle. Front Microbiol, 4: 275
CrossRef Pubmed Google scholar
[3]
Arrese M, Riquelme A, Soza A (2010). Insulin resistance, hepatic steatosis and hepatitis C: a complex relationship with relevant clinical implications. Ann Hepatol, 9(Suppl.): 112–118
Pubmed
[4]
Ashfaq U A, Javed T, Rehman S, Nawaz Z, Riazuddin S (2011). An overview of HCV molecular biology, replication and immune responses. Virol J, 8(1): 161–171
CrossRef Pubmed Google scholar
[5]
Babusikova E, Evinova A, Hatok J (2013). Oxidative changes and possible effects of polymorphism of antioxidant enzymes in neurodegenerative disease. In Tech, Chapter 18: 421–455
[6]
Bai X T, Nicot C (2012). Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front Microbiol, 3: 400
CrossRef Pubmed Google scholar
[7]
Bai X T, Sinha-Datta U, Ko N L, Bellon M, Nicot C (2012). Nuclear export and expression of human T-cell leukemia virus type 1 tax/rex mRNA are RxRE/Rex dependent. J Virol, 86(8): 4559–4565
CrossRef Pubmed Google scholar
[8]
Bellanger S, Tan C L, Xue Y Z, Teissier S, Thierry F (2011). Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res, 1(3): 373–389
Pubmed
[9]
Benali-Furet N L, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R, Paterlini-Bréchot P (2005). Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene, 24(31): 4921–4933
CrossRef Pubmed Google scholar
[10]
Bernard B A, Bailly C, Lenoir M C, Darmon M, Thierry F, Yaniv M (1989). The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol, 63(10): 4317–4324
Pubmed
[11]
Bernard J J, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski A W, Martinez L, Greidinger E L, Yu B D, Gallo R L (2012). Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med, 18(8): 1286–1290
CrossRef Pubmed Google scholar
[12]
Biasiotto R, Aguiari P, Rizzuto R, Pinton P, D’Agostino D M, Ciminale V (2010). The p13 protein of human T cell leukemia virus type 1 (HTLV-1) modulates mitochondrial membrane potential and calcium uptake. Biochim Biophys Acta, 1797(6-7): 945–951
CrossRef Pubmed Google scholar
[13]
Bonekamp N A, Völkl A, Fahimi H D, Schrader M (2009). Reactive oxygen species and peroxisomes: struggling for balance. Biofactors, 35(4): 346–355
CrossRef Pubmed Google scholar
[14]
Brieger K, Schiavone S, Miller F J Jr, Krause K H (2012). Reactive oxygen species: from health to disease. Swiss Med Wkly, 142: w13659
CrossRef Pubmed Google scholar
[15]
Bruick R K (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA, 97(16): 9082–9087
CrossRef Pubmed Google scholar
[16]
Burzio V A, Villota C, Villegas J, Landerer E, Boccardo E, Villa L L, Martínez R, Lopez C, Gaete F, Toro V, Rodriguez X, Burzio L O (2009). Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc Natl Acad Sci USA, 106(23): 9430–9434
CrossRef Pubmed Google scholar
[17]
Carbone A, Gloghini A (2008). KSHV/HHV8-associated lymphomas. Br J Haematol, 140(1): 13–24
CrossRef Pubmed Google scholar
[18]
Chandel N S, Maltepe E, Goldwasser E, Mathieu C E, Simon M C, Schumacker P T (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA, 95(20): 11715–11720
CrossRef Pubmed Google scholar
[19]
Chatterjee A, Dasgupta S, Sidransky D (2011). Mitochondrial subversion in cancer. Cancer Prev Res (Phila), 4(5): 638–654
CrossRef Pubmed Google scholar
[20]
Chen D, Gao F, Li B, Wang H, Xu Y, Zhu C, Wang G (2010). Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J Biol Chem, 285(49): 38214–38223
CrossRef Pubmed Google scholar
[21]
Clippinger A J, Bouchard M J (2008). Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol, 82(14): 6798–6811
CrossRef Pubmed Google scholar
[22]
Cooke M S, Evans M D, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214
CrossRef Pubmed Google scholar
[23]
Cuezva J M, Krajewska M, de Heredia M L, Krajewski S, Santamaría G, Kim H, Zapata J M, Marusawa H, Chamorro M, Reed J C (2002). The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res, 62(22): 6674–6681
Pubmed
[24]
Cuninghame S, Jackson R, Zehbe I (2014). Hypoxia-inducible factor 1 and its role in viral carcinogenesis. Virology, 456–457: 370–383
CrossRef Pubmed Google scholar
[25]
D’Agostino D, Bernardi P, Chieco-Bianchi L, Ciminale V (2005). Mitochondria as functional targets of proteins coded by human tumor viruses. Adv Cancer Res, 94: 87–142
CrossRef Google scholar
[26]
Danos O, Katinka M, Yaniv M (1982). Human papillomavirus 1a complete DNA sequence : genome organization among Papovaviridae novel type of. EMBO J, 1: 231–236
Pubmed
[27]
Dayaram T, Marriott S J (2008). Effect of transforming viruses on molecular mechanisms associated with cancer. J Cell Physiol, 216(2): 309–314
CrossRef Pubmed Google scholar
[28]
Demple B, Harrison L (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem, 63(1): 915–948
CrossRef Pubmed Google scholar
[29]
Ding W X, Yin X M (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem, 393(7): 547–564
CrossRef Pubmed Google scholar
[30]
Dizdaroglu M (1992). Oxidative damage to DNA in mammalian chromatin. Mutat Res, 275(3–6): 331–342
CrossRef Pubmed Google scholar
[31]
Fader C M, Colombo M I (2006). Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy, 2(2): 122–125
Pubmed
[32]
Fantin V R, St-Pierre J, Leder P (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9(6): 425–434
CrossRef Pubmed Google scholar
[33]
Feitelson M A, Bonamassa B, Arzumanyan A (2014). The roles of hepatitis B virus-encoded X protein in virus replication and the pathogenesis of chronic liver disease. Expert Opin Ther Targets, 18(3): 293–306
CrossRef Pubmed Google scholar
[34]
Feng D, Liu L, Zhu Y, Chen Q (2013). Molecular signaling toward mitophagy and its physiological significance. Exp Cell Res, 319(12): 1697–1705
CrossRef Pubmed Google scholar
[35]
Feng H, Shuda M, Chang Y, Moore P S (2008). Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science, 319(5866): 1096–1100
CrossRef Pubmed Google scholar
[36]
Fogal V, Richardson A D, Karmali P P, Scheffler I E, Smith J W, Ruoslahti E (2010). Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol, 30(6): 1303–1318
CrossRef Pubmed Google scholar
[37]
Francis D A, Schmid S I, Howley P M (2000). Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol, 74(6): 2679–2686
CrossRef Pubmed Google scholar
[38]
Gabriela A, Adriana P, Coralia B, Anca B, Mariana A, Lorelei I B, Mihai S (2013). Human Papillomaviruses Oncoproteins. InTech, Chapter 8: 183–206
[39]
Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008). Viral control of mitochondrial apoptosis. PLoS Pathog, 4(5): e1000018
CrossRef Pubmed Google scholar
[40]
Ganem D (2006). KSHV infection and the pathogenesis of Kaposi’s sarcoma. Annu Rev Pathol, 1(1): 273–296
CrossRef Pubmed Google scholar
[41]
Gao L, Harhaj E W (2013). HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-κB activation and HTLV-1 replication. J Virol, 87(24): 13640–13654
CrossRef Pubmed Google scholar
[42]
Gao L J, Gu P Q, Fan W M, Liu Z, Qiu F, Peng Y Z, Guo X R (2011). The role of gC1qR in regulating survival of human papillomavirus 16 oncogene-transfected cervical cancer cells. Int J Oncol, 39(5): 1265–1272
CrossRef Pubmed Google scholar
[43]
Geisler S, Holmström K M, Skujat D, Fiesel F C, Rothfuss O C, Kahle P J, Springer W (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2): 119–131
CrossRef Pubmed Google scholar
[44]
Gravitz L (2011). Introduction: a smouldering public-health crisis. Nature, 474(7350): S2–S4
CrossRef Pubmed Google scholar
[45]
Greene A W, Grenier K, Aguileta M A, Muise S, Farazifard R, Haque M E, McBride H M, Park D S, Fon E A (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep, 13(4): 378–385
CrossRef Pubmed Google scholar
[46]
Gruhne B, Sompallae R, Marescotti D, Kamranvar S A, Gastaldello S, Masucci M G (2009). The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA, 106(7): 2313–2318
CrossRef Pubmed Google scholar
[47]
Guzy R D, Hoyos B, Robin E, Chen H, Liu L, Mansfield K D, Simon M C, Hammerling U, Schumacker P T (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab, 1(6): 401–408
CrossRef Pubmed Google scholar
[48]
Ha H L, Yu D Y (2010). HBx-induced reactive oxygen species activates hepatocellular carcinogenesis via dysregulation of PTEN/Akt pathway. World J Gastroenterol, 16(39): 4932–4937
CrossRef Pubmed Google scholar
[49]
Hägg M, Wennström S (2005). Activation of hypoxia-induced transcription in normoxia. Exp Cell Res, 306(1): 180–191
CrossRef Pubmed Google scholar
[50]
Hamanaka R B, Chandel N S (2009). Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol, 21(6): 894–899
CrossRef Pubmed Google scholar
[51]
Harrod R, Tang Y, Nicot C, Lu H S, Vassilev A, Nakatani Y, Giam C Z (1998). An exposed KID-like domain in human T-cell lymphotropic virus type 1 Tax is responsible for the recruitment of coactivators CBP/p300. Mol Cell Biol, 18(9): 5052–5061
Pubmed
[52]
Hartridge-Lambert S K, Stein E M, Markowitz A J, Portlock C S (2012). Hepatitis C and non-Hodgkin lymphoma: the clinical perspective. Hepatology, 55(2): 634–641
CrossRef Pubmed Google scholar
[53]
Henkler F, Hoare J, Waseem N, Goldin R D, McGarvey M J, Koshy R, King I A (2001). Intracellular localization of the hepatitis B virus HBx protein. J Gen Virol, 82(4): 871–882
Pubmed
[54]
Hirsilä M, Koivunen P, Günzler V, Kivirikko K I, Myllyharju J (2003). Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem, 278(33): 30772–30780
CrossRef Pubmed Google scholar
[55]
Hsu P P, Sabatini D M (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5): 703–707
CrossRef Pubmed Google scholar
[56]
Huang C, Andres A M, Ratliff E P, Hernandez G, Lee P, Gottlieb R A (2011). Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE, 6(6): e20975
CrossRef Pubmed Google scholar
[57]
Huh K W, Siddiqui A (2002). Characterization of the mitochondrial association of hepatitis B virus X protein, HBx. Mitochondrion, 1(4): 349–359
CrossRef Pubmed Google scholar
[58]
Ivanov A V, Bartosch B, Smirnova O A, Isaguliants M G, Kochetkov S N (2013). HCV and oxidative stress in the liver. Viruses, 5(2): 439–469
CrossRef Pubmed Google scholar
[59]
Jin D Y (2007). Molecular pathogenesis of hepatitis C virus-associated hepatocellular carcinoma. Front Biosci, 12(1): 222–233
CrossRef Pubmed Google scholar
[60]
Jin S M, Lazarou M, Wang C, Kane L A, Narendra D P, Youle R J (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol, 191(5): 933–942
CrossRef Pubmed Google scholar
[61]
Jin S M, Youle R J (2012). PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci, 125(4): 795–799
CrossRef Pubmed Google scholar
[62]
Jung S Y, Kim Y J (2013). C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett, 331(1): 76–83
CrossRef Pubmed Google scholar
[63]
Kane L A, Lazarou M, Fogel A I, Li Y, Yamano K, Sarraf S A, Banerjee S, Youle R J (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205(2): 143–153
CrossRef Pubmed Google scholar
[64]
Kato N (2000). Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation. Microb Comp Genomics, 5(3): 129–151
CrossRef Pubmed Google scholar
[65]
Kim J W, Tchernyshyov I, Semenza G L, Dang C V (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 3(3): 177–185
CrossRef Pubmed Google scholar
[66]
Kim S, Kim H Y, Lee S, Kim S W, Sohn S, Kim K, Cho H (2007). Hepatitis B virus X protein induces perinuclear mitochondrial clustering in microtubule- and dynein-dependent manners. J Virol, 81(4): 1714–1726
CrossRef Pubmed Google scholar
[67]
Kim S J, Khan M, Quan J, Till A, Subramani S, Siddiqui A (2013a). Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog, 9(12): e1003722
CrossRef Pubmed Google scholar
[68]
Kim S J, Khan M, Quan J, Till A, Subramani S, Siddiqui A (2013b). Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog, 9(12): e1003722
CrossRef Pubmed Google scholar
[69]
Kim S J, Syed G H, Siddiqui A (2013c). Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog, 9(3): e1003285
CrossRef Pubmed Google scholar
[70]
Kinjo T, Ham-Terhune J, Peloponese J M Jr, Jeang K T (2010). Induction of reactive oxygen species by human T-cell leukemia virus type 1 tax correlates with DNA damage and expression of cellular senescence marker. J Virol, 84(10): 5431–5437
CrossRef Pubmed Google scholar
[71]
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676): 605–608
CrossRef Pubmed Google scholar
[72]
Koike K (2009). Hepatitis B virus X gene is implicated in liver carcinogenesis. Cancer Lett, 286(1): 60–68
CrossRef Pubmed Google scholar
[73]
Korenaga M, Wang T, Li Y, Showalter L A, Chan T, Sun J, Weinman S A (2005). Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem, 280(45): 37481–37488
CrossRef Pubmed Google scholar
[74]
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E A, Trempe J F, Saeki Y, Tanaka K, Matsuda N (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503): 162–166
Pubmed
[75]
Kroemer G (2006). Mitochondria in cancer. Oncogene, 25(34): 4630–4632
CrossRef Pubmed Google scholar
[76]
Lai D, Tan C L, Gunaratne J, Quek L S, Nei W, Thierry F, Bellanger S (2013). Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host cell metabolism. PLoS ONE, 8(9): e75625
CrossRef Pubmed Google scholar
[77]
LaJeunesse D R, Brooks K, Adamson A L (2005). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochem Biophys Res Commun, 333(2): 438–442
CrossRef Pubmed Google scholar
[78]
Lee J, Giordano S, Zhang J (2012a). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 441(2): 523–540
CrossRef Pubmed Google scholar
[79]
Lee W P, Lan K H, Li C P, Chao Y, Lin H C, Lee S D (2012b). Pro-apoptotic or anti-apoptotic property of X protein of hepatitis B virus is determined by phosphorylation at Ser31 by Akt. Arch Biochem Biophys, 528(2): 156–162
CrossRef Pubmed Google scholar
[80]
Lee Y I, Hwang J M, Im J H, Lee Y I, Kim N S, Kim D G, Yu D Y, Moon H B, Park S K (2004). Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J Biol Chem, 279(15): 15460–15471
CrossRef Pubmed Google scholar
[81]
Li S K, Ho S F, Tsui K W, Fung K P, Waye M Y M (2008). Identification of functionally important amino acid residues in the mitochondria targeting sequence of hepatitis B virus X protein. Virology, 381(1): 81–88
CrossRef Pubmed Google scholar
[82]
Li W, Zhang X, Zhuang H, Chen H G, Chen Y, Tian W, Wu W, Li Y, Wang S, Zhang L, Chen Y, Li L, Zhao B, Sui S, Hu Z, Feng D (2014). MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem, 289(15): 10691–10701
CrossRef Pubmed Google scholar
[83]
Li X, Fang P, Mai J, Choi E T, Wang H, Yang X F (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol, 6(1): 19
CrossRef Pubmed Google scholar
[84]
Li Y, Boehning D F, Qian T, Popov V L, Weinman S A (2007). Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J, 21(10): 2474–2485
CrossRef Pubmed Google scholar
[85]
Li Y P, Schwartz R J, Waddell I D, Holloway B R, Reid M B (1998). Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J, 12(10): 871–880
Pubmed
[86]
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 14(2): 177–185
CrossRef Pubmed Google scholar
[87]
Liu L P, Hu B G, Ye C, Ho R L K, Chen G G, Lai P B S (2014). HBx mutants differentially affect the activation of hypoxia-inducible factor-1α in hepatocellular carcinoma. Br J Cancer, 110(4): 1066–1073
CrossRef Pubmed Google scholar
[88]
Liu X H, Zhou X, Zhu C L, Song H, Liu F (2011). Effects of HCV core protein on the expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor. Zhonghua Gan Zang Bing Za Zhi, 19(10): 751–754
Pubmed
[89]
Lu A L, Li X, Gu Y, Wright P M, Chang D Y (2001). Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys, 35: 141–70
CrossRef Google scholar
[90]
Ma Q, Cavallin L E, Leung H J, Chiozzini C, Goldschmidt-Clermont P J, Mesri E A (2013). A role for virally induced reactive oxygen species in Kaposi’s sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal, 18(1): 80–90
CrossRef Pubmed Google scholar
[91]
Machida K, Cheng K T H, Lai C K, Jeng K S, Sung V M H, Lai M M C (2006). Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol, 80(14): 7199–7207
CrossRef Pubmed Google scholar
[92]
Madkan V K, Cook-Norris R H, Steadman M C, Arora A, Mendoza N, Tyring S K (2007). The oncogenic potential of human papillomaviruses: a review on the role of host genetics and environmental cofactors. Br J Dermatol, 157(2): 228–241
CrossRef Pubmed Google scholar
[93]
Mao Y, Da L, Tang H, Yang J, Lei Y, Tiollais P, Li T, Zhao M (2011). Hepatitis B virus X protein reduces starvation-induced cell death through activation of autophagy and inhibition of mitochondrial apoptotic pathway. Biochem Biophys Res Commun, 415(1): 68–74
CrossRef Pubmed Google scholar
[94]
Martin K R, Barrett J C (2002). Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol, 21(2): 71–75
CrossRef Pubmed Google scholar
[95]
Matsuoka M, Jeang K T (2007). Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer, 7(4): 270–280
CrossRef Pubmed Google scholar
[96]
McLaughlin-Drubin M E, Munger K (2008). Viruses associated with human cancer. Biochim Biophys Acta, 1782(3): 127–150
CrossRef Pubmed Google scholar
[97]
Melser S, Chatelain E H, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani H R, Rossignol R, Bénard G (2013). Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab, 17(5): 719–730
CrossRef Pubmed Google scholar
[98]
Mohd Hanafiah K, Groeger J, Flaxman A D, Wiersma S T (2013). Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology, 57(4): 1333–1342
CrossRef Pubmed Google scholar
[99]
Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007). Energy metabolism in tumor cells. FEBS J, 274(6): 1393–1418
CrossRef Pubmed Google scholar
[100]
Münger K, Howley P M (2002). Human papillomavirus immortalization and transformation functions. Virus Res, 89(2): 213–228
CrossRef Pubmed Google scholar
[101]
Narendra D, Kane L A, Hauser D N, Fearnley I M, Youle R J (2010). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6(8): 1090–1106
CrossRef Pubmed Google scholar
[102]
Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803
CrossRef Pubmed Google scholar
[103]
Nasimuzzaman M, Waris G, Mikolon D, Stupack D G, Siddiqui A (2007). Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor. J Virol, 81(19): 10249–10257
CrossRef Pubmed Google scholar
[104]
Ney P A (2011). Normal and disordered reticulocyte maturation. Curr Opin Hematol, 18(3): 152–157
CrossRef Pubmed Google scholar
[105]
Nicot C, Dundr M, Johnson J M, Fullen J R, Alonzo N, Fukumoto R, Princler G L, Derse D, Misteli T, Franchini G (2004). HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nat Med, 10(2): 197–201
CrossRef Pubmed Google scholar
[106]
Novak I (2012). Mitophagy: a complex mechanism of mitochondrial removal. Antioxid Redox Signal, 17(5): 794–802
CrossRef Pubmed Google scholar
[107]
Novak I, Kirkin V, McEwan D G, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A, Reichert A S, Terzic J, Dötsch V, Ney P A, Dikic I (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11(1): 45–51
CrossRef Pubmed Google scholar
[108]
Ohta A, Nishiyama Y (2011). Mitochondria and viruses. Mitochondrion, 11(1): 1–12
CrossRef Pubmed Google scholar
[109]
Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou Y S, Kimura M, Sato S, Hattori N, Komatsu M, Tanaka K, Matsuda N (2010). p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells, 15(8): 887–900
Pubmed
[110]
Okuda M, Li K, Beard M R, Showalter L A, Scholle F, Lemon S M, Weinman S A (2002). Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology, 122(2): 366–375
CrossRef Pubmed Google scholar
[111]
Pal A D, Basak N P, Banerjee A S, Banerjee S (2014). Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis, 35(7): 1592–1601
CrossRef Pubmed Google scholar
[112]
Pan J S, Hong M Z, Ren J L (2009). Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol, 15(14): 1702–1707
CrossRef Pubmed Google scholar
[113]
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145
CrossRef Pubmed Google scholar
[114]
Papandreou I, Cairns R A, Fontana L, Lim A L, Denko N C (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 3(3): 187–197
CrossRef Pubmed Google scholar
[115]
Paracha U Z, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhouri G, Qadri I (2013). Oxidative stress and hepatitis C virus. Virol J, 10(1): 251
CrossRef Pubmed Google scholar
[116]
Ramqvist T, Dalianis T (2010). Oropharyngeal cancer epidemic and human papillomavirus. Emerg Infect Dis, 16(11): 1671–1677
CrossRef Pubmed Google scholar
[117]
Rawat S, Clippinger A J, Bouchard M J (2012). Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses, 4(11): 2945–2972
CrossRef Pubmed Google scholar
[118]
Ray P D, Huang B W, Tsuji Y (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 24(5): 981–990
CrossRef Pubmed Google scholar
[119]
Ripoli M, D’Aprile A, Quarato G, Sarasin-Filipowicz M, Gouttenoire J, Scrima R, Cela O, Boffoli D, Heim M H, Moradpour D, Capitanio N, Piccoli C (2010). Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J Virol, 84(1): 647–660
CrossRef Pubmed Google scholar
[120]
Saggioro D, Silic-Benussi M, Biasiotto R, D’Agostino D M, Ciminale V (2009). Control of cell death pathways by HTLV-1 proteins. Front Biosci (Landmark Ed), 14(14): 3338–3351
CrossRef Pubmed Google scholar
[121]
Sawada M, Carlson J C (1987). Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev, 41(1-2): 125–137
CrossRef Pubmed Google scholar
[122]
Schrader M, Fahimi H D (2006). Peroxisomes and oxidative stress. Biochim Biophys Acta, 1763(12): 1755–1766
CrossRef Pubmed Google scholar
[123]
Schwer B, Ren S, Pietschmann T, Kartenbeck J, Kaehlcke K, Bartenschlager R, Yen T S, Ott M (2004). Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol, 78(15): 7958–7968
CrossRef Pubmed Google scholar
[124]
Seagroves T N, Ryan H E, Lu H, Bradly G, Knapp M, Thibault P, Laderoute K, Johnson R S, Lu H A N, Wouters B G (2001). Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol, 21(10): 3436–3444
CrossRef Google scholar
[125]
Semenza G L (2007). HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr, 39(3): 231–234
CrossRef Pubmed Google scholar
[126]
Semenza G L (2011). Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol, 76(0): 347–353
CrossRef Pubmed Google scholar
[127]
Semenza G L, Jiang B H, Leung S W, Passantino R, Concordet J P, Maire P, Giallongo A (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem, 271(51): 32529–32537
CrossRef Pubmed Google scholar
[128]
Sena L A, Chandel N S (2012). Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2): 158–167
CrossRef Pubmed Google scholar
[129]
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012). PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep, 2: 1002
CrossRef Pubmed Google scholar
[130]
Shirakata Y, Koike K (2003). Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem, 278(24): 22071–22078
CrossRef Pubmed Google scholar
[131]
Silic-Benussi M, Biasiotto R, Andresen V, Franchini G, D’Agostino D M, Ciminale V (2010a). HTLV-1 p13, a small protein with a busy agenda. Mol Aspects Med, 31(5): 350–358
CrossRef Pubmed Google scholar
[132]
Silic-Benussi M, Cannizzaro E, Venerando A, Cavallari I, Petronilli V, La Rocca N, Marin O, Chieco-Bianchi L, Di Lisa F, D’Agostino D M, Bernardi P, Ciminale V (2009). Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1. Biochim Biophys Acta, 1787(7): 947–954
CrossRef Pubmed Google scholar
[133]
Silic-Benussi M, Cavallari I, Vajente N, Vidali S, Chieco-Bianchi L, Di Lisa F, Saggioro D, D’Agostino D M, Ciminale V (2010b). Redox regulation of T-cell turnover by the p13 protein of human T-cell leukemia virus type 1: distinct effects in primary versus transformed cells. Blood, 116(1): 54–62
CrossRef Pubmed Google scholar
[134]
Silic-Benussi M, Marin O, Biasiotto R, D’Agostino D M, Ciminale V (2010c). Effects of human T-cell leukemia virus type 1 (HTLV-1) p13 on mitochondrial K+ permeability: A new member of the viroporin family? FEBS Lett, 584(10): 2070–2075
CrossRef Pubmed Google scholar
[135]
Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J, Bouvier R, Schägger H, Godinot C (2002). Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis, 23(5): 759–768
CrossRef Pubmed Google scholar
[136]
Soeda E, Ferran M C, Baker C C, McBride A A (2006). Repression of HPV16 early region transcription by the E2 protein. Virology, 351(1): 29–41
CrossRef Pubmed Google scholar
[137]
Stubbs M, Griffiths J R (2010). The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv Enzyme Regul, 50(1): 44–55
CrossRef Pubmed Google scholar
[138]
Takahashi M, Higuchi M, Makokha G N, Matsuki H, Yoshita M, Tanaka Y, Fujii M (2013). HTLV-1 Tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10. Blood, 122(5): 715–725
CrossRef Pubmed Google scholar
[139]
Tal M C, Sasai M, Lee H K, Yordy B, Shadel G S, Iwasaki A (2009). Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA, 106(8): 2770–2775
CrossRef Pubmed Google scholar
[140]
Tanaka A, Cleland M M, Xu S, Narendra D P, Suen D F, Karbowski M, Youle R J (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol, 191(7): 1367–1380
CrossRef Pubmed Google scholar
[141]
Tsutsumi T, Matsuda M, Aizaki H, Moriya K, Miyoshi H, Fujie H, Shintani Y, Yotsuyanagi H, Miyamura T, Suzuki T, Koike K (2009). Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology, 50(2): 378–386
CrossRef Pubmed Google scholar
[142]
Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(2): 335–344
CrossRef Pubmed Google scholar
[143]
Valente E M, Abou-Sleiman P M, Caputo V, Muqit M M K, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio A R, Healy D G, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks W P, Latchman D S, Harvey R J, Dallapiccola B, Auburger G, Wood N W (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674): 1158–1160
CrossRef Pubmed Google scholar
[144]
Vander Heiden M G, Cantley L C, Thompson C B (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930): 1029–1033
CrossRef Pubmed Google scholar
[145]
Villota C, Campos A, Vidaurre S, Oliveira-Cruz L, Boccardo E, Burzio V A, Varas M, Villegas J, Villa L L, Valenzuela P D, Socías M, Roberts S, Burzio L O (2012). Expression of mitochondrial non-coding RNAs (ncRNAs) is modulated by high risk human papillomavirus (HPV) oncogenes. J Biol Chem, 287(25): 21303–21315
CrossRef Pubmed Google scholar
[146]
Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C, Zhou J, Chen Q (2011). Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem, 286(13): 11649–11658
CrossRef Pubmed Google scholar
[147]
Wang J, Kang R, Huang H, Xi X, Wang B, Wang J, Zhao Z (2014). Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy, 10(5): 766–784
CrossRef Pubmed Google scholar
[148]
Wang P, Guo Q S, Wang Z W, Qian H X (2013a). HBx induces HepG-2 cells autophagy through PI3K/Akt-mTOR pathway. Mol Cell Biochem, 372(1-2): 161–168
CrossRef Pubmed Google scholar
[149]
Wang P, Wang Z W, Qian H X, Guo Q S (2013b). Role of autophagy in HepG-2 cells induced by hepatitis B virus x protein. Zhonghua Yi Xue Za Zhi, 93(44): 3556–3558
Pubmed
[150]
Wang Y, Liu V W S, Xue W C, Cheung A N, Ngan H Y (2006). Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer, 95(8): 1087–1091
CrossRef Pubmed Google scholar
[151]
Wang Y, Nartiss Y, Steipe B, McQuibban G A, Kim P K (2012). ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy, 8(10): 1462–1476
CrossRef Pubmed Google scholar
[152]
Waris G, Ahsan H (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog, 5(1): 14
CrossRef Pubmed Google scholar
[153]
Wilson G K, Brimacombe C L, Rowe I A, Reynolds G M, Fletcher N F, Stamataki Z, Bhogal R H, Simões M L, Ashcroft M, Afford S C, Mitry R R, Dhawan A, Mee C J, Hübscher S G, Balfe P, McKeating J A (2012). A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration. J Hepatol, 56(4): 803–809
CrossRef Pubmed Google scholar
[154]
Yamano K, Youle R J (2013). PINK1 is degraded through the N-end rule pathway. Autophagy, 9(11): 1758–1769
CrossRef Pubmed Google scholar
[155]
Yoo Y G, Lee M O (2004). Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J Biol Chem, 279(35): 36242–36249
CrossRef Pubmed Google scholar
[156]
Yoo Y G, Na T Y, Seo H W, Seong J K, Park C K, Shin Y K, Lee M O (2008). Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene, 27(24): 3405–3413
CrossRef Pubmed Google scholar
[157]
Yoo Y G, Oh S H, Park E S, Cho H, Lee N, Park H, Kim D K, Yu D Y, Seong J K, Lee M O (2003). Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway. J Biol Chem, 278(40): 39076–39084
CrossRef Pubmed Google scholar
[158]
Youle R J, Narendra D P (2011). Mechanisms of mitophagy. Nat Rev Mol Cell Biol, 12(1): 9–14
CrossRef Pubmed Google scholar
[159]
Young L S, Rickinson A B (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer, 4(10): 757–768
CrossRef Pubmed Google scholar
[160]
Zhang J, Ney P A (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ, 16(7): 939–946
CrossRef Pubmed Google scholar
[161]
Zhao T, Matsuoka M (2012). HBZ and its roles in HTLV-1 oncogenesis. Front Microbiol, 3: 247
CrossRef Pubmed Google scholar

Acknowledgements

The laboratories of E.W.H and Y.B.C. are funded by National Institutes of Health grants RO1CA135362 and R21AI103379 respectively.
Jamie K. Wong and Hongyan Zou declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(748 KB)

Accesses

Citations

Detail

Sections
Recommended

/