Dissection of gene function at clonal level using mosaic analysis with double markers

Simon HIPPENMEYER

PDF(595 KB)
PDF(595 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (6) : 557-568. DOI: 10.1007/s11515-013-1279-6
REVIEW
REVIEW

Dissection of gene function at clonal level using mosaic analysis with double markers

Author information +
History +

Abstract

MADM (Mosaic Analysis with Double Markers) technology offers a genetic approach in mice to visualize and concomitantly manipulate genetically defined cells at clonal level and single cell resolution. MADM employs Cre recombinase/loxP-dependent interchromosomal mitotic recombination to reconstitute two split marker genes—green GFP and red tdTomato — and can label sparse clones of homozygous mutant cells in one color and wild-type cells in the other color in an otherwise unlabeled background. At present, major MADM applications include lineage tracing, single cell labeling, conditional knockouts in small populations of cells and induction of uniparental chromosome disomy to assess effects of genomic imprinting. MADM can be applied universally in the mouse with the sole limitation being the specificity of the promoter controlling Cre recombinase expression. Here I review recent developments and extensions of the MADM technique and give an overview of the major discoveries and progresses enabled by the implementation of the novel genetic MADM tools.

Keywords

MADM / genetic mosaic / clonal analysis / lineage tracing / neural development / genomic imprinting

Cite this article

Download citation ▾
Simon HIPPENMEYER. Dissection of gene function at clonal level using mosaic analysis with double markers. Front Biol, 2013, 8(6): 557‒568 https://doi.org/10.1007/s11515-013-1279-6

References

[1]
Armakolas A, Klar A J (2006). Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science, 311(5764): 1146-1149
CrossRef Pubmed Google scholar
[2]
Ayala R, Shu T, Tsai L H (2007). Trekking across the brain: the journey of neuronal migration. Cell, 128(1): 29-43
CrossRef Pubmed Google scholar
[3]
Badea T C, Wang Y, Nathans J (2003). A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci, 23(6): 2314-2322
[4]
Barlow D P (2011). Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet, 45(1): 379-403
CrossRef Pubmed Google scholar
[5]
Bartolomei M S, Ferguson-Smith A C (2011). Mammalian genomic imprinting. Cold Spring Harb Perspect Biol, 3(7): 3
CrossRef Pubmed Google scholar
[6]
Bi W, Yan J, Stankiewicz P, Park S S, Walz K, Boerkoel C F, Potocki L, Shaffer L G, Devriendt K, Nowaczyk M J, Inoue K, Lupski J R (2002). Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res, 12(5): 713-728
CrossRef Pubmed Google scholar
[7]
Blair S S (2003). Genetic mosaic techniques for studying Drosophila development. Development, 130(21): 5065-5072
CrossRef Pubmed Google scholar
[8]
Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142-1155
CrossRef Pubmed Google scholar
[9]
Branda C S, Dymecki S M (2004). Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell, 6(1): 7-28
CrossRef Pubmed Google scholar
[10]
Brennand K, Huangfu D, Melton D (2007). All beta cells contribute equally to islet growth and maintenance. PLoS Biol, 5(7): e163
CrossRef Pubmed Google scholar
[11]
Buckingham M E, Meilhac S M (2011). Tracing cells for tracking cell lineage and clonal behavior. Dev Cell, 21(3): 394-409
CrossRef Pubmed Google scholar
[12]
Cajal S R y (1911). Histology of the Nervous System of Man and Vertebrates. Oxford University Press, Inc, Oxford 1995 Translation
[13]
Cepko C, Ryder E F, Austin C P, Walsh C, Fekete D M (1995). Lineage analysis using retrovirus vectors. Methods Enzymol, 254: 387-419
CrossRef Pubmed Google scholar
[14]
Chow B Y, Han X, Boyden E S (2012). Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog Brain Res, 196: 49-61
CrossRef Pubmed Google scholar
[15]
Cowan W M (1998). The emergence of modern neuroanatomy and developmental neurobiology. Neuron, 20(3): 413-426
CrossRef Pubmed Google scholar
[16]
De Paola V, Arber S, Caroni P (2003). AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat Neurosci, 6(5): 491-500
Pubmed
[17]
Desgraz R, Herrera P L (2009). Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development, 136(21): 3567-3574
CrossRef Pubmed Google scholar
[18]
Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J (2007). Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 450(7170): 717-720
CrossRef Pubmed Google scholar
[19]
Dymecki S M, Kim J C (2007). Molecular neuroanatomy’s “Three Gs”: a primer. Neuron, 54(1): 17-34
CrossRef Pubmed Google scholar
[20]
Espinosa J S, Luo L (2008). Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci, 28: 2301-2312
[21]
Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron, 62(2): 205-217
CrossRef Pubmed Google scholar
[22]
Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996). Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA, 93(20): 10887-10890
CrossRef Pubmed Google scholar
[23]
Feinberg A P (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143): 433-440
CrossRef Pubmed Google scholar
[24]
Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28(1): 41-51
CrossRef Pubmed Google scholar
[25]
Foo L C, Allen N J, Bushong E A, Ventura P B, Chung W S, Zhou L, Cahoy J D, Daneman R, Zong H, Ellisman M H, Barres B A (2011). Development of a method for the purification and culture of rodent astrocytes. Neuron, 71(5): 799-811
CrossRef Pubmed Google scholar
[26]
Franco S J, Müller U (2013). Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron, 77(1): 19-34
CrossRef Pubmed Google scholar
[27]
Gao P, Sultan K T, Zhang X J, Shi S H (2013). Lineage-dependent circuit assembly in the neocortex. Development, 140(13): 2645-2655
CrossRef Pubmed Google scholar
[28]
Gorski J A, Talley T, Qiu M, Puelles L, Rubenstein J L, Jones K R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci, 22: 6309-6314
[29]
Hallonet M E, Le Douarin N M (1993). Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci, 5(9): 1145-1155
CrossRef Pubmed Google scholar
[30]
Hayashi S, McMahon A P (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol, 244(2): 305-318
CrossRef Pubmed Google scholar
[31]
Hegemann P, Möglich A (2011). Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Methods, 8(1): 39-42
CrossRef Pubmed Google scholar
[32]
Hippenmeyer S, Johnson R L, Luo L (2013). Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep, 3: 960-967
[33]
Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle D R, Arber S (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol, 3(5): e159
CrossRef Pubmed Google scholar
[34]
Hippenmeyer S, Youn Y H, Moon H M, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010). Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron, 68(4): 695-709
CrossRef Pubmed Google scholar
[35]
Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5): 233-238
CrossRef Pubmed Google scholar
[36]
Indra A K, Warot X, Brocard J, Bornert J M, Xiao J H, Chambon P, Metzger D (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res, 27(22): 4324-4327
CrossRef Pubmed Google scholar
[37]
Jefferis G S, Livet J (2012). Sparse and combinatorial neuron labelling. Curr Opin Neurobiol, 22(1): 101-110
CrossRef Pubmed Google scholar
[38]
Lao Z, Raju G P, Bai C B, Joyner A L (2012). MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep, 2: 386-396
[39]
Lee T, Luo L (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22(3): 451-461
CrossRef Pubmed Google scholar
[40]
Legué E, Joyner A L (2010). Genetic fate mapping using site-specific recombinases. Methods Enzymol, 477: 153-181
CrossRef Pubmed Google scholar
[41]
Lehtinen M K, Walsh C A (2011). Neurogenesis at the brain-cerebrospinal fluid interface. Annu Rev Cell Dev Biol, 27(1): 653-679
CrossRef Pubmed Google scholar
[42]
Lewandoski M (2001). Conditional control of gene expression in the mouse. Nat Rev Genet, 2(10): 743-755
CrossRef Pubmed Google scholar
[43]
Liang H, Xiao G, Yin H, Hippenmeyer S, Horowitz J M, Ghashghaei H T (2013). Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development, 140(3): 552-561
CrossRef Pubmed Google scholar
[44]
Liu C, Sage J C, Miller M R, Verhaak R G, Hippenmeyer S, Vogel H, Foreman O, Bronson R T, Nishiyama A, Luo L, Zong H (2011). Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell, 146(2): 209-221
CrossRef Pubmed Google scholar
[45]
Liu P, Jenkins N A, Copeland N G (2002). Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat Genet, 30(1): 66-72
CrossRef Pubmed Google scholar
[46]
Lui J H, Hansen D V, Kriegstein A R (2011). Development and evolution of the human neocortex. Cell, 146(1): 18-36
CrossRef Pubmed Google scholar
[47]
Luo L (2007). Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Brain Res Rev, 55(2): 220-227
CrossRef Pubmed Google scholar
[48]
Mabb A M, Judson M C, Zylka M J, Philpot B D (2011). Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci, 34(6): 293-303
CrossRef Pubmed Google scholar
[49]
Madisen L, Zwingman T A, Sunkin S M, Oh S W, Zariwala H A, Gu H, Ng L L, Palmiter R D, Hawrylycz M J, Jones A R, Lein E S, Zeng H (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci, 13(1): 133-140
CrossRef Pubmed Google scholar
[50]
Marín O, Valiente M, Ge X, Tsai L H (2010). Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol, 2(2): a001834
CrossRef Pubmed Google scholar
[51]
McConnell S K (1988). Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J Neurosci, 8: 945-974
[52]
Merkle F T, Mirzadeh Z, Alvarez-Buylla A (2007). Mosaic organization of neural stem cells in the adult brain. Science, 317(5836): 381-384
CrossRef Pubmed Google scholar
[53]
Metzger D, Chambon P (2001). Site- and time-specific gene targeting in the mouse. Methods, 24(1): 71-80
CrossRef Pubmed Google scholar
[54]
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687-702
CrossRef Pubmed Google scholar
[55]
Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci, 30: 1582-1594
[56]
Morgan T H (1914). Mosaics and gynandromorphs in Drosophila. Proc Soc Exp Biol Med, 11(6): 171-172
CrossRef Google scholar
[57]
Muzumdar M D, Luo L, Zong H (2007). Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proc Natl Acad Sci USA, 104(11): 4495-4500
CrossRef Pubmed Google scholar
[58]
Nelson S B, Sugino K, Hempel C M (2006). The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci, 29(6): 339-345
CrossRef Pubmed Google scholar
[59]
Nicholls R D, Knepper J L (2001). Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet, 2(1): 153-175
CrossRef Pubmed Google scholar
[60]
Ninkovic J, Gotz M (2013). Fate specification in the adult brain-lessons for eliciting neurogenesis from glial cells. BioEssays, 35: 242-252
[61]
Novak A, Guo C, Yang W, Nagy A, Lobe C G (2000). Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis, 28(3-4): 147-155
CrossRef Pubmed Google scholar
[62]
Petersen P H, Zou K, Hwang J K, Jan Y N, Zhong W (2002). Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature, 419(6910): 929-934
CrossRef Pubmed Google scholar
[63]
Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns W B, Caskey C T, Ledbetter D H (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature, 364(6439): 717-721
CrossRef Pubmed Google scholar
[64]
Ross M E, Walsh C A (2001). Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci, 24(1): 1041-1070
CrossRef Pubmed Google scholar
[65]
Sanes J R (1989). Analysing cell lineage with a recombinant retrovirus. Trends Neurosci, 12(1): 21-28
CrossRef Pubmed Google scholar
[66]
Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck N B (2003). A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol, 21(5): 562-565
CrossRef Pubmed Google scholar
[67]
Shaner N C, Campbell R E, Steinbach P A, Giepmans B N, Palmer A E, Tsien R Y (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 22(12): 1567-1572
CrossRef Pubmed Google scholar
[68]
Smith G B, Fitzpatrick D (2012). Specifying cortical circuits: a role for cell lineage. Neuron, 75(1): 4-5
CrossRef Pubmed Google scholar
[69]
Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70-71
CrossRef Pubmed Google scholar
[70]
Stern C (1936). Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics, 21(6): 625-730
Pubmed
[71]
Tasic B, Miyamichi K, Hippenmeyer S, Dani V S, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012). Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE, 7(3): e33332
CrossRef Pubmed Google scholar
[72]
Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban P C, Bock R, Klein R, Schütz G (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet, 23(1): 99-103
CrossRef Pubmed Google scholar
[73]
Tsai J W, Chen Y, Kriegstein A R, Vallee R B (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol, 170(6): 935-945
CrossRef Pubmed Google scholar
[74]
Walsh C, Cepko C L (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 255(5043): 434-440
CrossRef Pubmed Google scholar
[75]
Wingate R J, Hatten M E (1999). The role of the rhombic lip in avian cerebellum development. Development, 126(20): 4395-4404
Pubmed
[76]
Woodruff A, Xu Q, Anderson S A, Yuste R (2009). Depolarizing effect of neocortical chandelier neurons. Front Neural Circuits 3: 15.
[77]
Wynshaw-Boris A, Pramparo T, Youn Y H, Hirotsune S (2010). Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin Cell Dev Biol, 21(8): 823-830
CrossRef Pubmed Google scholar
[78]
Xu Q, Tam M, Anderson S A (2008). Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol, 506(1): 16-29
CrossRef Pubmed Google scholar
[79]
Xu T, Rubin G M (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4): 1223-1237
Pubmed
[80]
Yang S B, Mclemore K D, Tasic B, Luo L, Jan Y N, Jan L Y (2012). Kv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. J Physiol, 590(Pt 11): 2645-2658
Pubmed
[81]
Yingling J, Toyo-Oka K, Wynshaw-Boris A (2003). Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet, 73(3): 475-488
CrossRef Pubmed Google scholar
[82]
Yingling J, Youn Y H, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008). Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell, 132(3): 474-486
CrossRef Pubmed Google scholar
[83]
Youn Y H, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009). Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci, 29: 15520-15530
[84]
Young P, Qiu L, Wang D, Zhao S, Gross J, Feng G (2008). Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci, 11(6): 721-728
CrossRef Pubmed Google scholar
[85]
Zhang F, Aravanis A M, Adamantidis A, de Lecea L, Deisseroth K (2007). Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci, 8(8): 577-581
CrossRef Pubmed Google scholar
[86]
Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1): 145-157
CrossRef Pubmed Google scholar
[87]
Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A (2001). hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis, 31(2): 85-94
CrossRef Pubmed Google scholar
[88]
Zong H, Espinosa J S, Su H H, Muzumdar M D, Luo L (2005). Mosaic analysis with double markers in mice. Cell, 121(3): 479-492
CrossRef Pubmed Google scholar

Acknowledgements

I thank L. Luo and H. Zong for continued discussions about MADM and G. Arque for helpful comments on the manuscript. This work was supported by IST Austria institutional funds.
Compliance with ethics guidelines
Simon Hippenmeyer declares that he has no conflict of interest and that all IST Austria institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(595 KB)

Accesses

Citations

Detail

Sections
Recommended

/