A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity

Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI

PDF(848 KB)
PDF(848 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (6) : 577-598. DOI: 10.1007/s11515-013-1281-z
REVIEW

A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity

Author information +
History +

Abstract

Flavonoid biosynthetic genes are often coordinately regulated in a temporal manner during flower or fruit development, resulting in specific accumulation profiles of flavonoid compounds. R2R3-MYB-type transcription factors (TFs) “recruit” a set of biosynthetic genes to produce flavonoids, and, therefore, R2R3-MYBs are responsible for the coordinated expression of structural genes. Although a wealth of information regarding the identified and functionally characterized R2R3-MYBs that are involved in flavonoid accumulation is available to date, this is the first review on the global regulation of MYB factors in the flavonoid pathway. The data presented in this review demonstrate that anthocyanin, flavone/flavonol/3-deoxyflavonoid (FFD), proanthocyanidin (PA), and isoflavonoid are independently regulated by different subgroups of R2R3-MYBs. Furthermore, FFD-specific R2R3-MYBs have a preference for early biosynthetic genes (EBGs) as their target genes; anthocyanin-specific R2R3-MYBs from dicot species essentially regulate late biosynthetic genes (LBGs); the remaining R2R3-MYBs have a wider range of target gene specificity. To elucidate the nature of the differential target gene specificity between R2R3-MYBs, we analyzed the DNA binding domain (also termed the MYB-domain) of R2R3-MYBs and the distribution of the recognition cis-elements. We identified four conserved amino acid residues located in or just before helix-3 of dicot anthocyanin R2R3-MYBs that might account for the different recognition DNA sequence and subsequently the different target gene specificity to the remaining R2R3-MYB TFs.

Keywords

MYB / cis-element / DNA-binding domain / flavonoid / transcription factor / target gene specificity

Cite this article

Download citation ▾
Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. Front Biol, 2013, 8(6): 577‒598 https://doi.org/10.1007/s11515-013-1281-z

References

[1]
Aharoni A, De Vos C H, Wein M, Sun Z, Greco R, Kroon A, Mol J N, O’Connell A P (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J, 28(3): 319–332
CrossRef Pubmed Google scholar
[2]
Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K (2009). DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol, 151(4): 2028–2045
CrossRef Pubmed Google scholar
[3]
Akagi T, Ikegami A, Yonemori K (2010). DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta, 232(5): 1045–1059
CrossRef Pubmed Google scholar
[4]
Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M (2011). Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 65(5): 771–784
CrossRef Pubmed Google scholar
[5]
Allan A C, Hellens R P, Laing W A (2008). MYB transcription factors that colour our fruit. Trends Plant Sci, 13(3): 99–102
CrossRef Pubmed Google scholar
[6]
Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X W (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1(2): 213–222
CrossRef Pubmed Google scholar
[7]
Ballester A R, Molthoff J, de Vos R, Hekkert Bt, Orzaez D, Fernández-Moreno J P, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010). Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol, 152(1): 71–84
CrossRef Pubmed Google scholar
[8]
Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol, 48(7): 958–970
CrossRef Pubmed Google scholar
[9]
Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 39(3): 366–380
CrossRef Pubmed Google scholar
[10]
Boddu J, Jiang C, Sangar V, Olson T, Peterson T, Chopra S (2006). Comparative structural and functional characterization of sorghum and maize duplications containing orthologous myb transcription regulators of 3-deoxyflavonoid biosynthesis. Plant Mol Biol, 60(2): 185–199
CrossRef Pubmed Google scholar
[11]
Boddu J, Svabek C, Ibraheem F, Jones A D, Chopra S (2005). Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids. Plant Sci, 169(3): 542–552
CrossRef Google scholar
[12]
Bogs J, Downey M O, Harvey J S, Ashton A R, Tanner G J, Robinson S P (2005). Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol, 139(2): 652–663
CrossRef Pubmed Google scholar
[13]
Bogs J, Jaffé F W, Takos A M, Walker A R, Robinson S P (2007). The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol, 143(3): 1347–1361
CrossRef Pubmed Google scholar
[14]
Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 12(12): 2383–2394
Pubmed
[15]
Borovsky Y, Oren-Shamir M, Ovadia R, De Jong W, Paran I (2004). The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theor Appl Genet, 109(1): 23–29
CrossRef Pubmed Google scholar
[16]
Boss P K, Davies C, Robinson S P (1996). Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol, 111(4): 1059–1066
Pubmed
[17]
Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002). High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell, 14(10): 2509–2526
CrossRef Pubmed Google scholar
[18]
Bushman B S, Snook M E, Gerke J P, Szalma S J, Berhow M A, Houchins K E, McMullen M D (2002). Two loci exert major effects on chlorogenic acid synthesis in maize silks. Crop Sci, 42(5): 1669–1678
CrossRef Google scholar
[19]
Chiou C Y, Yeh K W (2008). Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol, 66(4): 379–388
CrossRef Pubmed Google scholar
[20]
Chiu L W, Li L (2012). Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta, 236(4): 1153–1164
CrossRef Pubmed Google scholar
[21]
Chiu L W, Zhou X, Burke S, Wu X, Prior R L, Li L (2010). The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol, 154(3): 1470–1480
CrossRef Pubmed Google scholar
[22]
Cocciolone S M, Nettleton D, Snook M E, Peterson T (2005). Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation. Plant Biotechnol J, 3(2): 225–235
CrossRef Pubmed Google scholar
[23]
Cone K C, Burr F A, Burr B (1986). Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci U S A, 83(24): 9631–9635
CrossRef Pubmed Google scholar
[24]
Cone K C, Cocciolone S M, Burr F A, Burr B (1993). Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell, 5(12): 1795–1805
Pubmed
[25]
Czemmel S, Heppel S C, Bogs J (2012). R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma, 249(S2 Suppl 2): S109–S118
CrossRef Pubmed Google scholar
[26]
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris N N, Walker A R, Robinson S P, Bogs J (2009). The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol, 151(3): 1513–1530
CrossRef Pubmed Google scholar
[27]
Dare A P, Schaffer R J, Lin-Wang K, Allan A C, Hellens R P (2008). Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Methods, 4(1): 17
CrossRef Pubmed Google scholar
[28]
Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J P, Mérillon J M, Hamdi S (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol, 140(2): 499–511
CrossRef Pubmed Google scholar
[29]
Deluc L, Bogs J, Walker A R, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F (2008). The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol, 147(4): 2041–2053
CrossRef Pubmed Google scholar
[30]
Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999). The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J, 19(4): 387–398
CrossRef Pubmed Google scholar
[31]
Dhaubhadel S, Li X (2010). A new client for 14-3-3 proteins: GmMYB176, an R1 MYB transcription factor. Plant Signal Behav, 5(7): 921–923
CrossRef Pubmed Google scholar
[32]
Dhaubhadel S, McGarvey B D, Williams R, Gijzen M (2003). Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol, 53(6): 733–743
CrossRef Pubmed Google scholar
[33]
Dixon R A, Xie D Y, Sharma S B (2005). Proanthocyanidins—a final frontier in flavonoid research? New Phytol, 165(1): 9–28
CrossRef Pubmed Google scholar
[34]
Downey M O, Harvey J S, Robinson S P (2003a). Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust J Grape Wine Res, 9(1): 15–27
CrossRef Google scholar
[35]
Downey M O, Harvey J S, Robinson S P (2003b). Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust J Grape Wine Res, 9(2): 110–121
CrossRef Google scholar
[36]
Du H, Feng B R, Yang S S, Huang Y B, Tang Y X (2012a). The R2R3-MYB transcription factor gene family in maize. PLoS One, 7(6): e37463
CrossRef Pubmed Google scholar
[37]
Du H, Huang Y, Tang Y (2010). Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol, 86(5): 1293–1312
CrossRef Pubmed Google scholar
[38]
Du H, Yang S S, Liang Z, Feng B R, Liu L, Huang Y B, Tang Y X (2012b). Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol, 12(1): 106
CrossRef Pubmed Google scholar
[39]
Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J M, Alboresi A, Weisshaar B, Lepiniec L (2008). MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J, 55(6): 940–953
CrossRef Pubmed Google scholar
[40]
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci, 15(10): 573–581
CrossRef Pubmed Google scholar
[41]
Elomaa P, Uimari A, Mehto M, Albert V A, Laitinen R A, Teeri T H (2003). Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol, 133(4): 1831–1842
CrossRef Pubmed Google scholar
[42]
Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J, 49(3): 414–427
CrossRef Pubmed Google scholar
[43]
Falcone Ferreyra M L, Rius S, Emiliani J, Pourcel L, Feller A, Morohashi K, Casati P, Grotewold E (2010). Cloning and characterization of a UV-B-inducible maize flavonol synthase. Plant J, 62(1): 77–91
CrossRef Pubmed Google scholar
[44]
Falcone Ferreyra M L, Rius S P, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3: Article 222
[45]
Feldbrügge M, Sprenger M, Hahlbrock K, Weisshaar B (1997). PcMYB1, a novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit. Plant J, 11(5): 1079–1093
CrossRef Pubmed Google scholar
[46]
Feng S, Wang Y, Yang S, Xu Y, Chen X (2010). Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta, 232(1): 245–255
CrossRef Pubmed Google scholar
[47]
Ferrer J L, Austin M B, Stewart C Jr, Noel J P (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem, 46(3): 356–370
CrossRef Pubmed Google scholar
[48]
Frampton J, Gibson T J, Ness S A, Döderlein G, Graf T (1991). Proposed structure for the DNA-binding domain of the Myb oncoprotein based on model building and mutational analysis. Protein Eng, 4(8): 891–901
CrossRef Pubmed Google scholar
[49]
Fujiwara H, Tanaka Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Nakao M, Fukui Y, Yamaguchi M, Ashikari T, Kusumi T (1998). cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J, 16(4): 421–431
CrossRef Pubmed Google scholar
[50]
Gabrielsen O S, Sentenac A, Fromageot P (1991). Specific DNA binding by c-Myb: evidence for a double helix-turn-helix-related motif. Science, 253(5024): 1140–1143
CrossRef Pubmed Google scholar
[51]
Gao J, Shen X, Zhang Z, Peng R, Xiong A, Xu J, Zhu B, Zheng J, Yao Q (2011). The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell Tissue Organ Cult, 106(2): 235–242
CrossRef Google scholar
[52]
Goff S A, Cone K C, Chandler V L (1992). Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev, 6(5): 864–875
CrossRef Pubmed Google scholar
[53]
Goff S A, Cone K C, Fromm M E (1991). Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes Dev, 5(2): 298–309
CrossRef Pubmed Google scholar
[54]
Gong Z Z, Yamazaki M, Saito K (1999). A light-inducible Myb-like gene that is specifically expressed in red Perilla frutescens and presumably acts as a determining factor of the anthocyanin forma. Mol Gen Genet, 262(1): 65–72
CrossRef Pubmed Google scholar
[55]
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 53(5): 814–827
CrossRef Pubmed Google scholar
[56]
Grotewold E (2006). The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 57(1): 761–780
CrossRef Pubmed Google scholar
[57]
Grotewold E, Athma P, Peterson T (1991). Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci U S A, 88(11): 4587–4591
CrossRef Pubmed Google scholar
[58]
Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, St Clair G, Bowen B (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell, 10(5): 721–740
Pubmed
[59]
Grotewold E, Drummond B J, Bowen B, Peterson T (1994). The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 76(3): 543–553
CrossRef Pubmed Google scholar
[60]
Hancock K R, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S (2012). Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol, 159(3): 1204–1220
CrossRef Pubmed Google scholar
[61]
Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005). Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol, 57(2): 155–171
CrossRef Pubmed Google scholar
[62]
Heppel S C, Jaffé F W, Takos A M, Schellmann S, Rausch T, Walker A R, Bogs J (2013). Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Mol Biol, 82(4-5): 457–471
CrossRef Pubmed Google scholar
[63]
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011a). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot, 62(8): 2465–2483
CrossRef Pubmed Google scholar
[64]
Hichri I, Deluc L, Barrieu F, Bogs J, Mahjoub A, Regad F, Gallois B, Granier T, Trossat-Magnin C, Gomès E, Lauvergeat V (2011b). A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity. BMC Plant Biol, 11(1): 117
CrossRef Pubmed Google scholar
[65]
Huang W, Sun W, Lv H, Luo M, Zeng S, Pattanaik S, Yuan L, Wang Y (2013). A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway. PLoS One, 8(8): e70778
CrossRef Pubmed Google scholar
[66]
Ikegami A, Eguchi S, Kitajima A, Inoue K, Yonemori K (2007). Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci, 172(5): 1037–1047
CrossRef Google scholar
[67]
Jackson D, Culianez-Macia F, Prescott A G, Roberts K, Martin C (1991). Expression patterns of myb genes from Antirrhinum flowers. Plant Cell, 3(2): 115–125
Pubmed
[68]
Jia L, Clegg M T, Jiang T (2004). Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol, 134(2): 575–585
CrossRef Pubmed Google scholar
[69]
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000). Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 19(22): 6150–6161
CrossRef Pubmed Google scholar
[70]
Jung C S, Griffiths H M, De Jong D M, Cheng S, Bodis M, Kim T S, De Jong W S (2009). The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet, 120(1): 45–57
CrossRef Pubmed Google scholar
[71]
Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 215(6): 924–933
CrossRef Pubmed Google scholar
[72]
Koes R, Verweij W, Quattrocchio F (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 10(5): 236–242
CrossRef Pubmed Google scholar
[73]
Kong Q, Pattanaik S, Feller A, Werkman J R, Chai C, Wang Y, Grotewold E, Yuan L (2012). Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci U S A, 109(30): E2091–E2097
CrossRef Pubmed Google scholar
[74]
Lai Y S, Shimoyamada Y, Nakayama M, Yamagishi M (2012). Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the Asiatic hybrid lily (Lilium spp.). Plant Sci, 193-194: 136–147
CrossRef Pubmed Google scholar
[75]
Laitinen R A, Ainasoja M, Broholm S K, Teeri T H, Elomaa P (2008). Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. J Exp Bot, 59(13): 3691–3703
CrossRef Pubmed Google scholar
[76]
Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng X W (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell, 19(3): 731–749
CrossRef Pubmed Google scholar
[77]
Lesnick M L, Chandler V L (1998). Activation of the maize anthocyanin gene a2 is mediated by an element conserved in many anthocyanin promoters. Plant Physiol, 117(2): 437–445
CrossRef Pubmed Google scholar
[78]
Li L, Ban Z J, Li X H, Wu M Y, Wang A L, Jiang Y Q, Jiang Y H (2012a). Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.). PLoS One, 7(9): e46070
CrossRef Pubmed Google scholar
[79]
Li Z T, Gmitter F G, Grosser J W, Chen C, Gray D J (2012b). Isolation and characterization of a novel anthocyanin-promoting MYBA gene family in Citrus. Tree Genet Genomes, 8(4): 675–685
CrossRef Google scholar
[80]
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T K, Espley R V, Hellens R P, Allan A C (2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol, 10(1): 50
CrossRef Pubmed Google scholar
[81]
Liu Y (2010) Molecular analysis of genes involved in the synthesis of proanthocyanidins in Theobroma cacao. PhD Dissertation (USA: The Pennsylvania State University).
[82]
Lüscher B, Eisenman R N (1990). New light on Myc and Myb. Part II. Myb. Genes Dev, 4(12B 12b): 2235–2241
CrossRef Pubmed Google scholar
[83]
Mackova Z, Koblovska R, Lapcik O (2006). Distribution of isoflavonoids in non-leguminous taxa- an update. Phytochemistry, 67(9): 849–855
CrossRef Pubmed Google scholar
[84]
Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007). Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol, 143(3): 1252–1268
CrossRef Pubmed Google scholar
[85]
Martens S, Mithöfer A (2005). Flavones and flavone synthases. Phytochemistry, 66(20): 2399–2407
CrossRef Pubmed Google scholar
[86]
Martens S, Preuss A, Matern U (2010). Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry, 71(10): 1040–1049
CrossRef Pubmed Google scholar
[87]
Martin C, Gerats T (1993). Control of pigment biosynthesis genes during petal development. Plant Cell, 5(10): 1253–1264
Pubmed
[88]
Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991). Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J, 1(1): 37–49
CrossRef Pubmed Google scholar
[89]
Mathews H, Clendennen S K, Caldwell C G, Liu X L, Connors K, Matheis N, Schuster D K, Menasco D J, Wagoner W, Lightner J, Wagner D R (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 15(8): 1689–1703
CrossRef Pubmed Google scholar
[90]
Matsui K, Umemura Y, Ohme-Takagi M (2008). AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J, 55(6): 954–967
CrossRef Pubmed Google scholar
[91]
Matus J T, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde J A (2009). Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot, 60(3): 853–867
CrossRef Pubmed Google scholar
[92]
Matus J T, Poupin M J, Cañón P, Bordeu E, Alcalde J A, Arce-Johnson P (2010). Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol, 72(6): 607–620
CrossRef Pubmed Google scholar
[93]
Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol, 138(2): 1083–1096
CrossRef Pubmed Google scholar
[94]
Mellway R D, Tran L T, Prouse M B, Campbell M M, Constabel C P (2009). The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol, 150(2): 924–941
CrossRef Pubmed Google scholar
[95]
Miranda M, Ralph S G, Mellway R, White R, Heath M C, Bohlmann J, Constabel C P (2007). The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact, 20(7): 816–831
CrossRef Pubmed Google scholar
[96]
Mol J, Grotewold E, Koes R (1998). How genes paint flowers and seeds. Trends Plant Sci, 3(6): 212–217
CrossRef Google scholar
[97]
Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006). Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol, 47(4): 457–470
CrossRef Pubmed Google scholar
[98]
Morohashi K, Casas M I, Falcone Ferreyra M L, Mejía-Guerra M K, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, McMullen M, Casati P, Grotewold E (2012). A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. Plant Cell, 24(7): 2745–2764
CrossRef Pubmed Google scholar
[99]
Moyano E, Martínez-Garcia J F, Martin C (1996). Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell, 8(9): 1519–1532
Pubmed
[100]
Nakatsuka T, Haruta K S, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K, Shimada N, Yamamura S, Nishihara M (2008). Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant Cell Physiol, 49(12): 1818–1829
CrossRef Pubmed Google scholar
[101]
Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2005). Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci, 168(5): 1309–1318
CrossRef Google scholar
[102]
Nakatsuka T, Saito M, Yamada E, Fujita K, Kakizaki Y, Nishihara M (2012). Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers. J Exp Bot, 63(18): 6505–6517
CrossRef Pubmed Google scholar
[103]
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000). The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell, 12(10): 1863–1878
Pubmed
[104]
Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 13(9): 2099–2114
Pubmed
[105]
Nishihara M, Nakatsuka T (2011). Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett, 33(3): 433–441
CrossRef Pubmed Google scholar
[106]
Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Lin-Wang K, Ferguson I B, Allan A C, Chen K S (2010). Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta, 231(4): 887–899
CrossRef Pubmed Google scholar
[107]
Noda N, Kanno Y, Kato N, Kazuma K, Suzuki M (2004). Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum). Physiol Plant, 122(3): 305–313
CrossRef Google scholar
[108]
Ogata K, Hojo H, Aimoto S, Nakai T, Nakamura H, Sarai A, Ishii S, Nishimura Y (1992). Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc Natl Acad Sci U S A, 89(14): 6428–6432
CrossRef Pubmed Google scholar
[109]
Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994). Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 79(4): 639–648
CrossRef Pubmed Google scholar
[110]
Osier T L, Lindroth R L (2001). Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J Chem Ecol, 27(7): 1289–1313
CrossRef Pubmed Google scholar
[111]
Palapol Y, Ketsa S, Lin-Wang K, Ferguson I B, Allan A C (2009). A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening. Planta, 229(6): 1323–1334
CrossRef Pubmed Google scholar
[112]
Pattanaik S, Kong Q, Zaitlin D, Werkman J R, Xie C H, Patra B, Yuan L (2010). Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta, 231(5): 1061–1076
CrossRef Pubmed Google scholar
[113]
Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 6(12): 3553–3558
Pubmed
[114]
Peel G J, Pang Y, Modolo L V, Dixon R A (2009). The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J, 59(1): 136–149
CrossRef Pubmed Google scholar
[115]
Peters D J, Constabel C P (2002). Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J, 32(5): 701–712
CrossRef Pubmed Google scholar
[116]
Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell, 18(5): 1274–1291
CrossRef Pubmed Google scholar
[117]
Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999). Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell, 11(8): 1433–1444
Pubmed
[118]
Quattrocchio F, Wing J F, van der Woude K, Mol J N, Koes R (1998). Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J, 13(4): 475–488
CrossRef Pubmed Google scholar
[119]
Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold E (1999). Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants. Genetics, 153(1): 427–444
Pubmed
[120]
Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C (2013). Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol, 13(1): 68
CrossRef Pubmed Google scholar
[121]
Roth B A, Goff S A, Klein T M, Fromm M E (1991). C1- and R-dependent expression of the maize Bz1 gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell, 3(3): 317–325
Pubmed
[122]
Routaboul J M, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006). Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 224(1): 96–107
CrossRef Pubmed Google scholar
[123]
Sablowski R W, Moyano E, Culianez-Macia F A, Schuch W, Martin C, Bevan M (1994). A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J, 13(1): 128–137
Pubmed
[124]
Saikumar P, Murali R, Reddy E P (1990). Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc Natl Acad Sci U S A, 87(21): 8452–8456
CrossRef Pubmed Google scholar
[125]
Sainz M B, Grotewold E, Chandler V L (1997). Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 9(4): 611–625
Pubmed
[126]
Saito R, Fukuta N, Ohmiya A, Itoh Y, Ozeki Y, Kuchitsu K, Nakayama M (2006). Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci, 170(4): 828–834
CrossRef Google scholar
[127]
Sasaki M, Ogata K, Hatanaka H, Nishimura Y (2000). Backbone dynamics of the c-Myb DNA-binding domain complexed with a specific DNA. J Biochem, 127(6): 945–953
CrossRef Pubmed Google scholar
[128]
Schaart J G, Dubos C, Romero De La Fuente I, van Houwelingen A M, de Vos R C, Jonker H H, Xu W, Routaboul J M, Lepiniec L, Bovy A G (2013). Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragariaβ×βananassa) fruits. New Phytol, 197(2): 454–467
CrossRef Pubmed Google scholar
[129]
Schröder G, Brown J W, Schröder J (1988). Molecular analysis of resveratrol synthase. cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem, 172(1): 161–169
CrossRef Pubmed Google scholar
[130]
Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell, 18(4): 831–851
CrossRef Pubmed Google scholar
[131]
Sharma M, Chai C, Morohashi K, Grotewold E, Snook M E, Chopra S (2012). Expression of flavonoid 3′-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize. BMC Plant Biol, 12(1): 196
CrossRef Pubmed Google scholar
[132]
Solano R, Fuertes A, Sánchez-Pulido L, Valencia A, Paz-Ares J (1997). A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c-MYB specificity. J Biol Chem, 272(5): 2889–2895
CrossRef Pubmed Google scholar
[133]
Solano R, Nieto C, Avila J, Cañas L, Diaz I, Paz-Ares J (1995). Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J, 14(8): 1773–1784
Pubmed
[134]
Spelt C, Quattrocchio F, Mol J N, Koes R (2000). anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell, 12(9): 1619–1632
Pubmed
[135]
Springob K, Nakajima J, Yamazaki M, Saito K (2003). Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep, 20(3): 288–303
CrossRef Pubmed Google scholar
[136]
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007). Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J, 50(4): 660–677
CrossRef Pubmed Google scholar
[137]
Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie A R, Weisshaar B (2010). Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol, 188(4): 985–1000
CrossRef Pubmed Google scholar
[138]
Stracke R, Werber M, Weisshaar B (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 4(5): 447–456
CrossRef Pubmed Google scholar
[139]
Tahirov T H, Sato K, Ichikawa-Iwata E, Sasaki M, Inoue-Bungo T, Shiina M, Kimura K, Takata S, Fujikawa A, Morii H, Kumasaka T, Yamamoto M, Ishii S, Ogata K (2002). Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Cell, 108(1): 57–70
CrossRef Pubmed Google scholar
[140]
Takos A M, Jaffé F W, Jacob S R, Bogs J, Robinson S P, Walker A R (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol, 142(3): 1216–1232
CrossRef Pubmed Google scholar
[141]
Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia F A, Roberts K, Martin C (1998). The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell, 10(2): 135–154
Pubmed
[142]
Tanaka Y, Brugliera F, Chandler S (2009). Recent progress of flower colour modification by biotechnology. Int J Mol Sci, 10(12): 5350–5369
CrossRef Pubmed Google scholar
[143]
Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C, Cheynier V, Romieu C (2009). Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol, 149(2): 1028–1041
CrossRef Pubmed Google scholar
[144]
Tuerck J A, Fromm M E (1994). Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes. Plant Cell, 6(11): 1655–1663
Pubmed
[145]
Uimari A, Strommer J (1997). Myb26: a MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. Plant J, 12(6): 1273–1284
CrossRef Pubmed Google scholar
[146]
Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore K S, Dixon R A, Udvardi M K (2012). MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A, 109(5): 1766–1771
CrossRef Pubmed Google scholar
[147]
Waiss A C, Chan B G, Elliger C A, Wiseman B R, McMillian W W, Widstrom N W, Zuber M S, Keaster A J (1979). Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J Econ Entomol, 72: 256–258
[148]
Wang X (2011). Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct Integr Genomics, 11(1): 13–22
CrossRef Pubmed Google scholar
[149]
Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R (2007). Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep, 34(2): 105–120
CrossRef Pubmed Google scholar
[150]
Winkel-Shirley B (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 126(2): 485–493
CrossRef Pubmed Google scholar
[151]
Winkel-Shirley B (2002). Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 5(3): 218–223
CrossRef Pubmed Google scholar
[152]
Xie D Y, Dixon R A (2005). Proanthocyanidin biosynthesis—still more questions than answers? Phytochemistry, 66(18): 2127–2144
CrossRef Pubmed Google scholar
[153]
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010). Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily. Plant Cell Physiol, 51(3): 463–474
CrossRef Pubmed Google scholar
[154]
Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S (2010). A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J, 62(6): 1019–1034
Pubmed
[155]
Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008). Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol, 49(2): 157–169
CrossRef Pubmed Google scholar
[156]
Zhang B, Hu Z, Zhang Y, Li Y, Zhou S, Chen G (2012). A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Rep, 31(2): 281–289
CrossRef Pubmed Google scholar
[157]
Zhang P, Chopra S, Peterson T (2000). A segmental gene duplication generated differentially expressed myb-homologous genes in maize. Plant Cell, 12(12): 2311–2322
Pubmed
[158]
Zhang P, Wang Y, Zhang J, Maddock S, Snook M, Peterson T (2003). A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Mol Biol, 52(1): 1–15
CrossRef Pubmed Google scholar
[159]
Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T (2013). The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 13(1): 75–98
CrossRef Pubmed Google scholar
[160]
Zifkin M, Jin A, Ozga J A, Zaharia L I, Schernthaner J P, Gesell A, Abrams S R, Kennedy J A, Constabel C P (2012). Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol, 158(1): 200–224
CrossRef Pubmed Google scholar

Acknowledgments

This work is supported by the Department of Education of Sichuan Province, China (Grant-In-Aid for Scientific Research No. 20132A0248).
Compliance with ethics guidelines
Conflict of Interest
Yunsong LAI, Huanxiu LI declare that they have no conflict of interest.
Human and animal rights, informed consent
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(848 KB)

Accesses

Citations

Detail

Sections
Recommended

/