Transcriptional regulators that differentially control dendrite and axon development

Xin WANG, Bing YE

PDF(114 KB)
PDF(114 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (4) : 292-296. DOI: 10.1007/s11515-012-1234-y
REVIEW
REVIEW

Transcriptional regulators that differentially control dendrite and axon development

Author information +
History +

Abstract

Neurons are the basic units of connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. To understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Dar1, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.

Keywords

dendrite and axon commitment / Dar1 / p300-SnoN / NeuroD

Cite this article

Download citation ▾
Xin WANG, Bing YE. Transcriptional regulators that differentially control dendrite and axon development. Front Biol, 2012, 7(4): 292‒296 https://doi.org/10.1007/s11515-012-1234-y

References

[1]
Aizawa H, Hu S C, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004). Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science, 303(5655): 197-202
CrossRef Pubmed Google scholar
[2]
Arimura N, Kaibuchi K (2005). Key regulators in neuronal polarity. Neuron, 48(6): 881-884
CrossRef Pubmed Google scholar
[3]
Barnes A P, Lilley B N, Pan Y A, Plummer L J, Powell A W, Raines A N, Sanes J R, Polleux F (2007). LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell, 129(3): 549-563
CrossRef Pubmed Google scholar
[4]
Barnes A P, Polleux F (2009). Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci, 32(1): 347-381
CrossRef Pubmed Google scholar
[5]
Bonni S, Wang H R, Causing C G, Kavsak P, Stroschein S L, Luo K, Wrana J L (2001). TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol, 3(6): 587-595
CrossRef Pubmed Google scholar
[6]
Crozatier M, Vincent A (2008). Control of multidendritic neuron differentiation in Drosophila: the role of Collier. Dev Biol, 315(1): 232-242
CrossRef Pubmed Google scholar
[7]
de la Torre-Ubieta L, Bonni A (2011). Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron, 72(1): 22-40
CrossRef Pubmed Google scholar
[8]
Dickson B J (2002). Molecular mechanisms of axon guidance. Science, 298(5600): 1959-1964
CrossRef Pubmed Google scholar
[9]
Dotti C G, Sullivan C A, Banker G A (1988). The establishment of polarity by hippocampal neurons in culture. J Neurosci, 8(4): 1454-1468
Pubmed
[10]
Gao Z, Ure K, Ables J L, Lagace D C, Nave K A, Goebbels S, Eisch A J, Hsieh J (2009). Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci, 12(9): 1090-1092
CrossRef Pubmed Google scholar
[11]
Gärtner A, Fornasiero E F, Munck S, Vennekens K, Seuntjens E, Huttner W B, Valtorta F, Dotti C G (2012). N-cadherin specifies first asymmetry in developing neurons. EMBO J, 31(8): 1893-1903
CrossRef Pubmed Google scholar
[12]
Gaudillière B, Konishi Y, de la Iglesia N, Yao G, Bonni A (2004). A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron, 41(2): 229-241
CrossRef Pubmed Google scholar
[13]
Ghosh A, Greenberg M E (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science, 268(5208): 239-247
CrossRef Pubmed Google scholar
[14]
Goldberg J L (2004). Intrinsic neuronal regulation of axon and dendrite growth. Curr Opin Neurobiol, 14(5): 551-557
CrossRef Pubmed Google scholar
[15]
Goldberg J L, Klassen M P, Hua Y, Barres B A (2002). Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science, 296(5574): 1860-1864
CrossRef Pubmed Google scholar
[16]
Grueber W B, Jan L Y, Jan Y N (2003). Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell, 112(6): 805-818
CrossRef Pubmed Google scholar
[17]
Hattori Y, Sugimura K, Uemura T (2007). Selective expression of Knot/Collier, a transcriptional regulator of the EBF/Olf-1 family, endows the Drosophila sensory system with neuronal class-specific elaborated dendritic patterns. Genes Cells, 12(9): 1011-1022
CrossRef Pubmed Google scholar
[18]
Ikeuchi Y, Stegmüller J, Netherton S, Huynh M A, Masu M, Frank D, Bonni S, Bonni A (2009). A SnoN-Ccd1 pathway promotes axonal morphogenesis in the mammalian brain. J Neurosci, 29(13): 4312-4321
CrossRef Pubmed Google scholar
[19]
Jacobson C, Schnapp B, Banker G A (2006). A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron, 49(6): 797-804
CrossRef Pubmed Google scholar
[20]
Jan Y N, Jan L Y (2003). The control of dendrite development. Neuron, 40(2): 229-242
CrossRef Pubmed Google scholar
[21]
Jan Y N, Jan L Y (2010). Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci, 11(5): 316-328
CrossRef Pubmed Google scholar
[22]
Jinushi-Nakao S, Arvind R, Amikura R, Kinameri E, Liu A W, Moore A W (2007). Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron, 56(6): 963-978
CrossRef Pubmed Google scholar
[23]
Kollins K M, Hu J, Bridgman P C, Huang Y Q, Gallo G (2009). Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity. Dev Neurobiol, 69(5): 279-298
CrossRef Pubmed Google scholar
[24]
Konishi Y, Stegmüller J, Matsuda T, Bonni S, Bonni A (2004). Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science, 303(5660): 1026-1030
CrossRef Pubmed Google scholar
[25]
Konur S, Ghosh A (2005). Calcium signaling and the control of dendritic development. Neuron, 46(3): 401-405
CrossRef Pubmed Google scholar
[26]
Li W, Wang F, Menut L, Gao F B (2004). BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. Neuron, 43(6): 823-834
CrossRef Pubmed Google scholar
[27]
Ménager C, Arimura N, Fukata Y, Kaibuchi K (2004). PIP3 is involved in neuronal polarization and axon formation. J Neurochem, 89(1): 109-118
CrossRef Pubmed Google scholar
[28]
Miyata T, Maeda T, Lee J E (1999). NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev, 13(13): 1647-1652
CrossRef Pubmed Google scholar
[29]
Moore D L, Apara A, Goldberg J L (2011). Krüppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci, 47(4): 233-243
CrossRef Pubmed Google scholar
[30]
Moore D L, Goldberg J L (2011). Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol, 71(12): 1186-1211
CrossRef Pubmed Google scholar
[31]
Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004). Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol, 6(4): 328-334
CrossRef Pubmed Google scholar
[32]
Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S (2008). Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol, 40(10): 1996-2001
CrossRef Pubmed Google scholar
[33]
Pollarolo G, Schulz J G, Munck S, Dotti C G (2011). Cytokinesis remnants define first neuronal asymmetry in vivo. Nat Neurosci, 14(12): 1525-1533
CrossRef Pubmed Google scholar
[34]
Saneyoshi T, Fortin D A, Soderling T R (2010). Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol, 20(1): 108-115
CrossRef Pubmed Google scholar
[35]
Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo M M (2007). LKB1/STRAD promotes axon initiation during neuronal polarization. Cell, 129(3): 565-577
CrossRef Pubmed Google scholar
[36]
Shelly M, Lim B K, Cancedda L, Heilshorn S C, Gao H, Poo M M (2010). Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science, 327(5965): 547-552
CrossRef Pubmed Google scholar
[37]
Shi S H, Jan L Y, Jan Y N (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112(1): 63-75
CrossRef Pubmed Google scholar
[38]
Stegmüller J, Huynh M A, Yuan Z, Konishi Y, Bonni A (2008). TGFbeta-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis. J Neurosci, 28(8): 1961-1969
CrossRef Pubmed Google scholar
[39]
Stegmüller J, Konishi Y, Huynh M A, Yuan Z, Dibacco S, Bonni A (2006). Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron, 50(3): 389-400
CrossRef Pubmed Google scholar
[40]
Stroschein S L, Bonni S, Wrana J L, Luo K (2001). Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev, 15(21): 2822-2836
Pubmed
[41]
Sugimura K, Satoh D, Estes P, Crews S, Uemura T (2004). Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron, 43(6): 809-822
CrossRef Pubmed Google scholar
[42]
Tahirovic S, Bradke F (2009). Neuronal polarity. Cold Spring Harb Perspect Biol, 1(3): a001644
CrossRef Pubmed Google scholar
[43]
Wan Y, Liu X, Kirschner M W (2001). The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction. Mol Cell, 8(5): 1027-1039
CrossRef Pubmed Google scholar
[44]
Wang T, Liu Y, Xu X H, Deng C Y, Wu K Y, Zhu J, Fu X Q, He M, Luo Z G (2011). Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Dev Cell, 21(3): 431-444
CrossRef Pubmed Google scholar
[45]
Wang X, Zheng L, Zeng Z, Zhou G, Chien J, Qian C, Vasmatzis G, Shridhar V, Chen L, Liu W (2006). DIXDC1 isoform, l-DIXDC1, is a novel filamentous actin-binding protein. Biochem Biophys Res Commun, 347(1): 22-30
CrossRef Pubmed Google scholar
[46]
West A E, Greenberg M E (2011). Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect Biol, 3(6): 3
CrossRef Pubmed Google scholar
[47]
Whitford K L, Dijkhuizen P, Polleux F, Ghosh A (2002). Molecular control of cortical dendrite development. Annu Rev Neurosci, 25(1): 127-149
CrossRef Pubmed Google scholar
[48]
Wong R O L, Ghosh A (2002). Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci, 3(10): 803-812
CrossRef Pubmed Google scholar
[49]
Yan D, Guo L, Wang Y (2006). Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J Cell Biol, 174(3): 415-424
CrossRef Pubmed Google scholar
[50]
Ye B, Kim J H, Yang L, McLachlan I, Younger S, Jan L Y, Jan Y N (2011). Differential regulation of dendritic and axonal development by the novel Krüppel-like factor Dar1. J Neurosci, 31(9): 3309-3319
CrossRef Pubmed Google scholar
[51]
Ye B, Zhang Y, Song W, Younger S H, Jan L Y, Jan Y N (2007). Growing dendrites and axons differ in their reliance on the secretory pathway. Cell, 130(4): 717-729
CrossRef Pubmed Google scholar
[52]
Yuan Q, Xiang Y, Yan Z, Han C, Jan L Y, Jan Y N (2011). Light-induced structural and functional plasticity in Drosophila larval visual system. Science, 333(6048): 1458-1462
CrossRef Pubmed Google scholar
[53]
Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger S H, Zimmerman S, Jan L Y, Jan Y N (2008). Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol, 10(10): 1172-1180
CrossRef Pubmed Google scholar

Acknowledgments

We thank Lindsey Cregan and the anonymous reviewer for constructivesuggestions on the manuscript.Research in Ye laboratory is supported by grants from NIH (R00MH080599 and R01MH091186), the Whitehall foundation, and the Pew Charitable Trusts.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(114 KB)

Accesses

Citations

Detail

Sections
Recommended

/