NFκB signaling regulates embryonic and adult neurogenesis

Yonggang ZHANG, Wenhui HU

PDF(532 KB)
PDF(532 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (4) : 277-291. DOI: 10.1007/s11515-012-1233-z
REVIEW
REVIEW

NFκB signaling regulates embryonic and adult neurogenesis

Author information +
History +

Abstract

Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also cross-talks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.

Keywords

neural stem cells / transcriptional factors / NFκB / neurogenesis / embryonic stem cells / signal transduction

Cite this article

Download citation ▾
Yonggang ZHANG, Wenhui HU. NFκB signaling regulates embryonic and adult neurogenesis. Front Biol, 2012, 7(4): 277‒291 https://doi.org/10.1007/s11515-012-1233-z

References

[1]
Alcamo E, Mizgerd J P, Horwitz B H, Bronson R, Beg A A, Scott M, Doerschuk C M, Hynes R O, Baltimore D (2001). Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J Immunol, 167(3): 1592-1600
Pubmed
[2]
Andres-Mach M, Fike J R, Łuszczki J J (2011). Neurogenesis in the epileptic brain: a brief overview from temporal lobe epilepsy. Pharmacol Rep, 63(6): 1316-1323
Pubmed
[3]
Andreu-Agulló C, Morante-Redolat J M, Delgado A C, Fariñas I (2009). Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci, 12(12): 1514-1523
CrossRef Pubmed Google scholar
[4]
Ang H L, Tergaonkar V (2007). Notch and NFκB signaling pathways: Do they collaborate in normal vertebrate brain development and function? Bioessays, 29(10): 1039-1047
CrossRef Pubmed Google scholar
[5]
Angibaud J, Louveau A, Baudouin S J, Nerrière-Daguin V, Evain S, Bonnamain V, Hulin P, Csaba Z, Dournaud P, Thinard R, Naveilhan P, Noraz N, Pellier-Monnin V, Boudin H (2011). The immune molecule CD3zeta and its downstream effectors ZAP-70/Syk mediate ephrin signaling in neurons to regulate early neuritogenesis. J Neurochem, 119(4): 708-722
CrossRef Pubmed Google scholar
[6]
Artegiani B, Calegari F (2012). Age-related cognitive decline: Can neural stem cells help us? Aging (Albany NY), 4(3): 176-186
Pubmed
[7]
Ayyar S, Pistillo D, Calleja M, Brookfield A, Gittins K, Goldstone C, Simpson P (2007). NF-κB/Rel-mediated regulation of the neural fate in Drosophila. PLoS ONE, 2(11): e1178
CrossRef Pubmed Google scholar
[8]
Azoitei N, Wirth T, Baumann B (2005). Activation of the IκB kinase complex is sufficient for neuronal differentiation of PC12 cells. J Neurochem, 93(6): 1487-1501
CrossRef Pubmed Google scholar
[9]
Beg A A, Sha W C, Bronson R T, Ghosh S, Baltimore D (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature, 376(6536): 167-170
CrossRef Pubmed Google scholar
[10]
Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003). Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci, 24(3): 623-631
CrossRef Pubmed Google scholar
[11]
Ben Menachem-Zidon O, Goshen I, Kreisel T, Ben Menahem Y, Reinhartz E, Ben Hur T, Yirmiya R (2008). Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology, 33(9): 2251-2262
CrossRef Pubmed Google scholar
[12]
Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva J O (2008). Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells, 26(9): 2361-2371
CrossRef Pubmed Google scholar
[13]
Boersma M C, Dresselhaus E C, De Biase L M, Mihalas A B, Bergles D E, Meffert M K (2011). A requirement for nuclear factor-κB in developmental and plasticity-associated synaptogenesis. J Neurosci, 31(14): 5414-5425
CrossRef Pubmed Google scholar
[14]
Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142-1155
CrossRef Pubmed Google scholar
[15]
Bonini S A, Ferrari-Toninelli G, Uberti D, Montinaro M, Buizza L, Lanni C, Grilli M, Memo M (2011). Nuclear factor κB-dependent neurite remodeling is mediated by Notch pathway. J Neurosci, 31(32): 11697-11705
CrossRef Pubmed Google scholar
[16]
Boyce B F, Yao Z, Xing L (2010). Functions of nuclear factor κB in bone. Ann N Y Acad Sci, 1192(1): 367-375
CrossRef Pubmed Google scholar
[17]
Cai C, Thorne J, Grabel L (2008). Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells, 26(5): 1097-1108
CrossRef Pubmed Google scholar
[18]
Callan M A, Zarnescu D C (2011). Heads-up: new roles for the fragile X mental retardation protein in neural stem and progenitor cells. Genesis, 49(6): 424-440
CrossRef Pubmed Google scholar
[19]
Camandola S, Mattson M P (2007). NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets, 11(2): 123-132
CrossRef Pubmed Google scholar
[20]
Cao Q, Kaur C, Wu C Y, Lu J, Ling E A (2011). Nuclear factor-κβ regulates notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience, 192: 140-154
CrossRef Pubmed Google scholar
[21]
Cau E, Gradwohl G, Casarosa S, Kageyama R, Guillemot F (2000). Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development, 127(11): 2323-2332
Pubmed
[22]
Chen G, Handel K, Roth S (2000). The maternal NF-κB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development, 127(23): 5145-5156
Pubmed
[23]
Chen L F, Greene W C (2004). Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol, 5(5): 392-401
CrossRef Pubmed Google scholar
[24]
Cho H H, Shin K K, Kim Y J, Song J S, Kim J M, Bae Y C, Kim C D, Jung J S (2010). NF-κB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol, 223(1): 168-177
Pubmed
[25]
Conti L, Cattaneo E (2010). Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci, 11(3): 176-187
Pubmed
[26]
Cox R, Chen S H, Yoo E, Segev N (2007). Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex. BMC Evol Biol, 7(1): 12
CrossRef Pubmed Google scholar
[27]
Curtis MA, Low VF, Faull RL (2012). Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol, Online Available <month>April</month><day>27</day>, 2012
CrossRef Google scholar
[28]
Das S, Basu A (2008). Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res, 86(6): 1199-1208
CrossRef Pubmed Google scholar
[29]
Dave R K, Ellis T, Toumpas M C, Robson J P, Julian E, Adolphe C, Bartlett P F, Cooper H M, Reynolds B A, Wainwright B J (2011). Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PLoS ONE, 6(2): e14680
CrossRef Pubmed Google scholar
[30]
DeLotto R, DeLotto Y, Steward R, Lippincott-Schwartz J (2007). Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during Drosophila embryogenesis. Development, 134(23): 4233-4241
CrossRef Pubmed Google scholar
[31]
Denham M, Parish C L, Leaw B, Wright J, Reid C A, Petrou S, Dottori M, Thompson L H (2012). Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation. Front Cell Neurosci, 6: 11
CrossRef Pubmed Google scholar
[32]
Denis-Donini S, Caprini A, Frassoni C, Grilli M (2005). Members of the NF-κB family expressed in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res Dev Brain Res, 154(1): 81-89
CrossRef Pubmed Google scholar
[33]
Denis-Donini S, Dellarole A, Crociara P, Francese M T, Bortolotto V, Quadrato G, Canonico P L, Orsetti M, Ghi P, Memo M, Bonini S A, Ferrari-Toninelli G, Grilli M (2008). Impaired adult neurogenesis associated with short-term memory defects in NF-κB p50-deficient mice. J Neurosci, 28(15): 3911-3919
CrossRef Pubmed Google scholar
[34]
Dominguez I, Sanz L, Arenzana-Seisdedos F, Diaz-Meco M T, Virelizier J L, Moscat J (1993). Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-κB-like activity in Xenopus laevis oocytes. Mol Cell Biol, 13(2): 1290-1295
Pubmed
[35]
Dong J, Liu B, Song L, Lu L, Xu H, Gu Y (2011). Neural stem cells in the ischemic and injured brain: endogenous and transplanted. Cell Tissue Bank Online Available <month>Dec</month><day>21</day>, 2011
[36]
Encinas J M, Sierra A (2012). Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis. Behav Brain Res, 227(2): 433-439
CrossRef Pubmed Google scholar
[37]
Encinas J M, Vazquez M E, Switzer R C, Chamberland D W, Nick H, Levine H G, Scarpa P J, Enikolopov G, Steindler D A (2008). Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Exp Neurol, 210(1): 274-279
CrossRef Pubmed Google scholar
[38]
Feng Z, Porter A G (1999). NF-κB/Rel proteins are required for neuronal differentiation of SH-SY5Y neuroblastoma cells. J Biol Chem, 274(43): 30341-30344
CrossRef Pubmed Google scholar
[39]
Fior R, Henrique D (2005). A novel hes5/hes6 circuitry of negative regulation controls Notch activity during neurogenesis. Dev Biol, 281(2): 318-333
CrossRef Pubmed Google scholar
[40]
Foehr E D, Bohuslav J, Chen L F, DeNoronha C, Geleziunas R, Lin X, O’Mahony A, Greene W C (2000). The NF-κB-inducing kinase induces PC12 cell differentiation and prevents apoptosis. J Biol Chem, 275(44): 34021-34024
CrossRef Pubmed Google scholar
[41]
Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi F M, Pfeiffer J, Kaltschmidt C, Israël A, Mémet S (2003). Forebrain-specific neuronal inhibition of nuclear factor-κB activity leads to loss of neuroprotection. J Neurosci, 23(28): 9403-9408
Pubmed
[42]
Fujita K, Yasui S, Shinohara T, Ito K (2011). Interaction between NF-κB signaling and Notch signaling in gliogenesis of mouse mesencephalic neural crest cells. Mech Dev, 128(7-10): 496-509
CrossRef Pubmed Google scholar
[43]
Gallagher D, Gutierrez H, Gavalda N, O’Keeffe G, Hay R, Davies A M (2007). Nuclear factor-κB activation via tyrosine phosphorylation of inhibitor κB-alpha is crucial for ciliary neurotrophic factor-promoted neurite growth from developing neurons. J Neurosci, 27(36): 9664-9669
CrossRef Pubmed Google scholar
[44]
Gavaldà N, Gutierrez H, Davies A M (2009). Developmental regulation of sensory neurite growth by the tumor necrosis factor superfamily member LIGHT. J Neurosci, 29(6): 1599-1607
CrossRef Pubmed Google scholar
[45]
Gavert N, Vivanti A, Hazin J, Brabletz T, Ben-Ze’ev A (2011). L1-mediated colon cancer cell metastasis does not require changes in EMT and cancer stem cell markers. Mol Cancer Res, 9(1): 14-24
CrossRef Pubmed Google scholar
[46]
Ghosh A, Roy A, Liu X, Kordower J H, Mufson E J, Hartley D M, Ghosh S, Mosley R L, Gendelman H E, Pahan K (2007). Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA, 104(47): 18754-18759
CrossRef Pubmed Google scholar
[47]
Gloire G, Legrand-Poels S, Piette J (2006). NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol, 72(11): 1493-1505
CrossRef Pubmed Google scholar
[48]
Gloire G, Piette J (2009). Redox regulation of nuclear post-translational modifications during NF-κB activation. Antioxid Redox Signal, 11(9): 2209-2222
CrossRef Pubmed Google scholar
[49]
Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry, 13(7): 717-728
CrossRef Pubmed Google scholar
[50]
Goshen I, Yirmiya R (2009). Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol, 30(1): 30-45
CrossRef Pubmed Google scholar
[51]
Granic I, Dolga A M, Nijholt I M, van Dijk G, Eisel U L (2009). Inflammation and NF-κB in Alzheimer’s disease and diabetes. J Alzheimers Dis, 16(4): 809-821
Pubmed
[52]
Green H F, Treacy E, Keohane A K, Sullivan A M, O’Keeffe G W, Nolan Y M (2012). A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci, 49(3): 311-321
CrossRef Pubmed Google scholar
[53]
Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S (1999). The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci USA, 96(21): 11848-11853
CrossRef Pubmed Google scholar
[54]
Gutierrez H, Davies A M (2011). Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci, 34(6): 316-325
CrossRef Pubmed Google scholar
[55]
Häcker H, Karin M (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE, 2006(357): re13
CrossRef Pubmed Google scholar
[56]
Hanson N D, Owens M J, Nemeroff C B (2011). Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology, 36(13): 2589-2602
CrossRef Pubmed Google scholar
[57]
Hashimoto R, Ohi K, Yasuda Y, Fukumoto M, Yamamori H, Takahashi H, Iwase M, Okochi T, Kazui H, Saitoh O, Tatsumi M, Iwata N, Ozaki N, Kamijima K, Kunugi H, Takeda M (2011). Variants of the RELA gene are associated with schizophrenia and their startle responses. Neuropsychopharmacology, 36(9): 1921-1931
CrossRef Pubmed Google scholar
[58]
Heanue T A, Pachnis V (2007). Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci, 8(6): 466-479
CrossRef Pubmed Google scholar
[59]
Hess K, Ushmorov A, Fiedler J, Brenner R E, Wirth T (2009). TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-κB signaling pathway. Bone, 45(2): 367-376
CrossRef Pubmed Google scholar
[60]
Hodge R D, Hevner R F (2011). Expression and actions of transcription factors in adult hippocampal neurogenesis. Dev Neurobiol, 71(8): 680-689
CrossRef Pubmed Google scholar
[61]
Hu W H, Pendergast J S, Mo X M, Brambilla R, Bracchi-Ricard V, Li F, Walters W M, Blits B, He L, Schaal S M, Bethea J R (2005). NIBP, a novel NIK and IKK(beta)-binding protein that enhances NF-(κ)B activation. J Biol Chem, 280(32): 29233-29241
CrossRef Pubmed Google scholar
[62]
Huehnchen P, Prozorovski T, Klaissle P, Lesemann A, Ingwersen J, Wolf S A, Kupsch A, Aktas O, Steiner B (2011). Modulation of adult hippocampal neurogenesis during myelin-directed autoimmune neuroinflammation. Glia, 59(1): 132-142
CrossRef Pubmed Google scholar
[63]
Huillard E, Ziercher L, Blond O, Wong M, Deloulme J C, Souchelnytskyi S, Baudier J, Cochet C, Buchou T (2010). Disruption of CK2beta in embryonic neural stem cells compromises proliferation and oligodendrogenesis in the mouse telencephalon. Mol Cell Biol, 30(11): 2737-2749
CrossRef Pubmed Google scholar
[64]
Hyun Hwa C, Hye Joon J, Ji Sun S, Yong Chan B, Jin Sup J (2008). Crossregulation of beta-catenin/Tcf pathway by NF-κB is mediated by lzts2 in human adipose tissue-derived mesenchymal stem cells. Biochim Biophys Acta, (3): 419-428
[65]
Ideguchi M, Shinoyama M, Gomi M, Hayashi H, Hashimoto N, Takahashi J (2008). Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. J Neurosci Res, 86(9): 1936-1943
CrossRef Pubmed Google scholar
[66]
Imielski Y, Schwamborn J C, Lüningschrör P, Heimann P, Holzberg M, Werner H, Leske O, Püschel A W, Memet S, Heumann R, Israel A, Kaltschmidt C, Kaltschmidt B (2012). Regrowing the adult brain: NF-κB controls functional circuit formation and tissue homeostasis in the dentate gyrus. PLoS ONE, 7(2): e30838
CrossRef Pubmed Google scholar
[67]
Inta D, Meyer-Lindenberg A, Gass P (2011). Alterations in postnatal neurogenesis and dopamine dysregulation in schizophrenia: a hypothesis. Schizophr Bull, 37(4): 674-680
CrossRef Pubmed Google scholar
[68]
Islam O, Gong X, Rose-John S, Heese K (2009). Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell, 20(1): 188-199
CrossRef Pubmed Google scholar
[69]
Johansson S, Price J, Modo M (2008). Effect of inflammatory cytokines on major histocompatibility complex expression and differentiation of human neural stem/progenitor cells. Stem Cells, 26(9): 2444-2454
CrossRef Pubmed Google scholar
[70]
Kageyama R, Ohtsuka T, Kobayashi T (2008). Roles of Hes genes in neural development. Dev Growth Differ, 50(Suppl 1): S97-S103
CrossRef Pubmed Google scholar
[71]
Kajiwara K, Ogata S, Tanihara M (2005). Promotion of neurite outgrowth from fetal hippocampal cells by TNF-alpha receptor 1-derived peptide. Cell Transplant, 14(9): 665-672
CrossRef Pubmed Google scholar
[72]
Kaltschmidt B, Kaltschmidt C (2009). NF-κB in the nervous system. Cold Spring Harb Perspect Biol, 1(3): a001271
CrossRef Pubmed Google scholar
[73]
Kang H B, Kim Y E, Kwon H J, Sok D E, Lee Y (2007). Enhancement of NF-κB expression and activity upon differentiation of human embryonic stem cell line SNUhES3. Stem Cells Dev, 16(4): 615-624
CrossRef Pubmed Google scholar
[74]
Kasperczyk H, Baumann B, Debatin K M, Fulda S (2009). Characterization of sonic hedgehog as a novel NF-κB target gene that promotes NF-κB-mediated apoptosis resistance and tumor growth in vivo. FASEB J, 23(1): 21-33
CrossRef Pubmed Google scholar
[75]
Kato T Jr, Delhase M, Hoffmann A, Karin M (2003). CK2 Is a C-Terminal IκB Kinase Responsible for NF-κB Activation during the UV Response. Mol Cell, 12(4): 829-839
CrossRef Pubmed Google scholar
[76]
Kaul M (2008). HIV’s double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci, 13(13): 2484-2494
CrossRef Pubmed Google scholar
[77]
Kennedy K A, Ostrakhovitch E A, Sandiford S D, Dayarathna T, Xie X, Waese E Y, Chang W Y, Feng Q, Skerjanc I S, Stanford W L, Li S S (2010). Mammalian numb-interacting protein 1/dual oxidase maturation factor 1 directs neuronal fate in stem cells. J Biol Chem, 285(23): 17974-17985
CrossRef Pubmed Google scholar
[78]
Kennedy K A, Sandiford S D, Skerjanc I S, Li S S (2012). Reactive oxygen species and the neuronal fate. Cell Mol Life Sci, 69(2): 215-221
CrossRef Pubmed Google scholar
[79]
Keohane A, Ryan S, Maloney E, Sullivan A M, Nolan Y M (2010). Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1. Mol Cell Neurosci, 43(1): 127-135
CrossRef Pubmed Google scholar
[80]
Kim J, Wong P K (2009). Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells, 27(8): 1987-1998
CrossRef Pubmed Google scholar
[81]
Kim J H, Park S H, Park S G, Choi J S, Xia Y, Sung J H (2011a). The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev, 20(10): 1753-1761
CrossRef Pubmed Google scholar
[82]
Kim J M, Song J S, Cho H H, Shin K K, Bae Y C, Lee B J, Jung J S (2011b). Effect of the modulation of leucine zipper tumor suppressor 2 expression on proliferation of various cancer cells functions as a tumor suppressor. Mol Cell Biochem, 346(1-2): 125-136
CrossRef Pubmed Google scholar
[83]
Kim Y E, Kang H B, Park J A, Nam K H, Kwon H J, Lee Y (2008). Upregulation of NF-κB upon differentiation of mouse embryonic stem cells. BMB Rep, 41(10): 705-709
CrossRef Pubmed Google scholar
[84]
Kishi N, Macklis J D (2010). MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp Neurol, 222(1): 51-58
CrossRef Pubmed Google scholar
[85]
Kondo T, Matsuoka A J, Shimomura A, Koehler K R, Chan R J, Miller J M, Srour E F, Hashino E (2011). Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem Cells, 29(5): 836-846
CrossRef Pubmed Google scholar
[86]
Köntgen F, Grumont R J, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S (1995). Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev, 9(16): 1965-1977
CrossRef Pubmed Google scholar
[87]
Koo J W, Duman R S (2008). IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA, 105(2): 751-756
CrossRef Pubmed Google scholar
[88]
Koo J W, Duman R S (2009). Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr Opin Investig Drugs, 10(7): 664-671
Pubmed
[89]
Koo J W, Russo S J, Ferguson D, Nestler E J, Duman R S (2010). Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci USA, 107(6): 2669-2674
CrossRef Pubmed Google scholar
[90]
Kümmel D, Oeckinghaus A, Wang C, Krappmann D, Heinemann U (2008). Distinct isocomplexes of the TRAPP trafficking factor coexist inside human cells. FEBS Lett, 582(27): 3729-3733
CrossRef Pubmed Google scholar
[91]
Lake B B, Ford R, Kao K R (2001). Xrel3 is required for head development in Xenopus laevis. Development, 128(2): 263-273
Pubmed
[92]
Le Belle J E, Orozco N M, Paucar A A, Saxe J P, Mottahedeh J, Pyle A D, Wu H, Kornblum H I (2011). Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell, 8(1): 59-71
CrossRef Pubmed Google scholar
[93]
Le Douarin N M, Calloni G W, Dupin E (2008). The stem cells of the neural crest. Cell Cycle, 7(8): 1013-1019
CrossRef Pubmed Google scholar
[94]
Li Q, Estepa G, Memet S, Israel A, Verma I M (2000). Complete lack of NF-κB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev, 14(14): 1729-1733
Pubmed
[95]
Li Q, Spencer N Y, Oakley F D, Buettner G R, Engelhardt J F (2009). Endosomal Nox2 facilitates redox-dependent induction of NF-κB by TNF-alpha. Antioxid Redox Signal, 11(6): 1249-1263
CrossRef Pubmed Google scholar
[96]
Lilienbaum A, Sage J, Mémet S, Rassoulzadegan M, Cuzin F, Israël A (2000). NF-κB is developmentally regulated during spermatogenesis in mice. Dev Dyn, 219(3): 333-340
CrossRef Pubmed Google scholar
[97]
Lin Y, Bai L, Chen W, Xu S (2010). The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets, 14(1): 45-55
CrossRef Pubmed Google scholar
[98]
Lou S J, Gu P, Xu H, Xu X H, Wang M W, He C, Lu C L (2003). Effect of tumor necrosis factor-alpha on differentiation of mesencephalic neural stem cells and proliferation of oligodendrocytes in the rat. Sheng Li Xue Bao, 55(2): 183-186
Pubmed
[99]
Lum M, Croze E, Wagner C, McLenachan S, Mitrovic B, Turnley A M (2008). Inhibition of neurosphere proliferation by IFNgamma but not IFNbeta is coupled to neuronal differentiation. J Neuroimmunol, 206(1-2):32-38
[100]
Lüningschrör P, Stöcker B, Kaltschmidt B, Kaltschmidt C (2012). miR-290 cluster modulates pluripotency by repressing canonical NF-κB signaling. Stem Cells, 30(4): 655-664
CrossRef Pubmed Google scholar
[101]
Ma D K, Bonaguidi M A, Ming G L, Song H (2009). Adult neural stem cells in the mammalian central nervous system. Cell Res, 19(6): 672-682
CrossRef Pubmed Google scholar
[102]
Mancino A, Lawrence T (2010). Nuclear factor-κB and tumor-associated macrophages. Clin Cancer Res, 16(3): 784-789
CrossRef Pubmed Google scholar
[103]
Maniati E, Bossard M, Cook N, Candido J B, Emami-Shahri N, Nedospasov S A, Balkwill F R, Tuveson D A, Hagemann T (2011). Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J Clin Invest, 121(12): 4685-4699
CrossRef Pubmed Google scholar
[104]
Marcora E, Kennedy M B (2010). The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum Mol Genet, 19(22): 4373-4384
CrossRef Pubmed Google scholar
[105]
Massa P T, Aleyasin H, Park D S, Mao X, Barger S W (2006). NFκB in neurons? The uncertainty principle in neurobiology. J Neurochem, 97(3): 607-618
CrossRef Pubmed Google scholar
[106]
Mattson M P, Culmsee C, Yu Z, Camandola S (2000). Roles of nuclear factor κB in neuronal survival and plasticity. J Neurochem, 74(2): 443-456
CrossRef Pubmed Google scholar
[107]
Mattson M P, Meffert M K (2006). Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ, 13(5): 852-860
CrossRef Pubmed Google scholar
[108]
Meneghini V, Francese M T, Carraro L, Grilli M (2010). A novel role for the Receptor for Advanced Glycation End-products in neural progenitor cells derived from adult SubVentricular Zone. Mol Cell Neurosci, 45(2): 139-150
CrossRef Pubmed Google scholar
[109]
Metzger M (2010). Neurogenesis in the enteric nervous system. Arch Ital Biol, 148(2): 73-83
Pubmed
[110]
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687-702
CrossRef Pubmed Google scholar
[111]
Mir A, Kaufman L, Noor A, Motazacker M M, Jamil T, Azam M, Kahrizi K, Rafiq M A, Weksberg R, Nasr T, Naeem F, Tzschach A, Kuss A W, Ishak G E, Doherty D, Ropers H H, Barkovich A J, Najmabadi H, Ayub M, Vincent J B (2009). Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Hum Genet, 85(6): 909-915
CrossRef Pubmed Google scholar
[112]
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113(5): 631-642
CrossRef Pubmed Google scholar
[113]
Mochida G H, Mahajnah M, Hill A D, Basel-Vanagaite L, Gleason D, Hill R S, Bodell A, Crosier M, Straussberg R, Walsh C A (2009). A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet, 85(6): 897-902
CrossRef Pubmed Google scholar
[114]
Montano-Almendras C P, Essaghir A, Schoemans H, Varis I, Noel LA, Velghe AI, Latinne D, Knoops L, Demoulin J B (2012). ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor proliferation and differentiation into eosinophils: role of NF-κB. Haematologica, Online Available <month>Jan</month><day>22</day>, 2012
[115]
Morgan M J, Liu Z G (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res, 21(1): 103-115
CrossRef Pubmed Google scholar
[116]
Mu Y, Gage F H (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener, 6(1): 85
CrossRef Pubmed Google scholar
[117]
Mu Y, Lee S W, Gage F H (2010). Signaling in adult neurogenesis. Curr Opin Neurobiol, 20(4): 416-423
CrossRef Pubmed Google scholar
[118]
Mukaino M, Nakamura M, Okada S, Toyama Y, Liu M, Okano H (2008). [Role of IL-6 in regulation of inflammation and stem cell differentiation in CNS trauma]. Nihon Rinsho Meneki Gakkai Kaishi, 31(2): 93-98 (Role of IL-6 in regulation of inflammation and stem cell differentiation in CNS trauma)
CrossRef Pubmed Google scholar
[119]
Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007). Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci, 25(3): 649-658
CrossRef Pubmed Google scholar
[120]
Nishikimi A, Mukai J, Yamada M (1999). Nuclear translocation of nuclear factor κB in early 1-cell mouse embryos. Biol Reprod, 60(6): 1536-1541
CrossRef Pubmed Google scholar
[121]
Nogueira L, Ruiz-Ontañon P, Vazquez-Barquero A, Lafarga M, Berciano M T, Aldaz B, Grande L, Casafont I, Segura V, Robles E F, Suarez D, Garcia L F, Martinez-Climent J A, Fernandez-Luna J L (2011). Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene, 30(32): 3537-3548
CrossRef Pubmed Google scholar
[122]
Noor A, Windpassinger C, Patel M, Stachowiak B, Mikhailov A, Azam M, Irfan M, Siddiqui Z K, Naeem F, Paterson A D, Lutfullah M, Vincent J B, Ayub M (2008). CC2D2A, encoding a coiled-coil and C2 domain protein, causes autosomal-recessive mental retardation with retinitis pigmentosa. Am J Hum Genet, 82(4): 1011-1018
CrossRef Pubmed Google scholar
[123]
Okamoto S, Kang Y J, Brechtel C W, Siviglia E, Russo R, Clemente A, Harrop A, McKercher S, Kaul M, Lipton S A (2007). HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell, 1(2): 230-236
CrossRef Pubmed Google scholar
[124]
Okano H (2006). Adult neural stem cells and central nervous system repair. Ernst Schering Res Found Workshop, 60: 215-228
CrossRef Pubmed Google scholar
[125]
Osakada F, Takahashi M (2011). Neural induction and patterning in Mammalian pluripotent stem cells. CNS Neurol Disord Drug Targets, 10(4): 419-432
Pubmed
[126]
Paciolla M, Boni R, Fusco F, Pescatore A, Poeta L, Ursini M V, Lioi M B, Miano M G (2011). Nuclear factor-κ-B-inhibitor alpha (NFKBIA) is a developmental marker of NF-κB/p65 activation during in vitro oocyte maturation and early embryogenesis. Hum Reprod, 26(5): 1191-1201
CrossRef Pubmed Google scholar
[127]
Pan J X, Ding K, Wang C Y (2012). Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer, Online Available <month>Jan</month><day>9</day>, 2012
[128]
Pardal R, Ortega-Sáenz P, Durán R, Platero-Luengo A, López-Barneo J (2010). The carotid body, a neurogenic niche in the adult peripheral nervous system. Arch Ital Biol, 148(2): 95-105
Pubmed
[129]
Pathania M, Yan L D, Bordey A (2010). A symphony of signals conducts early and late stages of adult neurogenesis. Neuropharmacology, 58(6): 865-876
CrossRef Pubmed Google scholar
[130]
Pei Y, Brun S N, Markant S L, Lento W, Gibson P, Taketo M M, Giovannini M, Gilbertson R J, Wechsler-Reya R J (2012). WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development, 139(10): 1724-1733
CrossRef Pubmed Google scholar
[131]
Peng H, Whitney N, Wu Y, Tian C, Dou H, Zhou Y, Zheng J (2008). HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia, 56(8): 903-916
CrossRef Pubmed Google scholar
[132]
Perkins N D (2007). Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol, 8(1): 49-62
CrossRef Pubmed Google scholar
[133]
Philippe O, Rio M, Carioux A, Plaza J M, Guigue P, Molinari F, Boddaert N, Bole-Feysot C, Nitschke P, Smahi A, Munnich A, Colleaux L (2009). Combination of linkage mapping and microarray-expression analysis identifies NF-κB signaling defect as a cause of autosomal-recessive mental retardation. Am J Hum Genet, 85(6): 903-908
CrossRef Pubmed Google scholar
[134]
Piao Y J, Seo Y H, Hong F, Kim J H, Kim Y J, Kang M H, Kim B S, Jo S A, Jo I, Jue D M, Kang I, Ha J, Kim S S (2005). Nox 2 stimulates muscle differentiation via NF-κB/iNOS pathway. Free Radic Biol Med, 38(8): 989-1001
CrossRef Pubmed Google scholar
[135]
Politi C, Del Turco D, Sie J M, Golinski P A, Tegeder I, Deller T, Schultz C (2008). Accumulation of phosphorylated IκB alpha and activated IKK in nodes of Ranvier. Neuropathol Appl Neurobiol, 34(3): 357-365
CrossRef Pubmed Google scholar
[136]
Qin L, Crews F T (2012). NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation, 9(1): 5
CrossRef Pubmed Google scholar
[137]
Quirling M, Page S, Jilg N, Plenagl K, Peus D, Grubmüller C, Weingärtner M, Fischer C, Neumeier D, Brand K (2004). Detection of IKKbeta-IKKgamma subcomplexes in monocytic cells and characterization of associated signaling. J Biol Chem, 279(36): 37452-37460
CrossRef Pubmed Google scholar
[138]
Razani B, Reichardt A D, Cheng G (2011). Non-canonical NF-κB signaling activation and regulation: principles and perspectives. Immunol Rev, 244(1): 44-54
CrossRef Pubmed Google scholar
[139]
Reeves G T, Stathopoulos A (2009). Graded dorsal and differential gene regulation in the Drosophila embryo. Cold Spring Harb Perspect Biol, 1(4): a000836
CrossRef Pubmed Google scholar
[140]
Reikvam H, Olsnes A M, Gjertsen B T, Ersvar E, Bruserud O (2009). Nuclear factor-κB signaling: a contributor in leukemogenesis and a target for pharmacological intervention in human acute myelogenous leukemia. Crit Rev Oncog, 15(1-2): 1-41
Pubmed
[141]
Ricci-Vitiani L, Casalbore P, Petrucci G, Lauretti L, Montano N, Larocca L M, Falchetti M L, Lombardi D G, Gerevini V D, Cenciarelli C, D’Alessandris Q G, Fernandez E, De Maria R, Maira G, Peschle C, Parati E, Pallini R (2006). Influence of local environment on the differentiation of neural stem cells engrafted onto the injured spinal cord. Neurol Res, 28(5): 488-492
CrossRef Pubmed Google scholar
[142]
Richards G R, Smith A J, Cuddon P, Ma Q P, Leveridge M, Kerby J, Roderick H L, Bootman M D, Simpson P B (2006). The JAK3 inhibitor WHI-P154 prevents PDGF-evoked process outgrowth in human neural precursor cells. J Neurochem, 97(1): 201-210
CrossRef Pubmed Google scholar
[143]
Richardson J C, Garcia Estrabot A M, Woodland H R (1994). XrelA, a Xenopus maternal and zygotic homologue of the p65 subunit of NF-κ B. Characterisation of transcriptional properties in the developing embryo and identification of a negative interference mutant. Mech Dev, 45(2): 173-189
CrossRef Pubmed Google scholar
[144]
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol, 9(9): 1081-1088
CrossRef Pubmed Google scholar
[145]
Rubio-Araiz A, Arévalo-Martín A, Gómez-Torres O, Navarro-Galve B, García-Ovejero D, Suetterlin P, Sánchez-Heras E, Molina-Holgado E, Molina-Holgado F (2008). The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Mol Cell Neurosci, 38(3): 374-380
CrossRef Pubmed Google scholar
[146]
Saldanha-Araujo F, Haddad R, Malmegrim de Farias K C, Alves Souza AD, Palma P V, Araujo A G, Orellana M D, Voltarelli J C, Covas D T, Zago M A, Panepucci R A (2011). Mesenchymal stem cells promote the sustained expression of CD69 on activated T-lymphocytes: roles of canonical and non-canonical NF-κB signaling. J Cell Mol Med, Online Available <month>July</month><day>21</day>, 2011
[147]
Sanchez-Ponce D, Tapia M, Muñoz A, Garrido J J (2008). New role of IKK alpha/beta phosphorylated I κB alpha in axon outgrowth and axon initial segment development. Mol Cell Neurosci, 37(4): 832-844
CrossRef Pubmed Google scholar
[148]
Sauvageot C M, Stiles C D (2002). Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol, 12(3): 244-249
CrossRef Pubmed Google scholar
[149]
Schäfer K H, Micci M A, Pasricha P J (2009). Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol Motil, 21(2): 103-112
CrossRef Pubmed Google scholar
[150]
Schmidt-Ullrich R, Mémet S, Lilienbaum A, Feuillard J, Raphaël M, Israel A (1996). NF-κB activity in transgenic mice: developmental regulation and tissue specificity. Development, 122(7): 2117-2128
Pubmed
[151]
Schölzke M N, Röttinger A, Murikinati S, Gehrig N, Leib C, Schwaninger M (2011). TWEAK regulates proliferation and differentiation of adult neural progenitor cells. Mol Cell Neurosci, 46(1): 325-332
CrossRef Pubmed Google scholar
[152]
Schölzke M N, Schwaninger M (2007). Transcriptional regulation of neurogenesis: potential mechanisms in cerebral ischemia. J Mol Med (Berl), 85(6): 577-588
CrossRef Pubmed Google scholar
[153]
Schultz C, König H G, Del Turco D, Politi C, Eckert G P, Ghebremedhin E, Prehn J H, Kögel D, Deller T (2006). Coincident enrichment of phosphorylated IκBalpha, activated IKK, and phosphorylated p65 in the axon initial segment of neurons. Mol Cell Neurosci, 33(1): 68-80
CrossRef Pubmed Google scholar
[154]
Schwarz T J, Ebert B, Lie D C (2012). Stem cell maintenance in the adult mammalian hippocampus: A matter of signal integration? Dev Neurobiol, Online Available <month>April</month><day>5</day>, 2012
[155]
Senftleben U, Cao Y, Xiao G, Greten F R, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun S C, Karin M (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-κ B signaling pathway. Science, 293(5534): 1495-1499
CrossRef Pubmed Google scholar
[156]
Sha D, Chin L S, Li L (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet, 19(2): 352-363
CrossRef Pubmed Google scholar
[157]
Sha W C, Liou H C, Tuomanen E I, Baltimore D (1995). Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell, 80(2): 321-330
CrossRef Pubmed Google scholar
[158]
Shi Y, Sun G, Zhao C, Stewart R (2008). Neural stem cell self-renewal. Crit Rev Oncol Hematol, 65(1): 43-53
CrossRef Pubmed Google scholar
[159]
Shingo T, Sorokan S T, Shimazaki T, Weiss S (2001). Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci, 21(24): 9733-9743
Pubmed
[160]
Siebzehnrubl F A, Vedam-Mai V, Azari H, Reynolds B A, Deleyrolle L P (2011). Isolation and characterization of adult neural stem cells. Methods Mol Biol, 750: 61-77
CrossRef Pubmed Google scholar
[161]
Song X Q, Lv L X, Li W Q, Hao Y H, Zhao J P (2009). The interaction of nuclear factor-κB and cytokines is associated with schizophrenia. Biol Psychiatry, 65(6): 481-488
CrossRef Pubmed Google scholar
[162]
Sun S C (2012). The noncanonical NF-κB pathway. Immunol Rev, 246(1): 125-140
CrossRef Pubmed Google scholar
[163]
Taupin P (2008). Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci, 5(3): 127-132
CrossRef Pubmed Google scholar
[164]
Teng F Y, Tang B L (2010). NF-κB signaling in neurite growth and neuronal survival. Rev Neurosci, 21(4): 299-314
CrossRef Pubmed Google scholar
[165]
Tepavčević V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, Garcia-Verdugo J M, Lledo P M, Nait-Oumesmar B, Baron-Van Evercooren A (2011). Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest, 121(12): 4722-4734
CrossRef Pubmed Google scholar
[166]
Torchinsky A, Toder V (2004). To die or not to die: the function of the transcription factor NF-κB in embryos exposed to stress. Am J Reprod Immunol, 51(2): 138-143
CrossRef Pubmed Google scholar
[167]
Torres J, Watt F M (2008). Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3. Nat Cell Biol, 10(2): 194-201
CrossRef Pubmed Google scholar
[168]
Vaillend C, Poirier R, Laroche S (2008). Genes, plasticity and mental retardation. Behav Brain Res, 192(1): 88-105
CrossRef Pubmed Google scholar
[169]
Vaira S, Johnson T, Hirbe A C, Alhawagri M, Anwisye I, Sammut B, O’Neal J, Zou W, Weilbaecher K N, Faccio R, Novack D V (2008). RelB is the NF-κB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci USA, 105(10): 3897-3902
CrossRef Pubmed Google scholar
[170]
van den Berge S A, van Strien M E, Korecka J A, Dijkstra A A, Sluijs J A, Kooijman L, Eggers R, De Filippis L, Vescovi A L, Verhaagen J, van de Berg W D, Hol E M (2011). The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain, 134(Pt 11): 3249-3263
CrossRef Pubmed Google scholar
[171]
Viatour P, Merville M P, Bours V, Chariot A (2005). Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem Sci, 30(1): 43-52
CrossRef Pubmed Google scholar
[172]
Vieira H L, Alves P M, Vercelli A (2011). Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog Neurobiol, 93(3): 444-455
CrossRef Pubmed Google scholar
[173]
Vilas-Boas F, Henrique D (2010). HES6-1 and HES6-2 function through different mechanisms during neuronal differentiation. PLoS ONE, 5(12): e15459
CrossRef Pubmed Google scholar
[174]
Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90-94
CrossRef Pubmed Google scholar
[175]
Wang D D, Bordey A (2008). The astrocyte odyssey. Prog Neurobiol, 86(4): 342-367
Pubmed
[176]
Weih F, Durham S K, Barton D S, Sha W C, Baltimore D, Bravo R (1997). p50-NF-κB complexes partially compensate for the absence of RelB: severely increased pathology in p50-/-relB-/- double-knockout mice. J Exp Med, 185(7): 1359-1370
CrossRef Pubmed Google scholar
[177]
Westlake C J, Baye L M, Nachury M V, Wright K J, Ervin K E, Phu L, Chalouni C, Beck J S, Kirkpatrick D S, Slusarski D C, Sheffield V C, Scheller R H, Jackson P K (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA, 108(7): 2759-2764
CrossRef Pubmed Google scholar
[178]
Whitney N P, Eidem T M, Peng H, Huang Y, Zheng J C (2009). Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem, 108(6): 1343-1359
CrossRef Pubmed Google scholar
[179]
Widera D, Kaus A, Kaltschmidt C, Kaltschmidt B (2008). Neural stem cells, inflammation and NF-κB: basic principle of maintenance and repair or origin of brain tumours? J Cell Mol Med, 12(2): 459-470
CrossRef Pubmed Google scholar
[180]
Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B (2006a). Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-κB signaling. BMC Neurosci, 7(1): 64
CrossRef Pubmed Google scholar
[181]
Widera D, Mikenberg I, Kaltschmidt B, Kaltschmidt C (2006b). Potential role of NF-κB in adult neural stem cells: the underrated steersman? Int J Dev Neurosci, 24(2-3): 91-102
CrossRef Pubmed Google scholar
[182]
Widera D, Mikenberg I, Kaus A, Kaltschmidt C, Kaltschmidt B (2006c). Nuclear Factor-κB controls the reaggregation of 3D neurosphere cultures in vitro. Eur Cell Mater, 11: 76-84, discussion 85
Pubmed
[183]
Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139-1151
CrossRef Pubmed Google scholar
[184]
Wong E T, Tergaonkar V (2009). Roles of NF-κB in health and disease: mechanisms and therapeutic potential. Clin Sci (Lond), 116(6): 451-465
CrossRef Pubmed Google scholar
[185]
Wong G, Goldshmit Y, Turnley A M (2004). Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol, 187(1): 171-177
CrossRef Pubmed Google scholar
[186]
Wooten M W, Seibenhener M L, Neidigh K B, Vandenplas M L (2000). Mapping of atypical protein kinase C within the nerve growth factor signaling cascade: relationship to differentiation and survival of PC12 cells. Mol Cell Biol, 20(13): 4494-4504
CrossRef Pubmed Google scholar
[187]
Woronicz J D, Gao X, Cao Z, Rothe M, Goeddel D V (1997). IκB kinase-beta: NF-κB activation and complex formation with IκB kinase-alpha and NIK. Science, 278(5339): 866-869
CrossRef Pubmed Google scholar
[188]
Wu J P, Kuo J S, Liu Y L, Tzeng S F (2000). Tumor necrosis factor-alpha modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neurosci Lett, 292(3): 203-206
CrossRef Pubmed Google scholar
[189]
Xiao M, Inal C E, Parekh V I, Li X H, Whitnall M H (2009). Role of NF-κB in hematopoietic niche function of osteoblasts after radiation injury. Exp Hematol, 37(1): 52-64
CrossRef Pubmed Google scholar
[190]
Yaddanapudi K, De Miranda J, Hornig M, Lipkin W I (2011). Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway. PLoS ONE, 6(10): e26766
CrossRef Pubmed Google scholar
[191]
Yang C, Atkinson S P, Vilella F, Lloret M, Armstrong L, Mann D A, Lako M (2010). Opposing putative roles for canonical and noncanonical NFκB signaling on the survival, proliferation, and differentiation potential of human embryonic stem cells. Stem Cells, 28(11): 1970-1980
CrossRef Pubmed Google scholar
[192]
Yang L, Tao L Y, Chen X P (2007). Roles of NF-κB in central nervous system damage and repair. Neurosci Bull, 23(5): 307-313
CrossRef Pubmed Google scholar
[193]
Yeo J E, Kang S K2007. Selenium effectively inhibits ROS-mediated apoptotic neural precursor cell death in vitro and in vivo in traumatic brain injury. Biochim Biophys Acta, (11-12): 1199-1210
[194]
Yirmiya R, Goshen I (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun, 25(2): 181-213
CrossRef Pubmed Google scholar
[195]
Yoneyama M, Kawada K, Gotoh Y, Shiba T, Ogita K (2010). Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int, 56(6-7): 740-746
CrossRef Pubmed Google scholar
[196]
Young K M, Bartlett P F, Coulson E J (2006). Neural progenitor number is regulated by nuclear factor-κB p65 and p50 subunit-dependent proliferation rather than cell survival. J Neurosci Res, 83(1): 39-49
CrossRef Pubmed Google scholar
[197]
Zhang C, Wu H, Zhu X, Wang Y, Guo J (2011). Role of transcription factors in neurogenesis after cerebral ischemia. Rev Neurosci, 22(4): 457-465
CrossRef Pubmed Google scholar
[198]
Zhang Q, Wang C, Liu Z, Liu X, Han C, Cao X, Li N (2012a). Notch signal suppresses Toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor κB activation. J Biol Chem, 287(9): 6208-6217
CrossRef Pubmed Google scholar
[199]
Zhang Y, Liu J, Yao S, Li F, Xin L, Lai M, Bracchi-Ricard V, Xu H, Yen W, Meng W, Liu S, Yang L, Karmally S, Liu J, Zhu H, Gordon J, Khalili K, Srinivasan S, Bethea J R, Mo X, Hu W (2012b). Nuclear factor κB signaling initiates early differentiation of neural stem cells. Stem Cells, 30(3): 510-524
CrossRef Pubmed Google scholar
[200]
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645-660
CrossRef Pubmed Google scholar
[201]
Zhao C, Xiu Y, Ashton J, Xing L, Morita Y, Jordan C T, Boyce B F (2012). Noncanonical NF-κB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells, 30(4): 709-718
CrossRef Pubmed Google scholar
[202]
Zhao M, Li X D, Chen Z (2010). CC2D1A, a DM14 and C2 domain protein, activates NF-κB through the canonical pathway. J Biol Chem, 285(32): 24372-24380
CrossRef Pubmed Google scholar
[203]
Zhu C, Liu Z, Gui L, Yao W, Qian W, Zhang C (2008). Mutated IκBalpha represses proliferation of immortalized neural progenitor cells and prevents their apoptosis after oxygen-glucose deprivation. Brain Res, 1244: 24-31
CrossRef Pubmed Google scholar
[204]
Ziercher L, Filhol O, Laudet B, Prudent R, Cochet C, Buchou T (2011). Structure-function analysis of the beta regulatory subunit of protein kinase CK2 by targeting embryonic stem cell. Mol Cell Biochem, 356(1-2): 75-81
CrossRef Pubmed Google scholar
[205]
Zong M, Satoh A, Yu M K, Siu K Y, Ng W Y, Chan H C, Tanner J A, Yu S (2012). TRAPPC9 mediates the interaction between p150 and COPII vesicles at the target membrane. PLoS ONE, 7(1): e29995
CrossRef Pubmed Google scholar
[206]
Zong M, Wu X G, Chan C W, Choi M Y, Chan H C, Tanner J A, Yu S (2011). The adaptor function of TRAPPC2 in mammalian TRAPPs explains TRAPPC2-associated SEDT and TRAPPC9-associated congenital intellectual disability. PLoS ONE, 6(8): e23350
CrossRef Pubmed Google scholar

Acknowledgments

This work was supported by the National Institutes of Diabetes and Digestive and Kidney Diseases (WH, DK075964) and the National Center for Research Resources (WH, RR032123).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(532 KB)

Accesses

Citations

Detail

Sections
Recommended

/