Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease

Bin XING, Guoying BING

PDF(203 KB)
PDF(203 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 404-411. DOI: 10.1007/s11515-012-1239-6
REVIEW
REVIEW

Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease

Author information +
History +

Abstract

Uncontrolled and chronic microglia activation has been implicated in the process of dopaminergic neuron degeneration in sporadic Parkinson’s disease (PD). Elevated proinflammatory mediators, presumably from activated microglia (e.g., cytokines, PGE2, nitric oxide, and superoxide radical), have been observed in PD patients and are accompanied by dopaminergic neuronal loss. Preclinical studies have demonstrated the deleterious effects of proinflammatory mediators in various in vivo and in vitro models of PD. The use of in vitro studies provides a unique tool to investigate the interaction between neurons and microglia and is especially valuable when considering the role of activated microglia in neuronal death. Here we summarize findings highlighting the potential mechanisms of microglia-mediated neurodegeneration in PD.

Keywords

dopaminergic neurons / microglia activation / nitric oxide / cytokines / PGE2 / p38 MAPK

Cite this article

Download citation ▾
Bin XING, Guoying BING. Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease. Front Biol, 2012, 7(5): 404‒411 https://doi.org/10.1007/s11515-012-1239-6

References

[1]
Arimoto T, Bing G (2003). Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis, 12(1): 35–45
CrossRef Pubmed Google scholar
[2]
Arimoto T, Choi D Y, Lu X, Liu M, Nguyen X V, Zheng N, Stewart C A, Kim H C, Bing G (2007). Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol Aging, 28(6): 894–906
CrossRef Pubmed Google scholar
[3]
Betarbet R, Sherer T B, MacKenzie G, Garcia-Osuna M, Panov A V, Greenamyre J T (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci, 3(12): 1301–1306
CrossRef Pubmed Google scholar
[4]
Bing G Y, Lu N A, (1998). Microglia Mediaed Dopaminergic Cell Death in the Substantia nigra: a New Animal Model for Parkinson's Disease. Neuroscience Abstracts
[5]
Blandini F, Armentero M T (2012). Animal models of Parkinson’s disease. FEBS J, 279(7): 1156–1166
CrossRef Pubmed Google scholar
[6]
Block M L, Hong J S (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol, 76(2): 77–98
CrossRef Pubmed Google scholar
[7]
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch E C (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett, 172(1–2): 151–154
CrossRef Pubmed Google scholar
[8]
Brooks A I, Chadwick C A, Gelbard H A, Cory-Slechta D A, Federoff H J (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res, 823(1–2): 1–10
CrossRef Pubmed Google scholar
[9]
Cannon J R, Tapias V, Na H M, Honick A S, Drolet R E, Greenamyre J T (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis, 34(2): 279–290
CrossRef Pubmed Google scholar
[10]
Carrasco E, Casper D, Werner P (2007). PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res, 85(14): 3109–3117
CrossRef Pubmed Google scholar
[11]
Castaño A, Herrera A J, Cano J, Machado A (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem, 70(4): 1584–1592
CrossRef Pubmed Google scholar
[12]
Choi D Y, Liu M, Hunter R L, Cass W A, Pandya J D, Sullivan P G, Shin E J, Kim H C, Gash D M, Bing G (2009). Striatal neuroinflammation promotes Parkinsonism in rats. PLoS ONE, 4(5): e5482
CrossRef Pubmed Google scholar
[13]
Choi W S, Eom D S, Han B S, Kim W K, Han B H, Choi E J, Oh T H, Markelonis G J, Cho J W, Oh Y J (2004). Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and-9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem, 279(19): 20451–20460
CrossRef Pubmed Google scholar
[14]
Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz J B (2000). Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem, 74(5): 2213–2216
CrossRef Pubmed Google scholar
[15]
Du Y, Ma Z, Lin S, Dodel R C, Gao F, Bales K R, Triarhou L C, Chernet E, Perry K W, Nelson D L, Luecke S, Phebus L A, Bymaster F P, Paul S M (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA, 98(25): 14669–14674
CrossRef Pubmed Google scholar
[16]
Fontaine V, Mohand-Said S (2002). Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. The Journal of neuroscience, 22(7): RC216
[17]
Gao H M, Jiang J, Wilson B, Zhang W, Hong J S, Liu B (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem, 81(6): 1285–1297
CrossRef Pubmed Google scholar
[18]
Gao H M, Kotzbauer P T (2008). Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. The Journal of neuroscience, 28(30): 7687–7698
[19]
Gao H M, Zhou H (2011). HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration.” J Neurosci, 31(3): 1081–1092
[20]
Gao L, Zackert W E, Hasford J J, Danekis M E, Milne G L, Remmert C, Reese J, Yin H, Tai H H, Dey S K, Porter N A, Morrow J D (2003). Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J Biol Chem, 278(31): 28479–28489
CrossRef Pubmed Google scholar
[21]
Gayle D A, Ling Z, Tong C, Landers T, Lipton J W, Carvey P M (2002). Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res, 133(1): 27–35
CrossRef Pubmed Google scholar
[22]
Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle R J, Morrison R S (2000). p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol, 150(2): 335–347
CrossRef Pubmed Google scholar
[23]
Gomez-Lazaro M, Galindo M F, Concannon C G, Segura M F, Fernandez-Gomez F J, Llecha N, Comella J X, Prehn J H, Jordan J (2008). 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem, 104(6): 1599–1612
CrossRef Pubmed Google scholar
[24]
Good P F, Hsu A, Werner P, Perl D P, Olanow C W (1998). Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol, 57(4): 338–342
CrossRef Pubmed Google scholar
[25]
Hald A, Lotharius J (2005). Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol, 193(2): 279–290
CrossRef Pubmed Google scholar
[26]
Hartmann A, Troadec J D, Hunot S, Kikly K, Faucheux B A, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch E C (2001). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci, 21(7): 2247–2255
Pubmed
[27]
He Y, Appel S, Le W (2001). Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res, 909(1–2): 187–193
CrossRef Pubmed Google scholar
[28]
Herrera A J, Castaño A, Venero J L, Cano J, Machado A (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis, 7(4): 429–447
CrossRef Pubmed Google scholar
[29]
Hodara R, Norris E H, Giasson B I, Mishizen-Eberz A J, Lynch D R, Lee V M, Ischiropoulos H (2004). Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem, 279(46): 47746–47753
CrossRef Pubmed Google scholar
[30]
Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch E C (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience, 72(2): 355–363
CrossRef Pubmed Google scholar
[31]
Hunot S, Dugas N (1999). FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. The Journal of neuroscience, 19(9): 3440–3447
[32]
Hunter R L, Cheng B, Choi D Y, Liu M, Liu S, Cass W A, Bing G (2009). Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res, 87(8): 1913–1921
CrossRef Pubmed Google scholar
[33]
Hunter R L, Dragicevic N, Seifert K, Choi D Y, Liu M, Kim H C, Cass W A, Sullivan P G, Bing G (2007). Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem, 100(5): 1375–1386
CrossRef Pubmed Google scholar
[34]
Iravani M M, Kashefi K, Mander P, Rose S, Jenner P (2002). Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience, 110(1): 49–58
CrossRef Pubmed Google scholar
[35]
Jenner P, Olanow C W (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology, 47(6 Suppl 3): S161–S170
CrossRef Pubmed Google scholar
[36]
Kim W G, Mohney R P (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci, 20(16): 6309–6316
[37]
Kirik D, Rosenblad C, Björklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol, 152(2): 259–277
CrossRef Pubmed Google scholar
[38]
Knott C, Stern G, Wilkin G P (2000). Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Mol Cell Neurosci, 16(6): 724–739
CrossRef Pubmed Google scholar
[39]
Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979–980
CrossRef Pubmed Google scholar
[40]
Lapointe N, St-Hilaire M (2004). Rotenone induces non-specific central nervous system and systemic toxicity. FASEB journal, 18(6): 717–719
[41]
Li R, Yang L (2004). Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. The Journal of neuroscience, 24(7): 1760–1771
[42]
Liberatore G T, Jackson-Lewis V, Vukosavic S, Mandir A S, Vila M, McAuliffe W G, Dawson V L, Dawson T M, Przedborski S (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med, 5(12): 1403–1409
CrossRef Pubmed Google scholar
[43]
Loeffler D A, DeMaggio A J, Juneau P L, Havaich M K, LeWitt P A (1994). Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin Neuropharmacol, 17(4): 370–379
CrossRef Pubmed Google scholar
[44]
Long-Smith C M, Collins L, Toulouse A, Sullivan A M, Nolan Y M (2010). Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol, 226(1–2): 20–26
CrossRef Pubmed Google scholar
[45]
Lozano A M, Lang A E, Hutchison W D, Dostrovsky J O (1998). New developments in understanding the etiology of Parkinson’s disease and in its treatment. Curr Opin Neurobiol, 8(6): 783–790
CrossRef Pubmed Google scholar
[46]
Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel U L (2004). Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem, 279(31): 32869–32881
CrossRef Pubmed Google scholar
[47]
McCoy M K, Martinez T N (2006). Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. The Journal of neuroscience, 26(37): 9365–9375
[48]
McGeer P L, Itagaki S, Akiyama H, McGeer E G (1988a). Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol, 24(4): 574–576
CrossRef Pubmed Google scholar
[49]
McGeer P L, Itagaki S, Boyes B E, McGeer E G (1988b). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 38(8): 1285–1291
CrossRef Pubmed Google scholar
[50]
McGeer P L, Schwab C, Parent A, Doudet D (2003). Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol, 54(5): 599–604
CrossRef Pubmed Google scholar
[51]
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994a). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett, 180(2): 147–150
CrossRef Pubmed Google scholar
[52]
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994b). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett, 165(1–2): 208–210
CrossRef Pubmed Google scholar
[53]
Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000). Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm, 107(3): 335–341
CrossRef Pubmed Google scholar
[54]
Murray J, Taylor S W, Zhang B, Ghosh S S, Capaldi R A (2003). Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem, 278(39): 37223–37230
CrossRef Pubmed Google scholar
[55]
Nagatsu T, Mogi M, Ichinose H, Togari A (2000). Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl, (60): 277–290
Pubmed
[56]
Nakamura Y (2002). Regulating factors for microglial activation. Biol Pharm Bull, 25(8): 945–953
CrossRef Pubmed Google scholar
[57]
Olanow C W, Tatton W G (1999). Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci, 22(1): 123–144
CrossRef Pubmed Google scholar
[58]
Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res, 77(4): 540–551
CrossRef Pubmed Google scholar
[59]
Paxinou E, Chen Q (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. The Journal of neuroscience, 21(20): 8053–8061
[60]
Perese D A, Ulman J, Viola J, Ewing S E, Bankiewicz K S (1989). A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res, 494(2): 285–293
CrossRef Pubmed Google scholar
[61]
Przedborski S, Chen Q, Vila M, Giasson B I, Djaldatti R, Vukosavic S, Souza J M, Jackson-Lewis V, Lee V M, Ischiropoulos H (2001). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem, 76(2): 637–640
CrossRef Pubmed Google scholar
[62]
Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki D M (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience, 67(3): 631–647
CrossRef Pubmed Google scholar
[63]
Qin L, Liu Y, Wang T, Wei S J, Block M L, Wilson B, Liu B, Hong J S (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 279(2): 1415–1421
CrossRef Pubmed Google scholar
[64]
Ransohoff R M, Perry V H (2009). Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol, 27(1): 119–145
CrossRef Pubmed Google scholar
[65]
Shavali S, Combs C K, Ebadi M (2006). Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res, 31(1): 85–94
CrossRef Pubmed Google scholar
[66]
Sherer T B, Kim J H, Betarbet R, Greenamyre J T (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol, 179(1): 9–16
CrossRef Pubmed Google scholar
[67]
Sherer T B, Richardson J R, Testa C M, Seo B B, Panov A V, Yagi T, Matsuno-Yagi A, Miller G W, Greenamyre J T (2007). Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem, 100(6): 1469–1479
Pubmed
[68]
Tiwari M, Lopez-Cruzan M, Morgan W W, Herman B (2011). Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem, 286(10): 8493–8506
CrossRef Pubmed Google scholar
[69]
Vijitruth R, Liu M, Choi D Y, Nguyen X V, Hunter R L, Bing G (2006). Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation, 3(1): 6
CrossRef Pubmed Google scholar
[70]
Wang, T., Pei, Z., (2005). MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB journal, 19(9): 1134–1136
[71]
Wu D C, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi D K, Ischiropoulos H, Przedborski S (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci, 22(5): 1763–1771
Pubmed
[72]
Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA, 100(10): 6145–6150
CrossRef Pubmed Google scholar
[73]
Xing B, Liu M, Bing G (2007). Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J Neuroimmunol, 192(1–2): 89–98
CrossRef Pubmed Google scholar
[74]
Xing B, Xin T, Hunter R L, Bing G (2008). Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation, 5(1): 4
CrossRef Pubmed Google scholar
[75]
Zhang F, Shi J S, Zhou H, Wilson B, Hong J S, Gao H M (2010). Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol, 78(3): 466–477
CrossRef Pubmed Google scholar
[76]
Zhang J, Perry G, Smith M A, Robertson D, Olson S J, Graham D G, Montine T J (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol, 154(5): 1423–1429
CrossRef Pubmed Google scholar
[77]
Zhang J, Stanton D M, Nguyen X V, Liu M, Zhang Z, Gash D, Bing G (2005). Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience, 135(3): 829–838
CrossRef Pubmed Google scholar
[78]
Zhang W, Wang T (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB journal, 19(6): 533–542

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/