Universal soldier:
Jeremy GROSS, Ian J. PASSMORE, Jade C. S. CHUNG, Olena RZHEPISHEVSKA, Madeleine RAMSTEDT, Martin WELCH
Universal soldier:
The opportunistic pathogen Pseudomonas aeruginosa commonly causes chronic and ultimately deadly lung infections in individuals with the genetic disease cystic fibrosis (CF). P. aeruginosa is metabolically diverse; it displays a remarkable ability to adapt to and successfully occupy almost any niche, including the ecologically complex CF lung. These P. aeruginosa lung infections are a fascinating example of microbial evolution within a “natural” ecosystem. Initially, P. aeruginosa shares the lung niche with a plethora of other microorganisms and is vulnerable to antibiotic challenges. Over time, adaptive evolution leads to certain commonly-observed phenotypic changes within the P. aeruginosa population, some of which render it resistant to antibiotics and apparently help it to out-compete the other species that co-habit the airways. Improving genomics techniques continue to elucidate the evolutionary mechanisms of P. aeruginosa within the CF lung and will hopefully identify new vulnerabilities in this robust and versatile pathogen.
Pseudomonas aeruginosa / cystic fibrosis / evolution / adaptive radiation / antibiotic resistance / quorum sensing
[1] |
Bjarnsholt T, Jensen P Ø, Jakobsen T H, Phipps R, Nielsen A K, Rybtke M T, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O (2010). Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS ONE, 5(4): e10115
CrossRef
Google scholar
|
[2] |
Brockhurst M A, Colegrave N, Hodgson D J, Buckling A (2007). Niche occupation limits adaptive radiation in experimental microcosms. PLoS ONE, 2(2): e193
CrossRef
Google scholar
|
[3] |
Buckling A, Wills M A, Colegrave N (2003). Adaptation limits diversification of experimental bacterial populations. Science, 302(5653): 2107–2109
CrossRef
Google scholar
|
[4] |
Chugani S, Kim B S, Phattarasukol S, Brittnacher M J, Choi S H, Harwood C S, Greenberg E P (2012). Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon. Proc Natl Acad Sci USA, 109(41): E2823–E2831
CrossRef
Google scholar
|
[5] |
Chung J C S, Becq J, Fraser L, Schulz-Trieglaff O, Bond N J, Foweraker J, Bruce K D, Smith G P, Welch M (2012). Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J Bacteriol, 194(18): 4857–4866
CrossRef
Google scholar
|
[6] |
Collier D N, Anderson L, McKnight S L, Noah T L, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci E C (2002). A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett, 215(1): 41–46
CrossRef
Google scholar
|
[7] |
Cox M J, Allgaier M, Taylor B, Baek M S, Huang Y J, Daly R A, Karaoz U, Andersen G L, Brown R, Fujimura K E, Wu B, Tran D, Koff J, Kleinhenz M E, Nielson D, Brodie E L, Lynch S V (2010). Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE, 5(6): e11044
CrossRef
Google scholar
|
[8] |
Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport C F, Tümmler B (2011). Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol, 13(7): 1690–1704
CrossRef
Google scholar
|
[9] |
Daniels T W V, Rogers G B, Stressmann F A, van der Gast C J, Bruce K D, Jones G R, Connett G J, Legg J P, Carroll M P (2013). Impact of antibiotic treatment for pulmonary exacerbations on bacterial diversity in cystic fibrosis. J Cyst Fibros, 12(1): 22–28
CrossRef
Google scholar
|
[10] |
Diggle S P, Griffin A S, Campbell G S, West S A (2007). Cooperation and conflict in quorum-sensing bacterial populations. Nature, 450(7168): 411–414
CrossRef
Google scholar
|
[11] |
Foweraker J (2009). Recent advances in the microbiology of respiratory tract infection in cystic fibrosis. Br Med Bull, 89(1): 93–110
CrossRef
Google scholar
|
[12] |
Govan J R, Deretic V (1996). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev, 60: 539–574
|
[13] |
Guss A M, Roeselers G, Newton I L G, Young C R, Klepac-Ceraj V, Lory S, Cavanaugh C M (2011). Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J, 5(1): 20–29
CrossRef
Google scholar
|
[14] |
Hardin G (1960). The competitive exclusion principle. Science, 131(3409): 1292–1297
CrossRef
Google scholar
|
[15] |
Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I (1999). Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis, 29(3): 621–625
CrossRef
Google scholar
|
[16] |
Häussler S, Ziegler I, Löttel A, von Götz F, Rohde M, Wehmhöhner D, Saravanamuthu S, Tümmler B, Steinmetz I (2003). Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol, 52(4): 295–301
CrossRef
Google scholar
|
[17] |
Hobbs E C, Fontaine F, Yin X, Storz G (2011). An expanding universe of small proteins. Curr Opin Microbiol, 14(2): 167–173
CrossRef
Google scholar
|
[18] |
Jacobs M A, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Liu C R, Guenthner D, Bovee D, Olson M V, Manoil C (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 100(24): 14339–14344
CrossRef
Google scholar
|
[19] |
James C E, Fothergill J L, Kalwij H, Hall A J, Cottell J, Brockhurst M A, Winstanley C (2012). Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol, 12(1): 216
CrossRef
Google scholar
|
[20] |
Klockgether J, Miethke N, Kubesch P, Bohn Y S, Brockhausen I, Cramer N, Eberl L, Greipel J, Herrmann C, Herrmann S, Horatzek S, Lingner M, Luciano L, Salunkhe P, Schomburg D, Wehsling M, Wiehlmann L, Davenport C F, Tümmler B (2013). Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environ Microbiol, 15(1): 191–210
CrossRef
Google scholar
|
[21] |
Kumar A, Schweizer H P (2005). Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev, 57(10): 1486–1513
CrossRef
Google scholar
|
[22] |
Lorè N I, Cigana C, De Fino I, Riva C, Juhas M, Schwager S, Eberl L, Bragonzi A (2012). Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS ONE, 7(4): e35648
CrossRef
Google scholar
|
[23] |
MacLean R C (2005). Adaptive radiation in microbial microcosms. J Evol Biol, 18(6): 1376–1386
CrossRef
Google scholar
|
[24] |
MacLean R C, Bell G, Rainey P B (2004). The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc Natl Acad Sci USA, 101(21): 8072–8077
CrossRef
Google scholar
|
[25] |
Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish J M, Koehrsen M, Rokas A, Yandava C N, Engels R, Zeng E, Olavarietta R, Doud M, Smith R S, Montgomery P, White J R, Godfrey P A, Kodira C, Birren B, Galagan J E, Lory S (2008). Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA, 105(8): 3100–3105
CrossRef
Google scholar
|
[26] |
Mowat E, Paterson S, Fothergill J L, Wright E A, Ledson M J, Walshaw M J, Brockhurst M A, Winstanley C (2011). Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med, 183(12): 1674–1679
CrossRef
Google scholar
|
[27] |
Oliver A, Cantón R, Campo P, Baquero F, Blázquez J (2000). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science, 288(5469): 1251–1253
CrossRef
Google scholar
|
[28] |
Pritt B, O’Brien L, Winn W (2007). Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol, 128(1): 32–34
CrossRef
Google scholar
|
[29] |
Rainey P B, Travisano M (1998). Adaptive radiation in a heterogeneous environment. Nature, 394(6688): 69–72
CrossRef
Google scholar
|
[30] |
Rau M H, Marvig L R, Ehrlich G D, Molin S, Jelsbak L (2012). Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ Microbiol, 14(8): 2200–2211
CrossRef
Google scholar
|
[31] |
Rogers G B, Carroll M P, Serisier D J, Hockey P M, Jones G, Bruce K D (2004). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol, 42(11): 5176–5183
CrossRef
Google scholar
|
[32] |
Rogers G B, Hart C A, Mason J R, Hughes M, Walshaw M J, Bruce K D (2003). Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol, 41(8): 3548–3558
CrossRef
Google scholar
|
[33] |
Roy P H, Tetu S G, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen I T (2010). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1): e8842
CrossRef
Google scholar
|
[34] |
Singh P K, Schaefer A L, Parsek M R, Moninger T O, Welsh M J, Greenberg E P (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407(6805): 762–764
CrossRef
Google scholar
|
[35] |
Smith E E, Buckley D G, Wu Z, Saenphimmachak C, Hoffman L R, D’Argenio D A, Miller S I, Ramsey B W, Speert D P, Moskowitz S M, Burns J L, Kaul R, Olson M V, Affiliations A (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA, 103(22): 8487–8492
CrossRef
Google scholar
|
[36] |
Spiers A J, Buckling A, Rainey P B (2000). The causes of Pseudomonas diversity. Microbiology (Reading, Engl.), 146 (Pt 10): 2345–2350.
|
[37] |
Starkey M, Hickman J H, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits M J, Starner T D, Wozniak D J, Harwood C S, Parsek M R (2009). Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol, 191(11): 3492–3503
CrossRef
Google scholar
|
[38] |
Stickland H G, Davenport P W, Lilley K S, Griffin J L, Welch M (2010). Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J Proteome Res, 9(6): 2957–2967
CrossRef
Google scholar
|
[39] |
Stover C K, Pham X Q, Erwin A L, Mizoguchi S D, Warrener P, Hickey M J, Brinkman F S, Hufnagle W O, Kowalik D J, Lagrou M, Garber R L, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody L L, Coulter S N, Folger K R, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong G K, Wu Z, Paulsen I T, Reizer J, Saier M H, Hancock R E, Lory S, Olson M V (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799): 959–964
CrossRef
Google scholar
|
[40] |
Stressmann F A, Rogers G B, van der Gast C J, Marsh P, Vermeer L S, Carroll M P, Hoffman L, Daniels T W V, Patel N, Forbes B, Bruce K D (2012). Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax, 67(10): 867–873
CrossRef
Google scholar
|
[41] |
Tunney M M, Field T R, Moriarty T F, Patrick S, Doering G, Muhlebach M S, Wolfgang M C, Boucher R, Gilpin D F, McDowell A, Elborn J S (2008). Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med, 177(9): 995–1001
CrossRef
Google scholar
|
[42] |
van der Gast C J, Walker A W, Stressmann F A, Rogers G B, Scott P, Daniels T W, Carroll M P, Parkhill J, Bruce K D (2011). Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J, 5(5): 780–791
CrossRef
Google scholar
|
[43] |
Williams P, Camara M (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol, 12(2): 182–191
CrossRef
Google scholar
|
[44] |
Winstanley C, Langille M G, Fothergill J L, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson N R, Winsor G L, Quail M A, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock R E, Brinkman F S, Levesque R C (2009). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res, 19(1): 12–23
CrossRef
Google scholar
|
[45] |
Workentine M L, Sibley C D, Glezerson B, Purighalla S, Norgaard-Gron J C, Parkins M D, Rabin H R, Surette M G (2013). Phenotypic heterogeneity of Pseudomonas aeruginosa. Populations in a Cystic Fibrosis Patient. PLoS ONE, 8(4): e60225
CrossRef
Google scholar
|
[46] |
Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer K C, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas J R, Randell S, Boucher R C, Döring G (2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest, 109: 317–325
|
[47] |
Wurtzel O, Yoder-Himes D R, Han K, Dandekar A A, Edelheit S, Greenberg E P, Sorek R, Lory S (2012). The Single- Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature. PLoS Pathog, 8(9): e1002945
CrossRef
Google scholar
|
[48] |
Yang L, Jelsbak L, Marvig R L, Damkiær S, Workman C T, Rau M H, Hansen S K, Folkesson A, Johansen H K, Ciofu O, Hoiby N, Sommer M O A, Molin S (2011). Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA, 108(18): 7481–7486
CrossRef
Google scholar
|
[49] |
Zhao J, Schloss P D, Kalikin L M, Carmody L A, Foster B K, Petrosino J F, Cavalcoli J D, VanDevanter D R, Murray S, Li J Z, Young V B, LiPuma J (2012). Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci, 109: 5809–5814
|
/
〈 | 〉 |