Targeting host cofactors to inhibit viral infection

Stephen FRAUSTO , Emily LEE , Hengli TANG

Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 445 -458.

PDF (340KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 445 -458. DOI: 10.1007/s11515-012-1245-8
REVIEW
REVIEW

Targeting host cofactors to inhibit viral infection

Author information +
History +
PDF (340KB)

Abstract

The majority of FDA-approved drugs indicated for the treatment of viral infections are inhibitors of viral proteins, of which the emergence of resistant strains is a major concern. This issue is exacerbated as most developed antiviral therapies are indicated for the treatment of viruses with error-prone replication. These problems may be addressed by the development of drugs that modulate the function of host factors involved in various aspects of a viral life cycle. Targeting host factors uncouples the mutation of a druggable protein gene from the replication and survival selection pressure exerted on a virus. Currently, a host-targeting antiviral (HTA), maraviroc, is approved for the treatment of human immunodeficiency virus (HIV) infection. In addition, several HTAs indicated for the treatment of hepatitis C virus (HCV) or HIV infection are at various stages of clinical evaluation. Targeting host factors is an attractive complement to therapies directly targeting a viral protein because of the expected higher genetic barrier for resistance and an overall increase in the diversity of treatment options. We examine how the integrated roles of emerging host cofactor screening approaches and drug development strategies may advance current treatment options.

Keywords

antiviral therapy / host-targeting / cofactors / drug resistance / HIV / HCV

Cite this article

Download citation ▾
Stephen FRAUSTO, Emily LEE, Hengli TANG. Targeting host cofactors to inhibit viral infection. Front. Biol., 2012, 7(5): 445-458 DOI:10.1007/s11515-012-1245-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe K, Ikeda M, Ariumi Y, Dansako H, Wakita T, Kato N (2009). HCV genotype 1b chimeric replicon with NS5B of JFH-1 exhibited resistance to cyclosporine A. Arch Virol, 154(10): 1671–1677

[2]

Alkhatib G, Combadiere C, Broder C C, Feng Y, Kennedy P E, Murphy P M, Berger E A (1996). CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 272(5270): 1955–1958

[3]

Amara A, Gall S L, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier J L, Arenzana-Seisdedos F (1997). HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med, 186(1): 139–146

[4]

Arnett S O, Teillaud J L, Wurch T, Reichert J M, Dunlop C, Huber M (2011). IBC’s 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of the Antibody Society. December 5-9, 2010, San Diego, CA USA. MAbs, 3(2): 133–152

[5]

Bai S, Nasser M W, Wang B, Hsu S H, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K (2009). MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem, 284(46): 32015–32027

[6]

Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset F L (2003). Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem, 278(43): 41624–41630

[7]

Berson J F, Long D, Doranz B J, Rucker J, Jirik F R, Doms R W (1996). A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol, 70(9): 6288–6295

[8]

Bleul C C, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer T A (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 382(6594): 829–833

[9]

Borner K, Hermle J, Sommer C, Brown N P, Knapp B, Glass B, Kunkel J, Torralba G, Reymann J, Beil N, Beneke J, Pepperkok R, Schneider R, Ludwig T, Hausmann M, Hamprecht F, Erfle H, Kaderali L, Kräusslich H G, Lehmann M J (2010). From experimental setup to bioinformatics: an RNAi screening platform to identify host factors involved in HIV-1 replication. Biotechnol J, 5(1): 39–49

[10]

Brass A L, Dykxhoorn D M, Benita Y, Yan N, Engelman A, Xavier R J, Lieberman J, Elledge S J (2008). Identification of host proteins required for HIV infection through a functional genomic screen. Science, 319(5865): 921–926

[11]

Bright R A, Shay D K, Shu B, Cox N J, Klimov A I (2006). Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA, 295(8): 891–894

[12]

Brimacombe C L, Grove J, Meredith L W, Hu K, Syder A J, Flores M V, Timpe J M, Krieger S E, Baumert T F, Tellinghuisen T L, Wong-Staal F, Balfe P, McKeating J A (2011). Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol, 85(1): 596–605

[13]

Brumme Z L, Goodrich J, Mayer H B, Brumme C J, Henrick B M, Wynhoven B, Asselin J J, Cheung P K, Hogg R S, Montaner J S G, Harrigan P R (2005). Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis, 192(3): 466–474

[14]

Bruno C J, Jacobson J M (2010). Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother, 65(9): 1839–1841

[15]

Bushman F D, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond T L, Zhou H, Hazuda D J, Espeseth A S, König R, Bandyopadhyay S, Ideker T, Goff S P, Krogan N J, Frankel A D, Young J A, Chanda S K (2009). Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog, 5(5): e1000437

[16]

Calderwood M A, Venkatesan K, Xing L, Chase M R, Vazquez A, Holthaus A M, Ewence A E, Li N, Hirozane-Kishikawa T, Hill D E, Vidal M, Kieff E, Johannsen E (2007). Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA, 104(18): 7606–7611

[17]

Cavalluzzo C, Voet A, Christ F, Singh B K, Sharma A, Debyser Z, Maeyer M D, der Eycken E V (2012). De novo design of small molecule inhibitors targeting the LEDGF/p75-HIV integrase interaction. RSC Advances, 2(3): 974

[18]

Chan D C, Kim P S (1998). HIV entry and its inhibition. Cell, 93(5): 681–684

[19]

Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia M A, Xu C, Mason W S, Moloshok T, Bort R, Zaret K S, Taylor J M (2004). miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol, 1(2): 106–113

[20]

Charlton K M, Casey G A (1979). Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab Invest, 41(1): 36–44

[21]

Chatterji U, Bobardt M, Selvarajah S, Yang F, Tang H, Sakamoto N, Vuagniaux G, Parkinson T, Gallay P (2009). The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. J Biol Chem, 284(25): 16998–17005

[22]

Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z (2003). HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem, 278(1): 372–381

[23]

Christ F, Voet A, Marchand A, Nicolet S, Desimmie B A, Marchand D, Bardiot D, Van der Veken N J, Van Remoortel B, Strelkov S V, De Maeyer M, Chaltin P, Debyser Z (2010). Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol, 6(6): 442–448

[24]

Ciesek S, Steinmann E, Wedemeyer H, Manns M P, Neyts J, Tautz N, Madan V, Bartenschlager R, von Hahn T, Pietschmann T (2009). Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A. Hepatology, 50(5): 1638–1645

[25]

Cocchi F, DeVico A L, Garzino-Demo A, Arya S K, Gallo R C, Lusso P (1995). Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science, 270(5243): 1811–1815

[26]

Coffin J M (1995). HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science, 267(5197): 483–489

[27]

Coulouarn C, Factor V M, Andersen J B, Durkin M E, Thorgeirsson S S (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 28(40): 3526–3536

[28]

Dalgleish A G, Beverley P C, Clapham P R, Crawford D H, Greaves M F, Weiss R A (1984). The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, 312(5996): 763–767

[29]

de Chassey B, Navratil V, Tafforeau L, Hiet M S, Aublin-Gex A, Agaugué S, Meiffren G, Pradezynski F, Faria B F, Chantier T, Le Breton M, Pellet J, Davoust N, Mangeot P E, Chaboud A, Penin F, Jacob Y, Vidalain P O, Vidal M, André P, Rabourdin-Combe C, Lotteau V (2008). Hepatitis C virus infection protein network. Mol Syst Biol, 4: 230

[30]

Deen K C, McDougal J S, Inacker R, Folena-Wasserman G, Arthos J, Rosenberg J, Maddon P J, Axel R, Sweet R W (1988). A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature, 331(6151): 82–84

[31]

Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton R E, Hill C M, Davis C B, Peiper S C, Schall T J, Littman D R, Landau N R (1996). Identification of a major co-receptor for primary isolates of HIV-1. Nature, 381(6584): 661–666

[32]

Deyde V M, Xu X, Bright R A, Shaw M, Smith C B, Zhang Y, Shu Y, Gubareva L V, Cox N J, Klimov A I (2007). Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis, 196(2): 249–257

[33]

Donzella G A, Schols D, Lin S W, Esté J A, Nagashima K A, Maddon P J, Allaway G P, Sakmar T P, Henson G, De Clercq E, Moore J P (1998). AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med, 4(1): 72–77

[34]

Dragic T, Litwin V, Allaway G P, Martin S R, Huang Y, Nagashima K A, Cayanan C, Maddon P J, Koup R A, Moore J P, Paxton W A (1996). HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 381(6584): 667–673

[35]

Dumond J B, Patterson K B, Pecha A L, Werner R E, Andrews E, Damle B, Tressler R, Worsley J, Kashuba A D M (2009). Maraviroc concentrates in the cervicovaginal fluid and vaginal tissue of HIV-negative women. J Acquir Immune Defic Syndr, 51(5): 546–553

[36]

Emiliani S, Mousnier A, Busschots K, Maroun M, Van Maele B, Tempé D, Vandekerckhove L, Moisant F, Ben-Slama L, Witvrouw M, Christ F, Rain J C, Dargemont C, Debyser Z, Benarous R (2005). Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem, 280(27): 25517–25523

[37]

Evans M J, von Hahn T, Tscherne D M, Syder A J, Panis M, Wölk B, Hatziioannou T, McKeating J A, Bieniasz P D, Rice C M (2007). Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 446(7137): 801–805

[38]

Feng Y, Broder C C, Kennedy P E, Berger E A (1996). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272(5263): 872–877

[39]

Flint M, Maidens C, Loomis-Price L D, Shotton C, Dubuisson J, Monk P, Higginbottom A, Levy S, McKeating J A (1999). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol, 73(8): 6235–6244

[40]

Flisiak R, Feinman S V, Jablkowski M, Horban A, Kryczka W, Pawlowska M, Heathcote J E, Mazzella G, Vandelli C, Nicolas-Métral V, Grosgurin P, Liz J S, Scalfaro P, Porchet H, Crabbé R (2009). The cyclophilin inhibitor Debio 025 combined with PEG IFNα2a significantly reduces viral load in treatment-naïve hepatitis C patients. Hepatology, 49(5): 1460–1468

[41]

Flisiak R, Horban A, Gallay P, Bobardt M, Selvarajah S, Wiercinska-Drapalo A, Siwak E, Cielniak I, Higersberger J, Kierkus J, Aeschlimann C, Grosgurin P, Nicolas-Métral V, Dumont J M, Porchet H, Crabbé R, Scalfaro P (2008). The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology, 47(3): 817–826

[42]

Foster T L, Gallay P, Stonehouse N J, Harris M (2011). Cyclophilin A interacts with domain II of hepatitis C virus NS5A and stimulates RNA binding in an isomerase-dependent manner. J Virol, 85(14): 7460–7464

[43]

Gaertner H, Cerini F, Escola J M, Kuenzi G, Melotti A, Offord R, Rossitto-Borlat I, Nedellec R, Salkowitz J, Gorochov G, Mosier D, Hartley O (2008). Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci USA, 105(46): 17706–17711

[44]

Grant R M, Lama J R, Anderson P L, McMahan V, Liu A Y, Vargas L, Goicochea P, Casapía M, Guanira-Carranza J V, Ramirez-Cardich M E, Montoya-Herrera O, Fernández T, Veloso V G, Buchbinder S P, Chariyalertsak S, Schechter M, Bekker L G, Mayer K H, Kallás E G, Amico K R, Mulligan K, Bushman L R, Hance R J, Ganoza C, Defechereux P, Postle B, Wang F, McConnell J J, Zheng J H, Lee J, Rooney J F, Jaffe H S, Martinez A I, Burns D N, Glidden D V, iPrEx Study Team (2010). Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med, 363(27): 2587–2599

[45]

Gregory M A, Bobardt M, Obeid S, Chatterji U, Coates N J, Foster T, Gallay P, Leyssen P, Moss S J, Neyts J, Nur-e-Alam M, Paeshuyse J, Piraee M, Suthar D, Warneck T, Zhang M Q, Wilkinson B (2011). Preclinical characterization of naturally occurring polyketide cyclophilin inhibitors from the sanglifehrin family. Antimicrob Agents Chemother, 55(5): 1975–1981

[46]

Groot F, Welsch S, Sattentau Q J (2008). Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood, 111(9): 4660–4663

[47]

Grove J, Nielsen S, Zhong J, Bassendine M F, Drummer H E, Balfe P, McKeating J A (2008). Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J Virol, 82(24): 12020–12029

[48]

Hamamoto I, Nishimura Y, Okamoto T, Aizaki H, Liu M, Mori Y, Abe T, Suzuki T, Lai M M C, Miyamura T, Moriishi K, Matsuura Y (2005). Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. J Virol, 79(21): 13473–13482

[49]

Hartley O, Gaertner H, Wilken J, Thompson D, Fish R, Ramos A, Pastore C, Dufour B, Cerini F, Melotti A, Heveker N, Picard L, Alizon M, Mosier D, Kent S, Offord R (2004). Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci USA, 101(47): 16460–16465

[50]

Hendrix C W, Collier A C, Lederman M M, Schols D, Pollard R B, Brown S, Jackson J B, Coombs R W, Glesby M J, Flexner C W, Bridger G J, Badel K, MacFarland R T, Henson G W, Calandra G, AMD3100 HIV Study Group (2004). Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr, 37(2): 1253–1262

[51]

Henke J I, Goergen D, Zheng J, Song Y, Schüttler C G, Fehr C, Jünemann C, Niepmann M (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J, 27(24): 3300–3310

[52]

Heo T H (2008). A potential role of the heparan sulfate in the hepatitis C virus attachment. Acta Virol, 52(1): 7–15

[53]

Hildebrandt-Eriksen E S, Aarup V, Persson R, Hansen H F, Munk M E, Orum H (2012). A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Therapeutics, 22(3): 152–161

[54]

Ho D D, Neumann A U, Perelson A S, Chen W, Leonard J M, Markowitz M (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373(6510): 123–126

[55]

Hopkins S, Dimassimo B, Rusnak P, Heuman D, Lalezari J, Sluder A., Scorneaux B, Mosier S, Kowalczyk P, Ribeill Y, Baugh J, Gallay P (2012). The cyclophilin inhibitor SCY-635 suppresses viral replication and induces endogenous interferons in patients with chronic HCV genotype 1 infection. J Hepatol, doi: 10.1016/j.jhep.2012.02.024

[56]

Hopkins S, Heuman D, Gavis E, Lalezari J, Glutzer E, DiMassimo B, Rusnak P, Wring S, Smitley C, Ribeill Y (2009). Safety, plasma, pharmacokinetics, and anti-viral activity of SCY-635 in adult patients with chronic hepatitis C virus infection. J Hepatol, 50S: 36

[57]

Inoue K, Umehara T, Ruegg U T, Yasui F, Watanabe T, Yasuda H, Dumont J M, Scalfaro P, Yoshiba M, Kohara M (2007). Evaluation of a cyclophilin inhibitor in hepatitis C virus-infected chimeric mice in vivo. Hepatology, 45(4): 921–928

[58]

Iwasaki Y, Clark H F (1975). Cell to cell transmission of virus in the central nervous system. II. Experimental rabies in mouse. Lab Invest, 33(4): 391–399

[59]

Jacobson J M, Thompson M A, Lalezari J P, Saag M S, Zingman B S, D’Ambrosio P, Stambler N, Rotshteyn Y, Marozsan A J, Maddon P J, Morris S A, Olson W C (2010). Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody. J Infect Dis, 201(10): 1481–1487

[60]

Jepsen J S, Sørensen M D, Wengel J (2004). Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides, 14(2): 130–146

[61]

Jolly C, Kashefi K, Hollinshead M, Sattentau Q J (2004). HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med, 199(2): 283–293

[62]

Jopling C L, Schütz S, Sarnow P (2008). Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe, 4(1): 77–85

[63]

Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309(5740): 1577–1581

[64]

Kaul A, Stauffer S, Berger C, Pertel T, Schmitt J, Kallis S, Zayas M, Lohmann V, Luban J, Bartenschlager R (2009). Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. PLoS Pathog, 5(8): e1000546

[65]

Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman J C, Montagnier L (1984). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 312(5996): 767–768

[66]

Klibanov O M, Williams S H, Iler C A (2010). Cenicriviroc, an orally active CCR5 antagonist for the potential treatment of HIV infection. Curr Opin Investig Drugs, 11(8): 940–950

[67]

König R, Stertz S, Zhou Y, Inoue A, Hoffmann H H, Bhattacharyya S, Alamares J G, Tscherne D M, Ortigoza M B, Liang Y, Gao Q, Andrews S E, Bandyopadhyay S, De Jesus P, Tu B P, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, García-Sastre A, Young J A, Palese P, Shaw M L, Chanda S K (2010). Human host factors required for influenza virus replication. Nature, 463(7282): 813–817

[68]

König R, Zhou Y, Elleder D, Diamond T L, Bonamy G M C, Irelan J T, Chiang C Y, Tu B P, De Jesus P D, Lilley C E, Seidel S, Opaluch A M, Caldwell J S, Weitzman M D, Kuhen K L, Bandyopadhyay S, Ideker T, Orth A P, Miraglia L J, Bushman F D, Young J A, Chanda S K (2008). Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 135(1): 49–60

[69]

Koshkin A A, Singh S K, Nielsen P, Rajwanshi V K, Kumar R, Meldgaard M, Olsen C E, Wengel J (1998). LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron, 54(14): 3607–3630

[70]

Krieger M (2001). Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest, 108(6): 793–797

[71]

Kuritzkes D, Kar S, Kirkpatrick P (2008). Maraviroc. Nat Rev Drug Discov, 7(1): 15–16

[72]

Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob S T, Ghoshal K (2006). Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem, 99(3): 671–678

[73]

Kwo P Y, Lawitz E J, McCone J, Schiff E R, Vierling J M, Pound D, Davis M N, Galati J S, Gordon S C, Ravendhran N, Rossaro L, Anderson F H, Jacobson I M, Rubin R, Koury K, Pedicone L D, Brass C A, Chaudhri E, Albrecht J K, SPRINT-1 investigators (2010). Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. Lancet, 376(9742): 705–716

[74]

Kwong P D, Wyatt R, Robinson J, Sweet R W, Sodroski J, Hendrickson W A (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 393(6686): 648–659

[75]

Lacek K, Vercauteren K, Grzyb K, Naddeo M, Verhoye L, Słowikowski M P, Fafi-Kremer S, Patel A H, Baumert T F, Folgori A, Leroux-Roels G, Cortese R, Meuleman P, Nicosia A (2012). Novel human SR-BI antibodies prevent infection and dissemination of HCV in vitro and in humanized mice. J Hepatol, doi: 10.1016/j.jhep.2012.02.018

[76]

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol, 12(9): 735–739

[77]

Landrieu I, Hanoulle X, Bonachera F, Hamel A, Sibille N, Yin Y, Wieruszeski J M, Horvath D, Wei Q, Vuagniaux G, Lippens G (2010). Structural basis for the non-immunosuppressive character of the cyclosporin A analogue Debio 025. Biochemistry, 49(22): 4679–4686

[78]

Lanford R E, Hildebrandt-Eriksen E S, Petri A, Persson R, Lindow M, Munk M E, Kauppinen S, Ørum H (2010). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 327(5962): 198–201

[79]

Lawitz E, Godofsky E, Rouzier R, Marbury T, Nguyen T, Ke J, Huang M, Praestgaard J, Serra D, Evans T G (2011). Safety, pharmacokinetics, and antiviral activity of the cyclophilin inhibitor NIM811 alone or in combination with pegylated interferon in HCV-infected patients receiving 14 days of therapy. Antiviral Res, 89(3): 238–245

[80]

Lederman M M, Veazey R S, Offord R, Mosier D E, Dufour J, Mefford M, Piatak M Jr, Lifson J D, Salkowitz J R, Rodriguez B, Blauvelt A, Hartley O (2004). Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science, 306(5695): 485–487

[81]

Levy S, Todd S C, Maecker H T (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol, 16(1): 89–109

[82]

Li Q, Brass A L, Ng A, Hu Z, Xavier R J, Liang T J, Elledge S J (2009). A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci USA, 106(38): 16410–16415

[83]

Liu J, Farmer J D Jr, Lane W S, Friedman J, Weissman I, Schreiber S L (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66(4): 807–815

[84]

Liu R, Paxton W A, Choe S, Ceradini D, Martin S R, Horuk R, MacDonald M E, Stuhlmann H, Koup R A, Landau N R (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 86(3): 367–377

[85]

Liu S, Yang W, Shen L, Turner J R, Coyne C B, Wang T (2009). Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol, 83(4): 2011–2014

[86]

Liu Z, Yang F, Robotham J M, Tang H (2009). Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex. J Virol, 83(13): 6554–6565

[87]

Lohmann V, Körner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 285(5424): 110–113

[88]

Lozach P Y, Amara A, Bartosch B, Virelizier J L, Arenzana-Seisdedos F, Cosset F L, Altmeyer R (2004). C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem, 279(31): 32035–32045

[89]

Lupberger J, Zeisel M B, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee C J, Turek M, Gorke S, Royer C, Fischer B, Zahid M N, Lavillette D, Fresquet J, Cosset F L, Rothenberg S M, Pietschmann T, Patel A H, Pessaux P, Doffoël M, Raffelsberger W, Poch O, McKeating J A, Brino L, Baumert T F (2011). EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med, 17(5): 589–595

[90]

Mack M, Luckow B, Nelson P J, Cihak J, Simmons G, Clapham P R, Signoret N, Marsh M, Stangassinger M, Borlat F, Wells T N, Schlöndorff D, Proudfoot A E (1998). Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med, 187(8): 1215–1224

[91]

Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, Engelborghs Y (2003). LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem, 278(35): 33528–33539

[92]

Masson D, Koseki M, Ishibashi M, Larson C J, Miller S G, King B D, Tall A R (2009). Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol, 29(12): 2054–2060

[93]

Mathy J E, Ma S, Compton T, Lin K (2008). Combinations of cyclophilin inhibitor NIM811 with hepatitis C virus NS3-4A protease or NS5B polymerase inhibitors enhance antiviral activity and suppress the emergence of resistance. Antimicrob Agents Chemother, 52(9): 3267–3275

[94]

McDougal J S, Kennedy M S, Sligh J M, Cort S P, Mawle A, Nicholson J K (1986). Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science, 231(4736): 382–385

[95]

McHutchison J G, Everson G T, Gordon S C, Jacobson I M, Sulkowski M, Kauffman R, McNair L, Alam J, Muir A J, PROVE1 Study Team (2009). Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med, 360(18): 1827–1838

[96]

Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I, Reiser H, Leroux-Roels G (2008). Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology, 48(6): 1761–1768

[97]

Molina S, Castet V, Pichard-Garcia L, Wychowski C, Meurs E, Pascussi J M, Sureau C, Fabre J M, Sacunha A, Larrey D, Dubuisson J, Coste J, McKeating J, Maurel P, Fournier-Wirth C (2008). Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol, 82(1): 569–574

[98]

Moyle G, DeJesus E, Boffito M, Wong R S, Gibney C, Badel K, MacFarland R, Calandra G, Bridger G, Becker S, X4 Antagonist Concept Trial Study Team (2009). Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1. Clin Infect Dis, 48(6): 798–805

[99]

Moyle G J, Wildfire A, Mandalia S, Mayer H, Goodrich J, Whitcomb J, Gazzard B G (2005). Epidemiology and predictive factors for chemokine receptor use in HIV-1 infection. J Infect Dis, 191(6): 866–872

[100]

Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382(6592): 635–638

[101]

Nahmias Y, Casali M, Barbe L, Berthiaume F, Yarmush M L (2006). Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology, 43(2): 257–265

[102]

Nedellec R, Coetzer M, Lederman M M, Offord R E, Hartley O, Mosier D E (2011). Resistance to the CCR5 inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use. PLoS ONE, 6(7): e22020

[103]

Nichols W G, Steel H M, Bonny T, Adkison K, Curtis L, Millard J, Kabeya K, Clumeck N (2008). Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Chemother, 52(3): 858–865

[104]

Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier J L, Arenzana-Seisdedos F, Schwartz O, Heard J M, Clark-Lewis I, Legler D F, Loetscher M, Baggiolini M, Moser B (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 382(6594): 833–835

[105]

Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T (1998). Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett, 39(30): 5401–5404

[106]

Paeshuyse J, Kaul A, De Clercq E, Rosenwirth B, Dumont J M, Scalfaro P, Bartenschlager R, Neyts J (2006). The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology, 43(4): 761–770

[107]

Pastore C, Ramos A, Mosier D E (2004). Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching. J Virol, 78(14): 7565–7574

[108]

Pawlotsky J M (2012). Alisporivir plus Ribavirin is highly effective as interferon-free or interferon-add-on regimen in previously untreated HCV-GT2 or GT3 patients: SVR12 results from VITAL-1 Phase 2b study. 47th Annual Meeting of the European Association for the Study of the Liver, Barcelona

[109]

Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner A J, Houghton M, Rosa D, Grandi G, Abrignani S (1998). Binding of hepatitis C virus to CD81. Science, 282(5390): 938–941

[110]

Ploss A, Evans M J, Gaysinskaya V A, Panis M, You H, de Jong Y P, Rice C M (2009). Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature, 457(7231): 882–886

[111]

Preston B D, Poiesz B J, Loeb L A (1988). Fidelity of HIV-1 reverse transcriptase. Science, 242(4882): 1168–1171

[112]

Reece P A (2007). Neuraminidase inhibitor resistance in influenza viruses. J Med Virol, 79(10): 1577–1586

[113]

Reesink H, Janssen H L A, Zeuzem S, Lawitz E, Rodriguez-Torres M, Patel K, Chen A, Davis C, King B, Levin A (2012). Final Results- Randomized, Double-Blind, Placebo-controlled safety, anti-viral-proof-of-concept study of miravirsen, an oligonucleotide targeting miR-122, in treatment-naïve patients. 47th Annual Meeting of the European Association for the Study of the Liver, Barcelona

[114]

Reeves P M, Bommarius B, Lebeis S, McNulty S, Christensen J, Swimm A, Chahroudi A, Chavan R, Feinberg M B, Veach D, Bornmann W, Sherman M, Kalman D (2005). Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med, 11(7): 731–739

[115]

Richman D D, Bozzette S A (1994). The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis, 169(5): 968–974

[116]

Roberts J D, Bebenek K, Kunkel T A (1988). The accuracy of reverse transcriptase from HIV-1. Science, 242(4882): 1171–1173

[117]

Roche M, Jakobsen M R, Sterjovski J, Ellett A, Posta F, Lee B, Jubb B, Westby M, Lewin S R, Ramsland P A, Churchill M J, Gorry P R (2011). HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less-efficient mechanism of gp120-CCR5 engagement that attenuates macrophage tropism. J Virol, 85(9): 4330–4342

[118]

Sainz B Jr, Barretto N, Martin D N, Hiraga N, Imamura M, Hussain S, Marsh K A, Yu X, Chayama K, Alrefai W A, Uprichard S L (2012). Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med, 18(2): 281–285

[119]

Samson M, Libert F, Doranz B J, Rucker J, Liesnard C, Farber C M, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth R J, Collman R G, Doms R W, Vassart G, Parmentier M (1996). Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 382(6593): 722–725

[120]

Sarrazin C, Kieffer T L, Bartels D, Hanzelka B, Müh U, Welker M, Wincheringer D, Zhou Y, Chu H M, Lin C, Weegink C, Reesink H, Zeuzem S, Kwong A D (2007). Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology, 132(5): 1767–1777

[121]

Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn L D (2003). Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol, 77(1): 546–559

[122]

Scarselli E, Ansuini H, Cerino R, Roccasecca R M, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A (2002). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J, 21(19): 5017–5025

[123]

Shapira S D, Gat-Viks I, Shum B O V, Dricot A, de Grace M M, Wu L, Gupta P B, Hao T, Silver S J, Root D E, Hill D E, Regev A, Hacohen N (2009). A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell, 139(7): 1255–1267

[124]

Shimakami T, Yamane D, Jangra R K, Kempf B J, Spaniel C, Barton D J, Lemon S M (2012a). Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA, 109(3): 941– 946

[125]

Shimakami T, Yamane D, Welsch C, Hensley L, Jangra R K, Lemon S M. (2012b). Base-pairing between Hepatitis C Virus RNA and miR-122 3′ of its Seed Sequence is Essential for Genome Stabilization and Production of Infectious Virus. J Virol,

[126]

Simmons G, Clapham P R, Picard L, Offord R E, Rosenkilde M M, Schwartz T W, Buser R, Wells T N, Proudfoot A E (1997). Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science, 276(5310): 276–279

[127]

Singh K, Koshkin A A, Wengel J, Nielsen P (1998). LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun (Camb), (4): 455–456

[128]

Smith D H, Byrn R A, Marsters S A, Gregory T, Groopman J E, Capon D J (1987). Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science, 238(4834): 1704–1707

[129]

Song R, Franco D, Kao C Y, Yu F, Huang Y, Ho D D (2010). Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients. J Virol, 84(14): 6935–6942

[130]

Syder A J, Lee H, Zeisel M B, Grove J, Soulier E, Macdonald J, Chow S, Chang J, Baumert T F, McKeating J A, McKelvy J, Wong-Staal F (2011). Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol, 54(1): 48–55

[131]

Tang H (2010). Cyclophilin inhibitors as a novel HCV therapy. Viruses, 2(8): 1621–1634

[132]

Teraoka S, Mishiro S, Ebihara K, Sanaka T, Yamaguchi Y, Nakajima I, Kawai T, Yagisawa T, Honda H, Fuchinoue S, et al (1988). Effect of cyclosporine on proliferation of non-A, non-B hepatitis virus. Transplant Proc, 20(3 Suppl 3): 868–876

[133]

Tilton J C, Amrine-Madsen H, Miamidian J L, Kitrinos K M, Pfaff J, Demarest J F, Ray N, Jeffrey J L, Labranche C C, Doms R W (2010). HIV type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound receptor for entry. AIDS Res Hum Retroviruses, 26(1): 13–24

[134]

Timpe J M, Stamataki Z, Jennings A, Hu K, Farquhar M J, Harris H J, Schwarz A, Desombere I, Roels G L, Balfe P, McKeating J A (2008). Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology, 47(1): 17–24

[135]

Trkola A, Kuhmann S E, Strizki J M, Maxwell E, Ketas T, Morgan T, Pugach P, Xu S, Wojcik L, Tagat J, Palani A, Shapiro S, Clader J W, McCombie S, Reyes G R, Baroudy B M, Moore J P (2002). HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci USA, 99(1): 395–400

[136]

Tu H, Gao L, Shi S T, Taylor D R, Yang T, Mircheff A K, Wen Y, Gorbalenya A E, Hwang S B, Lai M M (1999). Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology, 263(1): 30–41

[137]

Veazey R S, Ketas T J, Dufour J, Moroney-Rasmussen T, Green L C, Klasse P J, Moore J P (2010). Protection of rhesus macaques from vaginal infection by vaginally delivered maraviroc, an inhibitor of HIV-1 entry via the CCR5 co-receptor. J Infect Dis, 202(5): 739– 744

[138]

Veedu R N, Wengel J (2010). Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers, 7(3): 536–542

[139]

Vermeire K, Brouwers J, Van Herrewege Y, Le Grand R, Vanham G, Augustijns P, Bell T W, Schols D (2008). CADA, a potential anti-HIV microbicide that specifically targets the cellular CD4 receptor. Curr HIV Res, 6(3): 246–256

[140]

Vermeire K, Schols D (2005). Cyclotriazadisulfonamides: promising new CD4-targeted anti-HIV drugs. J Antimicrob Chemother, 56(2): 270–272

[141]

Vester B, Wengel J (2004). LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry, 43(42): 13233–13241

[142]

Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Kräusslich H G, Mizokami M, Bartenschlager R, Liang T J (2005). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med, 11(7): 791–796

[143]

Watashi K, Hijikata M, Hosaka M, Yamaji M, Shimotohno K (2003). Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology, 38(5): 1282–1288

[144]

Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, Shimotohno K (2005). Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell, 19(1): 111–122

[145]

Westby M, Lewis M, Whitcomb J, Youle M, Pozniak A L, James I T, Jenkins T M, Perros M, van der Ryst E (2006). Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol, 80(10): 4909–4920

[146]

WHO/UNAIDS/UNICEF (2011). Progress Report 2011: Global HIV/AIDS Response. World Health Organization

[147]

Wilkin T J, Gulick R M (2012). CCR5 antagonism in HIV infection: current concepts and future opportunities. Annu Rev Med, 63(1): 81–93

[148]

Wilkin T J, Su Z, Kuritzkes D R, Hughes M, Flexner C, Gross R, Coakley E, Greaves W, Godfrey C, Skolnik P R, Timpone J, Rodriguez B, Gulick R M (2007). HIV type 1 chemokine coreceptor use among antiretroviral-experienced patients screened for a clinical trial of a CCR5 inhibitor: AIDS Clinical Trial Group A5211. Clin Infect Dis, 44(4): 591–595

[149]

Yang F, Robotham J M, Nelson H B, Irsigler A, Kenworthy R, Tang H (2008). Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J Virol, 82(11): 5269–5278

[150]

Zhang J, Randall G, Higginbottom A, Monk P, Rice C M, McKeating J A (2004). CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol, 78(3): 1448–1455

[151]

Zhao B, Mankowski M K, Snyder B A, Ptak R G, Liwang P J (2011). Highly potent chimeric inhibitors targeting two steps of HIV cell entry. J Biol Chem, 286(32): 28370–28381

[152]

Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, Cheng G, McKeating J A, Chisari F V (2006). Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J Virol, 80(22): 11082–11093

[153]

Zhou H, Xu M, Huang Q, Gates A T, Zhang X D, Castle J C, Stec E, Ferrer M, Strulovici B, Hazuda D J, Espeseth A S (2008). Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe, 4(5): 495–504

[154]

Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, Schooley R T, Wyles D L (2012). Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals. J Infect Dis, 205(4): 656–662

[155]

Zou Y R, Kottmann A H, Kuroda M, Taniuchi I, Littman D R (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393(6685): 595–599

[156]

Zydowsky L D, Etzkorn F A, Chang H Y, Ferguson S B, Stolz L A, Ho S I, Walsh C T (1992). Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Sci, 1(9): 1092–1099

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (340KB)

858

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/