
Cortical development and asymmetric cell divisions
Yan ZHOU
Front. Biol. ›› 2012, Vol. 7 ›› Issue (4) : 297-306.
Cortical development and asymmetric cell divisions
The development of the mammalian neocortex involves rounds of symmetric and asymmetric cell division of neural progenitors to fulfill needs of both self-renewal of progenitors and production of differentiated progenies such as neurons and glia. The machinery for asymmetric cell division is evolutionarily conserved and extensively used in organogenesis and homeostasis of adult tissues. Here we summarize recent progress regarding cellular characteristics of different types of neural progenitors in mammals, highlighting how asymmetric cell division is utilized during cortical development.
asymmetric cell division / radial glial cells / centrosome / spindle orientation
[1] |
Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881-890
CrossRef
Pubmed
Google scholar
|
[2] |
Betschinger J, Knoblich J A (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current Biology, CB 14: R674-685
|
[3] |
Betschinger J, Mechtler K, Knoblich J A (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell, 124(6): 1241-1253
CrossRef
Pubmed
Google scholar
|
[4] |
Bowman S K, Rolland V, Betschinger J, Kinsey K A, Emery G, Knoblich J A (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell, 14(4): 535-546
CrossRef
Pubmed
Google scholar
|
[5] |
Broadus J, Fuerstenberg S, Doe C Q (1998). Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature, 391(6669): 792-795
CrossRef
Pubmed
Google scholar
|
[6] |
Bultje R S, Castaneda-Castellanos D R, Jan L Y, Jan Y N, Kriegstein A R, Shi S H (2009). Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron, 63(2): 189-202
CrossRef
Pubmed
Google scholar
|
[7] |
Cappello S, Attardo A, Wu X, Iwasato T, Itohara S, Wilsch-Bräuninger M, Eilken H M, Rieger M A, Schroeder T T, Huttner W B, Brakebusch C, Götz M (2006). The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci, 9(9): 1099-1107
CrossRef
Pubmed
Google scholar
|
[8] |
Chenn A, McConnell S K (1995). Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell, 82(4): 631-641
CrossRef
Pubmed
Google scholar
|
[9] |
Cho H, Kim K M, Han S, Choe J, Park S G, Choi S S, Kim YK (2012). Staufen1-Mediated mRNA Decay Functions in Adipogenesis. Molecular cell, 46(4):495-506
|
[10] |
Choksi S P, Southall T D, Bossing T, Edoff K, de Wit E, Fischer B E, van Steensel B, Micklem G, Brand A H (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell, 11(6): 775-789
CrossRef
Pubmed
Google scholar
|
[11] |
Costa M R, Wen G, Lepier A, Schroeder T, Götz M (2008). Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development, 135(1): 11-22
CrossRef
Pubmed
Google scholar
|
[12] |
Delattre M, Gönczy P (2004). The arithmetic of centrosome biogenesis. J Cell Sci, 117(9): 1619-1630
CrossRef
Pubmed
Google scholar
|
[13] |
Doe C Q, Chu-LaGraff Q, Wright D M, Scott M P (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell, 65(3): 451-464
CrossRef
Pubmed
Google scholar
|
[14] |
Dyer M A, Livesey F J, Cepko C L, Oliver G (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet, 34(1): 53-58
CrossRef
Pubmed
Google scholar
|
[15] |
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25: 247-251
|
[16] |
Fietz S A, Huttner W B (2011). Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol, 21(1): 23-35
CrossRef
Pubmed
Google scholar
|
[17] |
Fietz S A, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish J L, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner W B (2010). OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci, 13(6): 690-699
CrossRef
Pubmed
Google scholar
|
[18] |
Fish J L, Kosodo Y, Enard W, Pääbo S, Huttner W B (2006). Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA, 103(27): 10438-10443
CrossRef
Pubmed
Google scholar
|
[19] |
Fuse N, Hisata K, Katzen A L, Matsuzaki F (2003). Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Current Biology, CB(13): 947-954
|
[20] |
Gal J S, Morozov Y M, Ayoub A E, Chatterjee M, Rakic P, Haydar T F (2006). Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. The Journal of neuroscience: the official journal of the Society for Neuroscience, 26: 1045-1056
|
[21] |
Gong C, Maquat L E (2011). lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 470(7333): 284-288
CrossRef
Pubmed
Google scholar
|
[22] |
Götz M, Huttner W B (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol, 6(10): 777-788
CrossRef
Pubmed
Google scholar
|
[23] |
Hansen D V, Lui J H, Parker P R, Kriegstein A R (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464(7288): 554-561
CrossRef
Pubmed
Google scholar
|
[24] |
Huttner W B, Brand M (1997). Asymmetric division and polarity of neuroepithelial cells. Curr Opin Neurobiol, 7(1): 29-39
CrossRef
Pubmed
Google scholar
|
[25] |
Ikeshima-Kataoka H, Skeath J B, Nabeshima Y, Doe C Q, Matsuzaki F (1997). Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature, 390(6660): 625-629
CrossRef
Pubmed
Google scholar
|
[26] |
Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, Noguchi S, Sasaoka T, Noda T, Ohno S (2006). Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development, 133(9): 1735-1744
CrossRef
Pubmed
Google scholar
|
[27] |
Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R, Politis P K (2010). Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol, 8(12): e1000565
CrossRef
Pubmed
Google scholar
|
[28] |
Kim Y K, Furic L, Desgroseillers L, Maquat L E (2005). Mammalian Staufen1 recruits Upf1 to specific mRNA 3’UTRs so as to elicit mRNA decay. Cell, 120(2): 195-208
CrossRef
Pubmed
Google scholar
|
[29] |
Klezovitch O, Fernandez T E, Tapscott S J, Vasioukhin V (2004). Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev, 18(5): 559-571
CrossRef
Pubmed
Google scholar
|
[30] |
Knoblich J A (2008). Mechanisms of asymmetric stem cell division. Cell, 132(4): 583-597
CrossRef
Pubmed
Google scholar
|
[31] |
Knoblich J A, Jan L Y, Jan Y N (1995). Asymmetric segregation of Numb and Prospero during cell division. Nature, 377(6550): 624-627
CrossRef
Pubmed
Google scholar
|
[32] |
Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008). Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol, 10(1): 93-101
CrossRef
Pubmed
Google scholar
|
[33] |
Kraut R, Chia W, Jan L Y, Jan Y N, Knoblich J A (1996). Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature, 383(6595): 50-55
CrossRef
Pubmed
Google scholar
|
[34] |
Kuchinke U, Grawe F, Knust E (1998). Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Current biology, CB(8): 1357-1365
|
[35] |
Lee C Y, Wilkinson B D, Siegrist S E, Wharton R P, Doe C Q (2006). Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell, 10(4): 441-449
CrossRef
Pubmed
Google scholar
|
[36] |
Li H S, Wang D, Shen Q, Schonemann M D, Gorski J A, Jones K R, Temple S, Jan L Y, Jan Y N (2003). Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron, 40(6): 1105-1118
CrossRef
Pubmed
Google scholar
|
[37] |
Li P, Yang X, Wasser M, Cai Y, Chia W (1997). Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell, 90(3): 437-447
CrossRef
Pubmed
Google scholar
|
[38] |
Lui J H, Hansen D V, Kriegstein A R (2011). Development and evolution of the human neocortex. Cell, 146(1): 18-36
CrossRef
Pubmed
Google scholar
|
[39] |
Meraldi P, Nigg E A (2002). The centrosome cycle. FEBS Lett, 521(1-3): 9-13
CrossRef
Pubmed
Google scholar
|
[40] |
Morin X, Jaouen F, Durbec P (2007). Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci, 10(11): 1440-1448
CrossRef
Pubmed
Google scholar
|
[41] |
Noctor S C, Martínez-Cerdeño V, Ivic L, Kriegstein A R (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 7(2): 136-144
CrossRef
Pubmed
Google scholar
|
[42] |
Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000). Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature, 408(6812): 593-596
CrossRef
Pubmed
Google scholar
|
[43] |
Peng C Y, Manning L, Albertson R, Doe C Q (2000). The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature, 408(6812): 596-600
CrossRef
Pubmed
Google scholar
|
[44] |
Petersen P H, Zou K, Hwang J K, Jan Y N, Zhong W (2002). Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature, 419(6910): 929-934
CrossRef
Pubmed
Google scholar
|
[45] |
Petersen P H, Zou K, Krauss S, Zhong W (2004). Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci, 7(8): 803-811
CrossRef
Pubmed
Google scholar
|
[46] |
Petronczki M, Knoblich J A (2001). DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol, 3(1): 43-49
CrossRef
Pubmed
Google scholar
|
[47] |
Postiglione M P, Jüschke C, Xie Y, Haas G A, Charalambous C, Knoblich J A (2011). Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron, 72(2): 269-284
CrossRef
Pubmed
Google scholar
|
[48] |
Rasin M R, Gazula V R, Breunig J J, Kwan K Y, Johnson M B, Liu-Chen S, Li H S, Jan L Y, Jan Y N, Rakic P, Sestan N (2007). Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci, 10(7): 819-827
CrossRef
Pubmed
Google scholar
|
[49] |
Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, González C (2007). Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell, 12(3): 467-474
CrossRef
Pubmed
Google scholar
|
[50] |
Rhyu M S, Jan L Y, Jan Y N (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell, 76(3): 477-491
CrossRef
Pubmed
Google scholar
|
[51] |
Rolls M M, Albertson R, Shih H P, Lee C Y, Doe C Q (2003). Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol, 163(5): 1089-1098
CrossRef
Pubmed
Google scholar
|
[52] |
Ruiz Gómez M, Bate M (1997). Segregation of myogenic lineages in Drosophila requires numb. Development, 124(23): 4857-4866
Pubmed
|
[53] |
Sanada K, Tsai L H (2005). G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell, 122(1): 119-131
CrossRef
Pubmed
Google scholar
|
[54] |
Schaefer M, Petronczki M, Dorner D, Forte M, Knoblich J A (2001). Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell, 107(2): 183-194
CrossRef
Pubmed
Google scholar
|
[55] |
Schaefer M, Shevchenko A, Shevchenko A, Knoblich J A (2000). A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Current biology, CB(10): 353-362
|
[56] |
Schober M, Schaefer M, Knoblich J A (1999). Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature, 402(6761): 548-551
CrossRef
Pubmed
Google scholar
|
[57] |
Schwamborn J C, Berezikov E, Knoblich J A (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5): 913-925
CrossRef
Pubmed
Google scholar
|
[58] |
Shen C P, Jan L Y, Jan Y N (1997). Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell, 90(3): 449-458
CrossRef
Pubmed
Google scholar
|
[59] |
Shen Q, Wang Y, Dimos J T, Fasano C A, Phoenix T N, Lemischka I R, Ivanova N B, Stifani S, Morrisey E E, Temple S (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci, 9(6): 743-751
CrossRef
Pubmed
Google scholar
|
[60] |
Shi S H, Jan L Y, Jan Y N (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112(1): 63-75
CrossRef
Pubmed
Google scholar
|
[61] |
Solecki D J, Model L, Gaetz J, Kapoor T M, Hatten M E (2004). Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci, 7(11): 1195-1203
CrossRef
Pubmed
Google scholar
|
[62] |
Stancik E K, Navarro-Quiroga I, Sellke R, Haydar T F (2010). Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. The Journal of neuroscience: the official journal of the Society for Neuroscience, 30: 7028-7036
|
[63] |
Wang X, Tsai J W, Imai J H, Lian W N, Vallee R B, Shi S H (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266): 947-955
CrossRef
Pubmed
Google scholar
|
[64] |
Wang X, Tsai J W, LaMonica B, Kriegstein A R (2011). A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci, 14(5): 555-561
CrossRef
Pubmed
Google scholar
|
[65] |
Wodarz A, Ramrath A, Grimm A, Knust E (2000). Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol, 150(6): 1361-1374
CrossRef
Pubmed
Google scholar
|
[66] |
Wodarz A, Ramrath A, Kuchinke U, Knust E (1999). Bazooka provides an apical cue for inscuteable localization in Drosophila neuroblasts. Nature, 402(6761): 544-547
CrossRef
Pubmed
Google scholar
|
[67] |
Yu F, Morin X, Cai Y, Yang X, Chia W (2000). Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell, 100(4): 399-409
CrossRef
Pubmed
Google scholar
|
[68] |
Zhong W, Chia W (2008). Neurogenesis and asymmetric cell division. Curr Opin Neurobiol, 18(1): 4-11
CrossRef
Pubmed
Google scholar
|
[69] |
Zigman M, Cayouette M, Charalambous C, Schleiffer A, Hoeller O, Dunican D, McCudden C R, Firnberg N, Barres B A, Siderovski D P, Knoblich J A (2005). Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron, 48(4): 539-545
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |