Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo

Yongli WANG , Nian QIN , Shan CHEN , Jingyun ZHAO , Xu YANG

Front. Biol. ›› 2013, Vol. 8 ›› Issue (5) : 549 -555.

PDF (252KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (5) : 549 -555. DOI: 10.1007/s11515-013-1277-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo

Author information +
History +
PDF (252KB)

Abstract

To assess the biological safety of Fe3O4 nanoparticles (NPs), the oxidative-damage effect of these NPs was studied. Twenty-five Kunming mice were exposed to Fe3O4 NPs by intraperitoneal injection daily for 1 week at doses of 0, 10, 20, and 40 mg·kg-1. Five Kunming mice were also injected with 40 mg·kg-1 ordinary Fe3O4 particles under the same physiological conditions. Biomarkers of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) in the hepatic and brain tissues were detected. Results showed that no significant difference in oxidative damage existed at concentrations lower than 10 mg·kg-1 for NPs compared with the control group. Fe3O4 NP concentration had obvious dose–effect relationships (P<0.05 or P<0.01) with ROS level, GSH content, and MDA content in mouse hepatic and brain tissues at>20 mg·kg-1 concentrations. To some extent, ordinary Fe3O4 particles with 40 mg·kg-1 concentration also affected hepatic and brain tissues in mice. The biological effect was similar to Fe3O4 NPs at 10mg·kg-1 concentration. Thus, Fe3O4 NPs had significant damage effects on the antioxidant defense system in the hepatic and brain tissues of mice, whereas ordinary Fe3O4 had less influence than Fe3O4 NPs at the same concentration.

Keywords

Fe3O4 nanoparticle (NP) / ordinary Fe3O4 particle / oxidative damage / reactive oxygen species (ROS) / glutathione (GSH) / malondialdehyde (MDA)

Cite this article

Download citation ▾
Yongli WANG, Nian QIN, Shan CHEN, Jingyun ZHAO, Xu YANG. Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo. Front. Biol., 2013, 8(5): 549-555 DOI:10.1007/s11515-013-1277-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson M E (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol, 113: 548–555

[2]

Borm P J, Kreyling W (2004). Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol, 4(5): 521–531

[3]

Bystrzejewski M, Cudziło S, Huczko A, Lange H, Soucy G, Cota-Sanchez G, Kaszuwara W (2007). Carbon encapsulated magnetic nanoparticles for biomedical applications: thermal stability studies. Biomol Eng, 24(5): 555–558

[4]

Elbekai R H, El-Kadi A O (2005). The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+. Free Radic Biol Med, 39(11): 1499–1511

[5]

Fadeel B, Garcia-Bennett A E (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev, 62(3): 362–374

[6]

Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, Zimmer C (2002). In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol, 37(9): 482–488

[7]

Hsiao I L, Huang Y J (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ, 409(7): 1219–1228

[8]

Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol, 39(5): 1378–1383

[9]

Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro, 23(6): 1076–1084

[10]

Lewinski N, Colvin V, Drezek R (2008). Cytotoxicity of nanoparticles. Small, 4(1): 26–49

[11]

Lippacher A, Müller R H, Mäder K (2001). Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm, 214(1-2): 9–12

[12]

Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012). Intraperitoneal injection of magnetic Fe₃O₄-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine, 7: 4809–4818

[13]

Nakamura M, Ozaki S, Abe M, Doi H, Matsumoto T, Ishimura K (2010). Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles. Colloids Surf B Biointerfaces, 79(1): 19–26

[14]

Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009). Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm, 72(3): 496–501

[15]

Novotna B, Jendelova P, Kapcalova M, Rossner P Jr, Turnovcova K, Bagryantseva Y, Babic M, Horak D, Sykova E (2012). Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett, 210(1): 53–63

[16]

Piao M J, Kang K A, Lee I K, Kim H S, Kim S, Choi J Y, Choi J, Hyun J W (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett, 201(1): 92–100

[17]

Pissuwan D, Niidome T, Cortie M B (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release, 149(1): 65–71

[18]

Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, Jasinkiewicz K (2009). Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination, 248(1-3): 771–782

[19]

Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol, 100(2): 178–186

[20]

Valodkar M, Jadeja R N, Thounaojam M C, Devkar R V, Thakore S (2011). In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C, 31(8): 1723–1728

[21]

Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2(10): 2121–2134

[22]

Xie J, Huang J, Li X, Sun S, Chen X (2009). Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem, 16(10): 1278–1294

[23]

Yu M K, Jeong Y Y, Park J, Park S, Kim J W, Min J J, Kim K, Jon S (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl, 47(29): 5362–5365

[24]

Zhu M T, Feng W Y, Wang B, Wang T C, Gu Y Q, Wang M, Wang Y, Ouyang H, Zhao Y L, Chai Z F (2008). Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology, 247(2-3): 102–111

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (252KB)

872

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/